Numerical methods for kinetic models describing collective phenomena : influence of the geometry

Francis FILBET, Chang YANG + Discussions with Vincent Calvez (ENSL)

University of Lyon

KI-net Workshop,
North Carolina (Jan. 2013)
Motion of bacteria

Alternatively

- Motion in straight line (≈ 1 sec.) : “run”
- Turning events ($\approx 1/10$ sec.) : “tumble”

1N. Mittal et al., Motility of E. coli cells in clusters formed by chemotactic aggregation, PNAS (2003).
Influence of the chemical signal

- Bacteria are sensitive to different chemical factors. Chemoattractants: some amino-acids (such as aspartate), glucose...
- Bacteria may produce themselves the chemical signal which attract them.
 loop: an accumulation of bacteria which is opposed to the natural dispersion.

Also: time dependence!
Kinetic models

We are interested in run & tumble type models

\[\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_x f = \frac{1}{\varepsilon} \mathcal{T}(f), \quad x \in \Omega_x \subset \mathbb{R}^2, \quad \mathbf{v} \in \mathbb{S}^1 \]

- collision operator \(\mathcal{T}(f) \) is the Othmer-Dunbar-Alt turning operator

\[\mathcal{T}(f) = \int_{\mathbb{S}^1} \mathcal{T}[c](\mathbf{v}' \to \mathbf{v}) f(\mathbf{v}') d\mathbf{v}' - \int_{\mathbb{S}^1} \mathcal{T}[c](\mathbf{v} \to \mathbf{v}') d\mathbf{v}' f(\mathbf{v}), \]

- B. C.: Maxwell’s boundary condition

\[f(t, x, \mathbf{v}) = (1 - \alpha) \mathcal{R}[f(t, x, \mathbf{v})] + \alpha \mathcal{M}[f(t, x, \mathbf{v})], \quad x \in \partial \Omega_x, \quad \mathbf{v} \cdot \mathbf{n}(x) \geq 0, \]

with \(\mathbf{n}(x) \) the unit inward normal, \(0 \leq \alpha \leq 1 \) and

\[
\begin{aligned}
\mathcal{R}[f(t, x, \mathbf{v})] &= f(t, x, \mathbf{v} - 2(\mathbf{v} \cdot \mathbf{n}(x)) \mathbf{n}(x)), \\
\mathcal{M}[f(t, x, \mathbf{v})] &= \mu(t, x) f_w(\mathbf{v}).
\end{aligned}
\]

Difficulty in numerical resolution:

- High dimension property asks high computational consuming.
State of the art

Solve numerically kinetic type equation on complex geometry.

Some algorithms based on Cartesian meshes

- **Immersed boundary method (IBM)** of Peskin, Lai and etc
 - popular in fluid mechanics applications,
 - add a singular source term to fluid mechanics equations to take into account boundary effects
 - poor accuracy

- **Cartesian cut-cell method** (D. Ingram, D. Causon and C. Mingham)
 - reconstruct the domain around the boundary
 - apply a finite volume scheme on the new control volume

- **Inverse Lax-Wendroff (ILW)** procedure (finite difference method or whatever)

I. Numerical method to Maxwell’s boundary conditions

II. Motility of E. Coli in clusters

III. Bacterial traveling pulses

IV. Conclusion
We start with 1D problem

\[
\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} = \frac{1}{\varepsilon} Q(f), \quad (x, v) \in [x_l, x_r] \times \mathbb{R}.
\]

The computational domain is covered by a uniform Cartesian mesh \(X_h \times V_h\)

\[
\begin{align*}
X_h &= \{ x_{\min} = x_0 \leq \cdots \leq x_i \leq \cdots \leq x_{n_x} = x_{\max} \}, \\
V_h &= \{ v_j = j \Delta v, \quad j \in \mathbb{Z}, \quad |j| \leq n_v \}.
\end{align*}
\]

The discrete B.C. reads

\[
f(x_p, v_j) = (1 - \alpha) \mathcal{R}[f(x_p, v_j)] + \alpha \mathcal{M}[f(x_p, v_j)],
\]

where \(\mathcal{R}[f(x_p, v_j)] = f(x_p, -v_j), \quad \mathcal{M}[f(x_p, v_j)] = \mu(x_p) f_w(v_j).\)
Compute f at ghost point x_g:

1. Extrapolation of f for the outflow
 - compute $f_{g,-j}$, $f_{p,-j}$ by WENO type extrapolation

Figure: A portion of mesh in spatially one dimensional case. ● is interior point, ■ is ghost point x_g, □ is the boundary x_p.
ILW Procedure in 1D Case

Compute f at ghost point x_g:

1. Extrapolation of f for the outflow
2. Compute B.C. at the boundary

 - compute $f(x_p, v_j)$
 - $\mathcal{R}[f_{p,j}] = f_{p,-j}$
 - $\mathcal{M}[f_{p,j}] = \mu_p f_w(v_j)$

Figure: A portion of mesh in spatially one dimensional case. ● is interior point, ● is ghost point x_g, □ is the boundary x_p.
ILW Procedure in 1D Case

Compute f at ghost point x_g:

1. Extrapolation of f for the outflow

2. Compute B.C. at the boundary

3. Approximation of f for inflow

$$\frac{\partial f}{\partial x}\bigg|_{x=x_p} = \frac{1}{v_x} \left(-\frac{\partial f}{\partial t} + \frac{1}{\varepsilon} Q(f) \right)_{x_p}$$

or by WENO type extrapolation

* compute $Q(f)_{x=x_p}$ by using $f_{p,j}$, $j \in V_h$

$$f_{g,j} \approx f_{p,j} + (x_g - x_p) \frac{\partial f}{\partial x}\bigg|_{x=x_p}$$

Figure: A portion of mesh in spatially one dimensional case. ● is interior point, ■ is ghost point x_g, □ is the boundary x_p.
ILW Procedure in 2D Case

We consider 2D model

$$\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} = \frac{1}{\varepsilon} Q(f),$$

Compute f at ghost point x_g:

1. Extrapolation of f for the outflow

 * compute $f(x_p, \mathbf{v} \cdot \mathbf{n} < 0)$ and $f(x_g, \mathbf{v} \cdot \mathbf{n} < 0)$ by WENO type extrapolation

Figure: Spatially 2D Cartesian mesh.
- is interior point, ■ is ghost point, □ is the point at the boundary, ○ is the point for extrapolation, the dashed line is the boundary.
ILW Procedure in 2D Case

We consider 2D model

$$\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} = \frac{1}{\varepsilon} Q(f),$$

Compute f at ghost point x_g:

1. Extrapolation of f for the outflow
2. Compute B.C. at the boundary

- $R[f(x_p, v)] = f(x_p, v - 2(v \cdot n)n), \quad v \cdot n > 0$
- Interpolate f on $(x_p, v - 2(v \cdot n)n)$
- $M[f(x_p, v)] = \mu(x_p)f_w(v), \quad v \cdot n > 0$

Figure: Spatially 2D Cartesian mesh.
- \bullet is interior point, \square is ghost point, \Box is the point at the boundary, \bigcirc is the point for extrapolation, the dashed line is the boundary.
ILW Procedure in 2D Case

We consider 2D model
\[
\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} = \frac{1}{\varepsilon} Q(f),
\]

Compute \(f \) at ghost point \(x_g \):
1. Extrapolation of \(f \) for the outflow
2. Compute B.C. at the boundary
3. Approximation of \(f \) for inflow
 * local coordinate system
 \(\mathbf{x} \rightarrow \hat{\mathbf{x}} \)
 \[
 \frac{\partial \hat{f}}{\partial \hat{x}} (\hat{x}_p, \mathbf{v}) = \\
 - \frac{1}{\hat{v}_x} \left(\frac{\partial \hat{f}}{\partial t} + \hat{v}_y \frac{\partial \hat{f}}{\partial \hat{y}} - \frac{1}{\varepsilon} Q(\hat{f}) \right) \bigg|_{\hat{x} = \hat{x}_p}
 \]
 * \(f(x_g, \mathbf{v}) \approx \)
 \[
 \hat{f}(\hat{x}_p, \mathbf{v}) + (\hat{x}_g - \hat{x}_p) \frac{\partial \hat{f}}{\partial \hat{x}} (\hat{x}_p, \mathbf{v})
 \]

Figure: Spatially 2D Cartesian mesh.
● is interior point, ■ is ghost point, □ is the point at the boundary, ○ is the point for extrapolation, the dashed line is the boundary.
Collective behavior of cells with chemoattractant

We consider the run & tumble type equation
\[
\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_x f = \int_V T(\mathbf{v}, \mathbf{v}') f(t, \mathbf{x}, \mathbf{v}) \, d\mathbf{v}' - \int_V T(\mathbf{v}', \mathbf{v}) f(t, \mathbf{x}, \mathbf{v}) \, d\mathbf{v}',
\]
(1)
with \(T(\mathbf{v}, \mathbf{v}') = \lambda_S(\mathbf{v}') \) and
\[
\lambda_S(\mathbf{v}') = \psi_S \left(\frac{D \log S}{Dt} \vbar_{\mathbf{v}'} \right)
\]
and
\[
\frac{\partial S}{\partial t} - D_S \Delta S = -a S + b \int_V f(t, \mathbf{x}, \mathbf{v}) \, d\mathbf{v}, \quad \mathbf{x} \in \Omega,
\]
(2)
where \(a \) and \(b \) are degradation rate of the chemoattractant, production rate, whereas \(D_S \) is the molecular diffusion coefficient.
Computation of $S(t, x)$

The finite difference scheme are used. For example:

$$\Delta S_{i,j} \approx \frac{S_{i+1,j} - 2S_{i,j} + S_{i-1,j}}{\Delta x^2} + \frac{S_{i,j+1} - 2S_{i,j} + S_{i,j-1}}{\Delta y^2}.$$

$S_{i,j-1}$ is approximated by extrapolation

$$S_{i,j-1} = S(x_m) \approx \sum_{k=1}^{9} c_k S(x_k).$$

Boundary conditions for S are:

$$\nabla S \cdot \vec{n} = 0.$$

Note that $S_{i,j-1}$ is linear combination of $S(x_k), k = 1, \ldots, 9.$
Numerical results 2D

Figure: (a) Time evolution of the bacteria’s density (b) time evolution of the velocity distribution at \((x, y) = (-0.1, -0.1)\)
Numerical results 2D

- steady state of the density n has an exponential decay rate with respect to $|x|$;
- good agreement with Mittal et al.

Bacterial traveling pulses

We consider the run & tumble type equation

\[
\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_x f = \int_V T(\mathbf{v}, \mathbf{v}') f(t, \mathbf{x}, \mathbf{v}') \, d\mathbf{v}' - \int_V T(\mathbf{v}', \mathbf{v}) f(t, \mathbf{x}, \mathbf{v}) \, d\mathbf{v}', \quad (3)
\]

with \(T(\mathbf{v}, \mathbf{v}') = \lambda(\mathbf{v}') K(\mathbf{v}, \mathbf{v}') \) and

\[
\lambda(\mathbf{v}') = \frac{1}{2} \left(\lambda_N(\mathbf{v}') + \lambda_S(\mathbf{v}') \right)
\]

\[
= \frac{1}{2} \left(\psi_N \left(\frac{D \log N}{D t} \right|_{\mathbf{v}'} \right) + \psi_S \left(\frac{D \log S}{D t} \right|_{\mathbf{v}'} \right)
\]

and

\[
\begin{aligned}
\frac{\partial S}{\partial t} - D_S \Delta S &= - a S + b \int_V f(t, \mathbf{x}, \mathbf{v}) \, d\mathbf{v}, \quad \mathbf{x} \in \Omega, \\
\frac{\partial N}{\partial t} - D_N \Delta N &= - c N \int_V f(t, \mathbf{x}, \mathbf{v}) \, d\mathbf{v}, \quad \mathbf{x} \in \Omega
\end{aligned}
\]

(4)

where \(a, b \) and \(c \) are degradation rate of the chemoattractant, production rate and the consumption rate of the nutrient by the bacteria, whereas \(D_S \) and \(D_N \) are the molecular diffusion coefficients.
Numerical results 2D

Figure: (a) Time evolution of the bacteria’s density (b) time evolution of the mean velocity
Numerical results 2D

Figure: Experimental evidence for pulses of E. coli traveling across a channel.

Figure: Comparison between experimental data and numerical results

Numerical results 2D
Numerical results 2D
Conclusion

- We solve a run & tumble type model
 - based on finite difference method
 - the ghost point values approximated by ILW procedure
 - collision operator solved explicitly

- ILW procedure
 - second-order accurate in L^1 norm
 - reproduces similar numerical results in literature

Perspectives

- Use a more precise tumble operator (depending on internal energy? memory effects?)
- Use different geometry for traveling pulses
- Design a hybrid method based on a domain decomposition method coupling kinetic and fluid models.