Collective Behavior: Macroscopic versus Kinetic Descriptions
May 19-23, 2014
Department of Mathematics
Imperial College London

Organizers
José A. Carrillo
Alina Chertock
Pierre Degond
Marco Di Francesco
Eitan Tadmor

Confirmed Participants
Eshel Ben-Jacob
Adrien Blanchet
David Cai
Vincent Calvez
José A. Carrillo
Alina Chertock
Young-Pil Choi
Pierre Degond
Ron DeVore
Marco Di Francesco
Raluca Eftimie
Bjorn Engquist
Yanhong Huang
Pierre-Emmanuel Jabin
Axel Klar
Theodore Kolokolnikov
Jian-Guo Liu
Philip K. Maini
Cristina Marchetti
Stephan Martin
Sébastien Motsch
Benoit Perthame
Christian Ringhofer
Endre Süli
Eitan Tadmor
Changhui Tan
Guy Theraulaz
Giuseppe Toscani
Jonathan Touboul

Scientific Background
Nonlinear nonlocal aggregation/diffusion equations are basic macroscopic models in many collective behavior applications such as bacterial chemotaxis, swarming, and computational neuroscience, to name a few. Kinetic modeling is being derived in these applications to include a mesoscopic level of description bridging the microscopic to the macroscopic scales.

Goals
To discuss recent developments of mathematical analysis tools and methods, design of suitable numerical schemes, and numerical simulation in some selected new applications in the field of aggregation/diffusion and kinetic PDEs. In particular, we will focus on the interplay between aggregation and interaction behavior in nonlocal/nonlinear transport and diffusion phenomena.

A limited number of openings are available. To apply, complete the online application before March 1, 2014.

For more information and to apply: www.ki-net.umd.edu

Partial funding is also provided by:

In this conference we will also honor Eitan Tadmor’s 60th birthday.