Scientific Background
A considerable effort has been directed in recent years to improve our understanding of the behavior of complex quantum systems. Such systems vary from a few to many particles, which shape interesting macroscopic phenomena. Challenging questions in this context touch upon issues of mathematical and numerical analysis as well as scientific computation.

Goals
To bring together a group of experts in Applied Mathematics and Mathematical Physics to discuss current developments on the analysis and numerical simulation of equations that govern the dynamics of such systems, and applications of quantum dynamics to chemistry. Emphasis will be placed on the highly oscillatory behavior of quantum systems as seen, for example, in the context of semiclassical limits, dispersion relations in periodic systems, and reduction of high-dimensional models to low-dimensional ones.

Confirmed Participants
Weizhu Bao
Claude Bardos
Yongyong Cai
Thomas Chen
Irene M. Gamba
Francois Golse
Graeme Henkelman
Pierre-Emmanuel Jabin
Qin Li
Hailiang Liu
Jianfeng Liu
Dionisios Margetis
Peter Markowich
Thierry Paul
Peter Smereka
Avy Soffer
Christof Sparber
Eitan Tadmor
Michael I. Weinstein
Xu Yang

National University of Singapore
École Normale Supérieure de Cachan
University of Maryland
University of Texas at Austin
University of Texas at Austin
Ecole Polytechnique-Paris
University of Texas at Austin
University of Maryland
University of Wisconsin-Madison
Iowa State University
Duke University
University of Maryland
University of Cambridge
Ecole Polytechnique
University of Michigan
Rutgers University
University of Illinois at Chicago
University of Maryland
Columbia University
University of California, Santa Barbara

A limited number of openings are available. To apply, complete the online application before April 10, 2013.

For more information and to apply: www.ki-net.umd.edu