# High order semi-implicit schemes for kinetic equations 

## Francis FILBET

Institut Camille Jordan
Equipe Projet Inria Kaliffe - Université de Lyon

## Madison, 4th-9th May 2015



## Outline of the Talk

(1) Part I: Physical Context

2 Part II: Modeling issues

- Basic Properties of the guiding center model
- Derivation if the 4D drift kinetic \& guiding center models
- Basic Properties of the 4D drift kinetic model
(3) Part III: IMEX schemes
- General semi-linear approach
- Applications of semi-implicit schemes

4 Part IV: Numerical approximation in an arbitrary domain

- Flow around an airfoil in 2D
- D shape Simulation
- Toward plasma physics applications


## Physical Context : Controled Fusion Energy

Controled fusion energy is one of the major prospects for a long term source of energy.

Magnetic fusion
the plasma is confined in tokamaks using a large external magnetic field. The international project ITER is based on this idea and aims to build a new tokamak which could demonstrate the feasibility of the
 concept.
We assume that electrons are adiabatic and study the motion of electrons

$$
\frac{\partial f}{\partial t}+v \cdot \nabla_{x} f+\frac{e}{m}\left[E+v \times \frac{B_{\mathrm{ext}}}{\varepsilon}\right] \cdot \nabla_{v} f=0 .
$$

coupled with Maxwell's or Poisson equations for electromagnetic fields.

The 2D guiding center model

It gives the 2D guiding center model in the transverse plane of a Tokamak.

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\mathbf{U} \cdot \nabla_{\mathbf{x}_{\perp}} \rho=0, \\
\mathbf{U}=\mathbf{E}^{\perp}, \\
-\Delta_{\mathbf{x}_{\perp}} \phi=\rho .
\end{array}\right.
$$

Boundary condition :

$$
\phi\left(\mathbf{x}_{\perp}\right)=0, \quad \mathbf{x}_{\perp} \in \partial D,
$$

where $\partial D$ can be arbitrary boundary.
If $f$ is smooth, we have
(1) Maximum principle : $0 \leq \rho\left(t, \mathbf{x}_{\perp}\right) \leq \max _{\mathbf{x}_{\perp} \in D}\left(\rho\left(0, \mathbf{x}_{\perp}\right)\right)$.
(2) $L^{p}$ norm conservation: $\frac{d}{d t}\left(\int_{D}\left(\rho\left(t, \mathbf{x}_{\perp}\right)\right)^{p} d \mathbf{x}_{\perp}\right)=0$.
(3) Energy conservation: $\frac{d}{d t}\left(\int_{D}|\nabla \phi|^{2} d \mathbf{x}_{\perp}\right)=0$.

## Towards reduced kinetic models

## We assume

- the magnetic field is uniform $\boldsymbol{B}_{\text {ext }}=B e_{z}$, where $e_{z}$ stands for the unit vector in the toroidal direction,
- the ratio between orthogonal and longitudinal characteristic lenght is $L_{\perp} / L_{z}=\varepsilon \ll 1$,
- $f$ is vanishing at infinity of velocity field and periodic boundary condition is taken in $z$ direction.
- we are interesting by the long time asymptotic

To derive the Drift-Kinetic model, we formally follow the same ideas as for the guiding center model and split the variables as

$$
\mathbf{x}=\left(\mathbf{x}_{\perp}, x_{\|}\right)
$$

with $x_{\|}=z$ and $\mathbf{x}_{\perp}=(x, y)$.

For the Poisson equation, setting that $L_{\perp} / L_{z}=\varepsilon$, it leads to

$$
-\Delta_{\perp} \phi-\varepsilon^{2} \partial_{z z} \phi=n\left(t, \mathbf{x}_{\perp}, z\right)-n_{0}
$$

We split E into components along $\mathrm{B}_{\text {ext }}$ and perpendicular to $\mathrm{B}_{\text {ext }}$ : it gives

$$
\mathbf{E}=\mathbf{E}_{\perp}+\varepsilon E_{\|} \boldsymbol{e}_{z}
$$

Assuming that $B=O(1 / \varepsilon)$ and substituting this expression in the Vlasov equation, it yields

$$
\varepsilon \frac{\partial f}{\partial t}+\mathbf{v}_{\perp} \cdot \nabla_{\mathbf{x}_{\perp}} f+\varepsilon \mathbf{v}_{z} \partial_{z} f+\left(\mathbf{E}_{\perp}+\frac{\mathbf{v}_{\perp}^{\perp}}{\varepsilon}\right) \cdot \nabla_{\mathbf{v}_{\perp}} f+\varepsilon E_{z} \partial_{v_{z}} f=0 .
$$

Then we integrate with respect to $\mathbf{v}_{\perp}=\left(v_{x}, v_{y}\right)$, we get formally an equation for

$$
\tilde{f}=\int_{\mathbb{R}^{2}} f d \mathbf{v}_{\perp}
$$

It yields to the $3 D \times 1 D$ drift kinetic system

$$
\left\{\begin{array}{l}
\frac{\partial \tilde{f}}{\partial t}+\mathbf{U}_{\perp} \cdot \nabla_{\mathbf{x}_{\perp}} \tilde{f}+v_{z} \partial_{z} \tilde{f}+E_{z} \partial_{v_{z}} \tilde{f}=0 . \\
-\Delta_{\perp} \phi=\int_{\mathbb{R}} \tilde{f} d v_{z}-n_{0}
\end{array}\right.
$$

with $\mathbf{U}_{\perp}=\left(\partial_{y} \phi,-\partial_{x} \phi\right)$ and $E_{z}=-\partial_{z} \varphi$.
Remark integrating on the longitudinal direction in space and velocity, we recover the guiding center model:

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\mathbf{U}_{\perp} \cdot \nabla_{\mathbf{x}_{\perp}} \rho=0 \\
-\Delta_{\perp} \phi=\int_{\mathbb{R}} \tilde{f} d v_{z}-n_{0}
\end{array}\right.
$$

## 4D Drift-Kinetic Model

Normalized Drift-Kinetic model reads (cf. Grandgirard et al.)

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}+\mathbf{U}_{\perp} \cdot \nabla_{\mathbf{x}_{\perp}} f+v_{\|} \partial_{z} f+E_{\|} \partial_{v_{\|}} f=0, \\
-\nabla_{\perp} \cdot\left(\frac{\rho_{0}\left(\mathbf{x}_{\perp}\right)}{B} \nabla_{\perp} \phi\right)+\frac{\rho_{0}\left(\mathbf{x}_{\perp}\right)}{T_{e}\left(\mathbf{x}_{\perp}\right)}(\phi-\bar{\phi})=\rho .
\end{array}\right.
$$

In the following simulation, we consider a cylinder domain

$$
\Omega=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in D, 0 \leq z \leq L_{z}\right\} .
$$

Boundary condition :

- $\phi(\mathbf{x})=0$ on $\partial D \times\left[0, L_{z}\right]$.
- Periodic boundary condition in z-direction.

If $f$ is smooth, we have
Maximum principle : $0 \leq f\left(t, \mathbf{x}, v_{\|}\right) \leq\|f(0)\|_{\infty}$.
(2) $L^{p}$ norm conservation : $\frac{d}{d t}\left(\int_{\mathbb{R}} \int_{\Omega_{\mathbf{x}}}\left(f\left(t, \mathbf{x}, v_{\|}\right)\right)^{p} d \mathbf{x} d v_{\|}\right)=0$.
(3) Kinetic entropy conservation : $\frac{d}{d t}\left(\int_{\mathbb{R}} \int_{\Omega_{\mathrm{x}}} f \ln |f| d \mathbf{x} d v_{\|}\right)=0$.

## (4) Energy conservation

## Difficulty for the Numerical Simulations

- High dimension of the problem. Kinetic equations are set in phase space $(x, v) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$.
- Various instability occurs : microscopic phenomena (like two stream instability), macroscopic phenomena (fluid like instability Raleight-Taylor, Kelvin-Helmholtz instability in fluid mechanics).
- Nonlinearities
- Effect of collisions (not take into account here)
- multi-species plasma and quasineutral with large mass ratio
- Describe bounadry effects when they occur or the effect of the geometry (tokamak in the poloidal plane).


## IMEX schemes : additive and partitioned form

Here we shall use finite difference discretization in space for simplicity, and concentrate on time discretization, so we can see the problem as a system of ODES:

$$
\begin{equation*}
\frac{d y}{d t}=\underbrace{f(y)}_{\text {Explicit }}+\underbrace{\frac{1}{\varepsilon} g(y)}_{\text {Implicit }}, \tag{1}
\end{equation*}
$$

- The stiffness is associated to one of the terms on the RHS. We say that in this case the stiffness is additive.
- In other cases the stiffness can be associated to a variable, e.g.

$$
\begin{equation*}
\frac{d u}{d t}=F(u, v), \quad \frac{d v}{d t}=\frac{1}{\varepsilon} G(u, v) \tag{2}
\end{equation*}
$$

We say that the system is partitioned.

```
Let us emphasize that setting }y=(u,v\mp@subsup{)}{}{T},f=(F,0\mp@subsup{)}{}{T},g=(0,G\mp@subsup{)}{}{T}\mathrm{ ,
partitioned can be seen as a particular case of additive.
```

$\rightarrow$ A natural choice for all such cases is offered by IMEX methods.

## General formulation

In many cases the separation of scales is not additive nor partitioned. We may have a situation of the form

$$
\left\{\begin{array}{l}
\frac{d u}{d t}(t)=\mathcal{H}(t, u(t), u(t)), \quad \forall t \geq t_{0}  \tag{3}\\
u\left(t_{0}\right)=u_{0}
\end{array}\right.
$$

with $\mathcal{H}: \mathbb{R} \times \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ sufficiently regular

- Dependence on the second argument of $\mathcal{H}$ is non stiff.
- Dependence on the third argument is stiff.

This includes partitioned and additive as particular cases.
Strong relation with partitions systems: by setting $y=u$ and $z=u$, system (3) implies

$$
\left\{\begin{aligned}
\frac{d y}{d t}(t) & =\mathcal{H}(t, y(t), z(t)) \\
\frac{d z}{d t}(t) & =\mathcal{H}(t, y(t), z(t))
\end{aligned}\right.
$$

## Doubled system?

By doubling the variables, the systems takes a partitioned form.
Partitioned methods: apply two different R-K methods, i.e.

| $\hat{c}$ | $\hat{A}$ |  |
| :--- | :--- | :--- |
|  | $\hat{b}^{T}$ |  |
|  |  | $b^{T}$ |

treat $y$ with the method on the left, and $z$ with the one on the right.
Then one has, for the stage fluxes:

$$
k_{i}=\mathcal{H}\left(t^{n}+\hat{c}_{i} \Delta t, Y_{i}, Z_{i}\right), \quad \ell_{i}=\mathcal{H}\left(t^{n}+c_{i} \Delta t, Y_{i}, Z_{i}\right), \quad 1 \leq i \leq s
$$

with

$$
Y_{i}=y^{n}+\Delta t \sum_{j=1}^{s} \hat{a}_{i, j} k_{j}, \quad Z_{i}=y^{n}+\Delta t \sum_{j=1}^{s} a_{i j} \ell_{j}, \quad 1 \leq i \leq s
$$

and the numerical solutions at the next time step are

$$
y^{n+1}=y^{n}+\Delta t \sum_{i=1}^{s} \hat{b}_{i} k_{i}, \quad z^{n+1}=y^{n}+\Delta t \sum_{i=1}^{s} b_{i} \ell_{i}
$$

How to avoid doubling the number of variables

Remark 1. If $\hat{c}=c$ then $k=\ell \Rightarrow \mathcal{H}$ has to be computed only once per stage.

Remark 2. Furthermore,

- if $\hat{b}=b \Rightarrow y^{n+1}=z^{n+1}$,
- if $\hat{b} \neq b$ and $y^{n}=z^{n} \Rightarrow y^{n+1} \neq z^{n+1}$, however if both schemes are consistent to order $p$ once can choose any one of the two, say the one to compute $y^{n+1}$, and then set $n \leftarrow n+1$, and $z^{n}=y^{n}$

Remark 3. If $\hat{c}=c$ and the two schemes have different orders, then the difference $y^{n+1}-z^{n+1}$ can be used to estimate the local error $\Rightarrow$ time step control.

In all such cases, no duplication of variables is needed!

## Construction of schemes

Is it possible to construct such a scheme?

- For autonomous problems, it is all right!
- Up to second order, two stages schemes it is easy since we can impose that

$$
\begin{equation*}
\sum_{j} \hat{a}_{i, j} \neq \hat{c}_{i}, \quad \text { and } \quad \sum_{j} a_{i j} \neq c_{i}, \quad \text { for } \quad 1 \leq i \leq s \tag{5}
\end{equation*}
$$

## The IMEX-SSP2(2,2,2) L-stable scheme

We choose $b_{2}=1 / 2, \hat{c}=1$ and $\gamma=1-1 / \sqrt{2}$, i.e. the corresponding Butcher tableau is given by


Solution: Replace $\left(\hat{c_{1}}, \hat{c_{2}}\right)=(0,1)$ by $\left(\hat{c_{1}}, \hat{c_{2}}\right)=(\gamma, 1-\gamma)$

## Third order conditions and scheme

The semi-implicit Runge-Kutta method is of order three, if it satisfies the conditions

$$
\sum_{i} b_{i}=1, \quad \sum_{i} b_{i} c_{i}=1 / 2, \quad \sum_{i} b_{i} \hat{c}_{i}=1 / 2 .
$$

and the implicit part satisfies the classical third order conditions

$$
\sum_{i} b_{i} c_{i}^{2}=1 / 3, \quad \sum_{i, j} b_{i} a_{i j} c_{j}=1 / 6,
$$

the explicit part satisfies the classical third order conditions

$$
\sum_{i} b_{i} \hat{c}_{i}^{2}=1 / 3, \quad \sum_{i, j} b_{i} \hat{a}_{i j} \hat{c}_{j}=1 / 6,
$$

and moreover the additional coupling conditions

$$
\sum_{i} b_{i} \hat{c}_{i} c_{i}=1 / 3, \quad \sum_{i, j} b_{i} a_{i j} \hat{c}_{j}=1 / 6, \quad \sum_{i, j} b_{i} \hat{a}_{i j} c_{j}=1 / 6
$$

are satisfied.

## Third order conditions and scheme

A possible choice satisfying these properties is given by the IMEX-SSP3(4,3,3) L-stable scheme, i.e.

| 0 | 0 | 0 | 0 | 0 |  | $\alpha$ | $\alpha$ | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |  | 0 | $-\alpha$ | $\alpha$ | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |  | 1 | 0 | $1-\alpha$ | $\alpha$ | 0 |
| $1 / 2$ | 0 | $1 / 4$ | $1 / 4$ | 0 |  | $1 / 2$ | $\beta$ | $\eta$ | $1 / 2-\beta-\eta-\alpha$ | $\alpha$ |
|  | 0 | $1 / 6$ | $1 / 6$ | $2 / 3$ |  | 0 | $1 / 6$ | $1 / 6$ | $2 / 3$ |  |

with $\alpha=0.24169426078821, \beta=\alpha / 4$ and $\eta=0.12915286960590$.
What about fourth order schemes?

## Reaction diffusion problem

We consider the reaction diffusion system $\omega=\left(\omega_{1}, \omega_{2}\right): \mathbb{R}^{+} \times(0,2 \pi)^{2} \mapsto \mathbb{R}^{2}$

$$
\left\{\begin{array}{l}
\frac{\partial \omega_{1}}{\partial t}=\Delta \omega_{1}-\alpha_{1}(t) \omega_{1}^{2}+\frac{9}{2} \omega_{1}+\omega_{2}+f(t), \\
\frac{\partial \omega_{2}}{\partial t}=\Delta \omega_{2}+\frac{7}{2} \omega_{2}, \quad t \geq 0,
\end{array}\right.
$$

with $\alpha(t)=2 e^{t / 2}$ and $f(t)=-2 e^{-t / 2}$. Initial conditions compatible with exact solution

$$
\left\{\begin{array}{l}
\omega_{1}(t, x, y)=\exp (-0.5 t)(1+\cos (x)) \\
\omega_{2}(t, x, y)=\exp (-0.5 t) \cos (2 x)
\end{array}\right.
$$

Separate explicit variable $u=\left(u_{1}, u_{2}\right)$ from implicit $v=\left(v_{1}, v_{2}\right)$, according to:

$$
\mathcal{H}(t, \boldsymbol{u}, \boldsymbol{v})=\binom{\Delta v_{1}-\alpha(t) u_{1} v_{1}+\frac{9 u_{1}}{2}+v_{2}+f(t)}{\Delta v_{2}+\frac{7 v_{2}}{2}}
$$

## Reaction-Diffusion equation: results

- Fourth order accurate space discretization (error is mainly in time discretization).
- Hyperbolic CFL condition $\Delta t=\Delta x / 2$.
- Schemes SSP2 and SSP3.


Nonlinear convection-diffusion equation

We consider the convection diffusion equation

$$
\left\{\begin{array}{l}
\frac{\partial \omega}{\partial t}+[V+\mu \nabla \log (\omega)] \cdot \nabla \omega-\mu \Delta \omega=0, \quad(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{2} \\
\omega_{0}(t=0)=e^{-\|x\|^{2} / 2}
\end{array}\right.
$$

where $V=(1,1)^{T}, \mu=0.5$. The exact solution is given by

$$
\omega(t, x)=\frac{1}{\sqrt{4 \mu t+1}} \exp \left(-\frac{\|x-V t\|^{2}}{8 \mu t+2}\right), \quad t \geq 0, \quad x \in \mathbb{R}^{2}
$$

We choose $\mathcal{H}$ as follows

$$
\mathcal{H}(t, u, v)=-(V+\mu \nabla \log (u)) \cdot \nabla v+\mu \Delta v
$$

## Nonlinear convection-diffusion equation: results

We apply the same discretization in space and time with $x \in(-10,10)^{2}$. Final time $T=0.5$.



## Surface diffusion flow

We consider the following nonlinear fourth order differential equation

$$
\begin{equation*}
\frac{\partial \omega}{\partial t}+\operatorname{div} S(\omega)=0, \quad x \in \mathbb{R}^{2}, \quad t \geq 0 \tag{6}
\end{equation*}
$$

where the nonlinear differential operator $S$ is given by

$$
S(\omega):=\left(Q(\omega)\left(1-\frac{\nabla \omega \otimes \nabla \omega}{Q^{2}(\omega)}\right) \nabla N(\omega)\right),
$$

where $Q$ is the area element

$$
Q(\omega)=\sqrt{1+|\nabla \omega|^{2}}
$$

and $N$ is the mean curvature of the domain boundary $\Gamma$

$$
N(\omega):=\left(\frac{\nabla \omega}{Q(\omega)}\right) .
$$

## Surface diffusion flow

For this aplication we choose

$$
\mathcal{H}(u, v):=\left(Q(u)\left(1-\frac{\nabla u \otimes \nabla u}{Q^{2}(u)}\right) \nabla \mathbb{N}(u, v)\right)
$$

Hyperbolic CFL condition is used on the time step.



Towards plasma physics : one single particle motion

Let us conside $\mathbf{X}(t)=(x(t), y(t))$ and $\mathbf{V}(t)=\left(v_{x}(t), v_{y}(t)\right)$ with

$$
\left\{\begin{array}{l}
\frac{d \mathbf{X}}{d t}=\frac{1}{\varepsilon} \mathbf{V} \\
\frac{d \mathbf{V}}{d t}=\frac{1}{\varepsilon}\left(\mathbf{E}(\mathbf{X})+B(\mathbf{X}) \frac{\mathbf{V}^{\perp}}{\varepsilon}\right)
\end{array}\right.
$$

with $B(\mathbf{X})=(1+0.1 y)$ and

$$
\mathbf{E}(\mathbf{X})=-0.1\left(x+\binom{x^{3}(t)}{y^{3}(t)}\right)
$$

## Towards plasma physics : one single particle motion



Comparison with semi-implicit schemes with large time steps $\Delta t=0.01$


## Comparison with semi-implicit schemes with large time steps $\Delta t=0.01$


reference solution

$d t=0.01$



Comparison with semi-implicit schemes with large time steps $\Delta t=0.01$


## Part II : Treatment of boundary conditions

Solve numerically kinetic type equation on complex geometry. Some algorithms based on Cartesian meshes

* Immersed boundary method (IBM) of Peskin, Lai and etc
- popular in fluid mechanics applications,
- add a singular source term to fluid mechanics equations to take into account boundary effects
- poor accuracy
* Cartesian cut-cell method (D. Ingram, D. Causon and C. Mingham)
- reconstruct the domain around the boundary
- apply a finite volume scheme on the new control volume
* Inverse Lax-Wendroff (ILW) procedure (finite difference method or whatever)

T- S. TAN AND C.-W. SHU, Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws, Journal of Computational Physics, 229 (2010), 8144-8166.

## ILW Procedure in 2D Case



We consider 2D model

$$
\frac{\partial f}{\partial t}+v_{x} \frac{\partial f}{\partial x}+v_{y} \frac{\partial f}{\partial y}=\frac{1}{\varepsilon} \mathcal{Q}(f),
$$

Compute $f$ at ghost point $x_{g}$ :
(1) Extrapolation of $f$ for the outflow

* compute $f\left(\mathbf{x}_{p}, \mathbf{v} \cdot \mathbf{n}<0\right)$ and $f\left(\mathbf{x}_{g}, \mathbf{v} \cdot \mathbf{n}<0\right)$ by WENO type extrapolation

Figure: Spatially 2D Cartesian mesh. • is interior point, $\bullet$ is ghost point, $\square$ is the point at the boundary, $\bigcirc$ is the point for extrapolation, the dashed line is the boundary.

## ILW Procedure in 2D Case



We consider 2D model

$$
\frac{\partial f}{\partial t}+v_{x} \frac{\partial f}{\partial x}+v_{y} \frac{\partial f}{\partial y}=\frac{1}{\varepsilon} \mathcal{Q}(f)
$$

Compute $f$ at ghost point $x_{g}$ :
(1) Extrapolation of $f$ for the outflow
(2) Compute B.C. at the boundary

```
* \(\mathcal{R}\left[f\left(\mathbf{x}_{p}, \mathbf{v}\right)\right]=\)
        \(f\left(\mathbf{x}_{p}, \mathbf{v}-2(\mathbf{v} \cdot \mathbf{n}) \mathbf{n}\right), \quad \mathbf{v} \cdot \mathbf{n}>0\)
* interpolate \(f\) on
    \(\left(\mathbf{x}_{p}, \mathbf{v}-2(\mathbf{v} \cdot \mathbf{n}) \mathbf{n}\right)\)
* \(\mathcal{M}\left[f\left(\mathbf{x}_{p}, \mathbf{v}\right)\right]=\)
    \(\mu\left(\mathbf{x}_{p}\right) \exp \left(-\frac{\mathbf{v}^{2}}{2 T_{p}}\right), \quad \mathbf{v} \cdot \mathbf{n}>0\)
```

Figure: Spatially 2D Cartesian mesh. • is interior point, $\bullet$ is ghost point, $\square$ is the point at the boundary, $\bigcirc$ is the point for extrapolation, the dashed line is the boundary.

## ILW Procedure in 2D Case



Figure: Spatially 2D Cartesian mesh. • is interior point, $\bullet$ is ghost point, $\square$ is the point at the boundary, $\bigcirc$ is the point for extrapolation, the dashed line is the boundary.

We consider 2D model

$$
\frac{\partial f}{\partial t}+v_{x} \frac{\partial f}{\partial x}+v_{y} \frac{\partial f}{\partial y}=\frac{1}{\varepsilon} \mathcal{Q}(f)
$$

Compute $f$ at ghost point $x_{g}$ :
(1) Extrapolation of $f$ for the outflow
(2) Compute B.C. at the boundary
(3) Approximation of $f$ for inflow
$\star$ local coordinate system $\mathbf{x} \rightarrow \hat{\mathbf{x}}$

* $\frac{\partial \hat{f}}{\partial \tilde{x}}\left(\hat{\mathbf{x}}_{p}, \mathbf{v}\right)=$ $-\left.\frac{1}{\hat{v}_{x}}\left(\frac{\partial \hat{f}}{\partial t}+\hat{v}_{y} \frac{\partial \hat{f}}{\partial \hat{y}}-\frac{1}{\varepsilon} \mathcal{Q}(\hat{f})\right)\right|_{\hat{x}=\hat{\mathbf{x}}_{p}}$
* $f\left(\mathbf{x}_{g}, \mathbf{v}\right) \approx$

$$
\hat{f}\left(\hat{\mathbf{x}}_{p}, \mathbf{v}\right)+\left(\hat{x}_{g}-\hat{x}_{p}\right) \frac{\partial \hat{f}}{\partial \tilde{x}}\left(\hat{\mathbf{x}}_{p}, \mathbf{v}\right)
$$

## Flow around an airfoil in 2D

Solve the time evolution Boltzmann equation $(x, v) \in \Omega \times \mathbb{R}_{v}^{3}$, with $\Omega \subset \mathbb{R}^{2}$.

$$
\frac{\partial f}{\partial t}+v \cdot \nabla_{x} f=\frac{1}{K n} \mathcal{Q}(f) .
$$

We consider a Mach number $\mathrm{Ma}=0.3$ and a Reynolds number $\mathrm{Re}=3000$. The Mach, Reynolds and Knudsen numbers relation is given by:

$$
K n=\frac{M a}{R e} \sqrt{\frac{\gamma \pi}{2}}, \quad \gamma=1.4
$$


$\Gamma_{r}$

Figure: Flow around an object. Domain including an airfoil.

Flow around an airfoil in 2D

## D shape Simulation

We still consider the guiding center model but now in a D shape geometry.


1) We first look for a stationary solution of the guiding center model :

$$
\begin{cases}-\nabla_{\perp} \cdot\left(\frac{\rho_{0}}{B} \nabla_{\perp} \phi\right)=\bar{\rho}(\phi)-\rho_{0} & \text { in } \Omega  \tag{7}\\ \phi=0 & \text { on } \partial \Omega\end{cases}
$$

For a suitable function $\bar{\rho}$, we have a unique solution.

## D shape Simulation

The steady state solution is computed numerically

(a) Potential $\phi_{0}$

(b) Density $\rho_{0}$


Now we still consider the previous initial data ( $\phi_{0}, \bar{\rho}_{0}$ ) which is a stationary solution of the guiding-center model, but perturb it of magnitude of $\varepsilon$.

## D shape Simulation



## Toward plasma physics applications

Let us now consider Particle-In-Cell methods based on semi-implicit schemes in a disk shape domain where the Poisson equation is solved on a cartesian grid (we work in cartesian coordinates here)



## Conclusion

Current and future works :

- Applications in plasma physics
- Joint project with european labs (Eurofusion project) : fusion reaction, plasma confinement using large magnetic fields
- Dominant term is a magnetics field $\frac{1}{\varepsilon}(v \times B) \cdot \nabla_{v} f$, no more dissipative effects
- Inter-disciplinary works : computer science (HPC, large data), physics, engineering
- Applications to collective dynamics and self-interactions
- there are new kinetic models describing these phenomena (see bacteria motions)
- the structure of this model is simpler but the operators depends on velocity and space, steady states are not explicitly known
- construction of hybrid method

