Mathematical and Numerical Aspects of Quantum Dynamics
June 19–21, 2018
Center for Scientific Computation And Mathematical Modeling
University of Maryland

Organizers
Jianfeng Lu Duke University
Eitan Tadmor University of Maryland

Confirmed Participants
Weizhu Bao National University of Singapore
Thomas Barthel Duke University
Victor Batista Yale University
Roberto Car Princeton University
Eric A. Carlen Rutgers University
Thomas Chen University of Texas at Austin
Giovanni Ciccotti Sapienza University of Rome
Gero Friesecke Technical University of Munich
François Golse École Polytechnique
Christopher Jarzynski University of Maryland
Raymond Kapral University of Toronto
Mohammed Lemou University of Rennes 1
Yvon Maday University of Paris VI
Tom Markland Stanford University
Tom Miller California Institute of Technology
Israel Michael Sigal University of Toronto
Christof Sparber University of Illinois at Chicago
Joseph Subotnik University of Pennsylvania
Lexing Ying University of Wisconsin-Madison

Scientific Background
Understanding and numerically simulating quantum dynamics remains one of the great outstanding scientific challenges. This workshop aims to gather a group of mathematicians, physicists, and chemists to exchange ideas and foster collaborations on various topics related to quantum dynamics. Potential topics include adiabatic theory, topological insulators, semiclassical analysis. Numerical methods to be discussed include surface hopping, path-integral, quantum Monte Carlo, and tensor network methods.

Goals
Bringing together chemists and physicists with focus on topics in chemical and quantum dynamics with potential intercation for applied math, in particular, issues that can benefits from further impact using kinetic theories. The goal is to have a forward-looking workshop that establishes long term interactions between communities.