Conference Announcement

Mathematical and Computational Methods in Quantum Chemistry
May 13-16, 2016
Department of Chemistry
Yale University

Organizers
Victor Batista Yale University
Shi Jin University of Wisconsin - Madison
Qin Lu University of Wisconsin - Madison
Jianfeng Lu Duke University
Weitao Yang Duke University

Confirmed Participants
Wei Cai University of North Carolina - Charlotte
Eric Cancès Ecole des Ponts and INRIA
Roberto Car Princeton University
Dangxing Chen University of North Carolina - Chapel Hill
Qiang Cui University of Wisconsin - Madison
Di Fang University of Wisconsin - Madison
Prabha Goel University of Waterloo
George A. Hagedorn Virginia Tech
Michael Herman Yale University
Kenneth Jung Yale University
Yosuke Kanai University of North Carolina - Chapel Hill
Xiantao Li Penn State University
Lin Lin University of California, Berkeley
Jian Liu Peking University
Yvon Maday University of Paris VI
Nancy Makri University of Illinois - Urbana Champaign
Dionisios Margetis University of Maryland
Jose A. Morales Escalante The University of Texas - Austin
Qian Niu The University of Texas - Austin
Tomoki Ohsawa University of Southern California
Oleg Prezhdo Sandia National Laboratories
Prashant Rai Peking University
Sihong Shao University of Pennsylvania
Joseph Subotnik University of Maryland
Eitan Tramont University of Surrey
Cesare Tronci Yale University
John Tully Columbia University
Alexander Watson Brookhaven National Lab
Qin Wu University of New Haven
Dequan Xiao Temple University
Vivek K. Yadav Lawrence Berkeley National Lab
Chao Yang University of California, Santa Barbara
Xu Yang Chinese Academy of Sciences
Alhui Zhou Duke University
Zhennan Zhou Gaussian, Inc.
Michael Frisch

In recent years, the area of mathematical and computational aspects of quantum chemistry has undertaken a rapid development. The interplay between applied mathematics and quantum chemistry is important in generating intriguing new research directions for applied mathematics, in enhancing the understanding of models from quantum chemistry, and in advancing the development of efficient algorithms. This workshop will focus on studying recent developments and open challenges in this area, and on strengthening the interactions between applied mathematician and theoretical chemists.

Goals
This workshop will bring together researchers with diverse expertise on mathematical and numerical methods in quantum chemistry. Our goal is to stimulate interdisciplinary discussions between applied mathematicians and theoretical chemists, with a particular focus on theoretical, mathematical and computational challenges from quantum chemistry. Emphasis will be placed on multiscale problems, quantum-classical coupling, mean-field equations, dimensional reduction, etc.

For more information and to apply: www.ki-net.umd.edu