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Physical Context : Controled Fusion Energy

Controled fusion energy is one of the major prospects for a long term source
of energy.

Magnetic fusion
the plasma is confined in tokamaks
using a large external magnetic
field. The international project ITER
is based on this idea and aims to
build a new tokamak which could
demonstrate the feasibility of the
concept.

We assume that electrons are adiabatic and study the motion of electrons
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� ⋅ ∇v f = 0.

coupled with Maxwell’s or Poisson equations for electromagnetic fields.



The 2D guiding center model

It gives the 2D guiding center model in the transverse plane of a Tokamak.�����������������

@⇢
@t +U ⋅ ∇

x�⇢ = 0,

U = E

�,
−�

x�� = ⇢.
Boundary condition :

�(x�) = 0, x� ∈ @D,

where @D can be arbitrary boundary.

If f is smooth, we have
(1) Maximum principle : 0 ≤ ⇢(t ,x�) ≤ max

x�∈D(⇢(0,x�)).
(2) Lp norm conservation : d

dt �∫D(⇢(t ,x�))pdx�� = 0.

(3) Energy conservation : d
dt �∫D �∇��2dx�� = 0.



Towards reduced kinetic models

We assume
the magnetic field is uniform B

ext

= B ez , where ez stands for the unit
vector in the toroidal direction,
the ratio between orthogonal and longitudinal characteristic lenght is
L⊥�Lz = "� 1,
f is vanishing at infinity of velocity field and periodic boundary condition
is taken in z direction.
we are interesting by the long time asymptotic

To derive the Drift-Kinetic model, we formally follow the same ideas as for the
guiding center model and split the variables as

x = (x�, x�)
with x� = z and x� = (x , y).



4D drift kinetic & guiding center models

For the Poisson equation, setting that L⊥�Lz = ", it leads to

−�⊥� − "2@zz� = n(t ,x⊥, z) − n0.

We split E into components along B

ext

and perpendicular to B

ext

: it gives

E = E� + "E�ez .

Assuming that B = O(1�") and substituting this expression in the Vlasov
equation, it yields

"
@f
@t
+ v� ⋅ ∇x� f + " vz@z f + �E� + v

⊥�
"
� ⋅ ∇

v� f + "Ez@vz f = 0.

Then we integrate with respect to v� = (vx , vy), we get formally an equation
for

f̃ = �R2
f dv�.



4D drift kinetic & guiding center model

It yields to the 3D × 1D drift kinetic system�������������
@ f̃
@t
+U� ⋅ ∇x� f̃ + vz@z f̃ + Ez @vz f̃ = 0.

−��� = ∫R f̃ dvz − n0

with U� = (@y�,−@x�) and Ez = −@z'.

Remark integrating on the longitudinal direction in space and velocity, we
recover the guiding center model:�������������

@⇢

@t
+U� ⋅ ∇x�⇢ = 0,

−��� = ∫R f̃ dvz − n0



4D Drift-Kinetic Model

Normalized Drift-Kinetic model reads (cf. Grandgirard et al.)���������
@f
@t +U� ⋅ ∇x� f + v�@z f + E�@v� f = 0,

−∇� ⋅ � ⇢0(x�)
B ∇��� + ⇢0(x�)

Te(x�)(� − �̄) = ⇢.
In the following simulation, we consider a cylinder domain

⌦ = {(x , y , z) ∈ R3 ∶ (x , y) ∈ D,0 ≤ z ≤ Lz}.
Boundary condition :

�(x) = 0 on @D × [0,Lz].
Periodic boundary condition in z-direction.

If f is smooth, we have
(1) Maximum principle : 0 ≤ f (t ,x, v�) ≤ �f (0)�∞.
(2) Lp norm conservation : d

dt �∫R ∫⌦
x

(f (t ,x, v�))pdxdv�� = 0.

(3) Kinetic entropy conservation : d
dt �∫R ∫⌦

x

f ln �f �dxdv�� = 0.
(4) Energy conservation



Difficulty for the Numerical Simulations

High dimension of the problem. Kinetic equations are set in phase space(x , v) ∈ R3 ×R3.
Various instability occurs : microscopic phenomena (like two stream
instability), macroscopic phenomena (fluid like instability Raleight-Taylor,
Kelvin-Helmholtz instability in fluid mechanics).
Nonlinearities
Effect of collisions (not take into account here)
multi-species plasma and quasineutral with large mass ratio
Describe bounadry effects when they occur or the effect of the geometry
(tokamak in the poloidal plane).



IMEX schemes : additive and partitioned form

Here we shall use finite difference discretization in space for simplicity, and
concentrate on time discretization, so we can see the problem as a system of
ODES:

dy
dt
= f (y)�

Explicit

+ 1
"

g(y)������������������
Implicit

, (1)

The stiffness is associated to one of the terms on the RHS. We say that
in this case the stiffness is additive.
In other cases the stiffness can be associated to a variable, e.g.

du
dt
= F(u, v), dv

dt
= 1

"
G(u, v) (2)

We say that the system is partitioned.

Let us emphasize that setting y = (u, v)T , f = (F ,0)T , g = (0,G)T ,
partitioned can be seen as a particular case of additive.

→ A natural choice for all such cases is offered by IMEX methods.



General formulation

In many cases the separation of scales is not additive nor partitioned. We
may have a situation of the form�������������

du
dt
(t) =H(t ,u(t),u(t)), ∀ t ≥ t0,

u(t0) = u0,

(3)

with H: R ×Rm ×Rm → Rm sufficiently regular
Dependence on the second argument of H is non stiff.
Dependence on the third argument is stiff.

This includes partitioned and additive as particular cases.

Strong relation with partitions systems: by setting y = u and z = u, system
(3) implies ���������������

dy
dt
(t) = H(t , y(t), z(t)),

dz
dt
(t) = H(t , y(t), z(t)),



Doubled system?

By doubling the variables, the systems takes a partitioned form.

Partitioned methods: apply two different R-K methods, i.e.

ĉ Â

b̂T

c A

bT
(4)

treat y with the method on the left, and z with the one on the right.
Then one has, for the stage fluxes:

ki = H �tn + ĉi�t ,Yi ,Zi� , `i = H �tn + ci�t ,Yi ,Zi� , 1 ≤ i ≤ s,

with

Yi = yn + �t
s�

j=1
âi,j kj , Zi = yn + �t

s�
j=1

aij `j , 1 ≤ i ≤ s,

and the numerical solutions at the next time step are

yn+1 = yn + �t
s�

i=1
b̂i ki , zn+1 = yn + �t

s�
i=1

bi `i .



How to avoid doubling the number of variables

Remark 1. If ĉ = c then k = ` ⇒ H has to be computed only once per stage.

Remark 2. Furthermore,
if b̂ = b ⇒ yn+1 = zn+1,
if b̂ ≠ b and yn = zn ⇒ yn+1 ≠ zn+1, however if both schemes are
consistent to order p once can choose any one of the two, say the one to
compute yn+1, and then set n ← n + 1, and zn = yn

Remark 3. If ĉ = c and the two schemes have different orders, then the
difference yn+1 − zn+1 can be used to estimate the local error⇒ time step
control.

In all such cases, no duplication of variables is needed!



Construction of schemes

Is it possible to construct such a scheme?

For autonomous problems, it is all right!
Up to second order, two stages schemes it is easy since we can impose
that �

j
âi,j ≠ ĉi , and �

j
aij ≠ ci , for 1 ≤ i ≤ s. (5)

The IMEX-SSP2(2,2,2) L-stable scheme

We choose b2 = 1�2, ĉ = 1 and � = 1 − 1�√2, i.e. the corresponding Butcher
tableau is given by

0 0 0
1 1 0

1�2 1�2
� � 0

1 − � 1 − 2� �
1�2 1�2

Solution : Replace (ĉ1, ĉ2) = (0,1) by (ĉ1, ĉ2) = (�,1 − �)



Third order conditions and scheme

The semi-implicit Runge-Kutta method is of order three, if it satisfies the
conditions �

i
bi = 1, �

i
bi ci = 1�2, �

i
bi ĉi = 1�2.

and the implicit part satisfies the classical third order conditions

�
i

bi c
2
i = 1�3, �

i,j
bi aij cj = 1�6,

the explicit part satisfies the classical third order conditions

�
i

bi ĉ2
i = 1�3, �

i,j
bi âij ĉj = 1�6,

and moreover the additional coupling conditions

�
i

bi ĉi ci = 1�3, �
i,j

bi aij ĉj = 1�6, �
i,j

bi âij cj = 1�6.
are satisfied.



Third order conditions and scheme

A possible choice satisfying these properties is given by the
IMEX-SSP3(4,3,3) L-stable scheme, i.e.

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0

1�2 0 1�4 1�4 0
0 1�6 1�6 2�3

↵ ↵ 0 0 0
0 −↵ ↵ 0 0
1 0 1 − ↵ ↵ 0

1�2 � ⌘ 1�2 − � − ⌘ − ↵ ↵
0 1�6 1�6 2�3

with ↵ = 0.24169426078821, � = ↵�4 and ⌘ = 0.12915286960590.

What about fourth order schemes?



Reaction diffusion problem

We consider the reaction diffusion system ! = (!1,!2) ∶ R+ × (0,2⇡)2 � R2

���������������
@!1

@t
= �!1 − ↵1(t)!2

1 + 9
2
!1 + !2 + f (t),

@!2

@t
= �!2 + 7

2
!2 , t ≥ 0,

with ↵(t) = 2 et�2 and f (t) = −2e−t�2. Initial conditions compatible with exact
solution ���������

!1(t , x , y) = exp(−0.5t) (1 + cos(x)),
!2(t , x , y) = exp(−0.5t) cos(2 x).

Separate explicit variable u = (u1,u2) from implicit v = (v1, v2), according to:

H(t ,u, v) = ������
�v1 − ↵(t)u1 v1 + 9u1

2
+ v2 + f (t)

�v2 + 7 v2

2

������ .



Reaction-Diffusion equation: results

Fourth order accurate space discretization (error is mainly in time
discretization).
Hyperbolic CFL condition �t =�x�2.
Schemes SSP2 and SSP3.
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Nonlinear convection-diffusion equation

We consider the convection diffusion equation�������������
@!

@t
+ [V + µ∇ log(!)] ⋅ ∇! − µ�! = 0 , (t , x) ∈ R+ ×R2,

!0(t = 0) = e−�x�2�2,
where V = (1,1)T , µ = 0.5 . The exact solution is given by

!(t , x) = 1�
4µ t + 1

exp�−�x − V t�2
8µ t + 2

� , t ≥ 0, x ∈ R2.

We choose H as follows

H(t ,u, v) = − (V + µ∇ log(u)) ⋅ ∇v + µ�v .



Nonlinear convection-diffusion equation: results

We apply the same discretization in space and time with x ∈ (−10,10)2. Final
time T = 0.5.
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Surface diffusion flow

We consider the following nonlinear fourth order differential equation

@!

@t
+ divS(!) = 0, x ∈ R2, t ≥ 0, (6)

where the nonlinear differential operator S is given by

S(!) ∶= �Q(!)�I − ∇! ⊗∇!
Q2(!) � ∇N(!)� ,

where Q is the area element

Q(!) =�1 + �∇!�2
and N is the mean curvature of the domain boundary �

N(!)∶=� ∇!
Q(!)� .



Surface diffusion flow

For this aplication we choose

H(u, v)∶=�Q(u)�I − ∇u ⊗∇u
Q2(u) � ∇N(u, v)� ,

Hyperbolic CFL condition is used on the time step.
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Towards plasma physics : one single particle motion

Let us conside X(t) = (x(t), y(t)) and V(t) = (vx(t), vy(t)) with�����������������
dX

dt
= 1
"

V

dV

dt
= 1
"
�E(X) + B(X)V⊥

"
�

with B(X) = (1 + 0.1 y) and

E(X) = −0.1�X + � x3(t)
y3(t) ��



Towards plasma physics : one single particle motion



Comparison with semi-implicit schemes with large time steps �t = 0.01



Comparison with semi-implicit schemes with large time steps �t = 0.01



Comparison with semi-implicit schemes with large time steps �t = 0.01



Part II : Treatment of boundary conditions

Solve numerically kinetic type equation on complex geometry.
Some algorithms based on Cartesian meshes� Immersed boundary method (IBM) of Peskin, Lai and etc

popular in fluid mechanics applications,
add a singular source term to fluid mechanics equations to take into account
boundary effects
poor accuracy� Cartesian cut-cell method (D. Ingram, D. Causon and C. Mingham)
reconstruct the domain around the boundary
apply a finite volume scheme on the new control volume� Inverse Lax-Wendroff (ILW) procedure (finite difference method or

whatever)

S. TAN AND C.-W. SHU, Inverse Lax-Wendroff procedure for numerical
boundary conditions of conservation laws, Journal of Computational
Physics, 229 (2010), 8144–8166.



ILW Procedure in 2D Case
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Figure: Spatially 2D Cartesian mesh. ● is
interior point, � is ghost point, � is the point
at the boundary,� is the point for
extrapolation, the dashed line is the
boundary.

We consider 2D model

@f
@t
+ vx

@f
@x
+ vy

@f
@y
= 1
"
Q(f ),

Compute f at ghost point xg :
1 Extrapolation of f for the outflow

� compute f(xp,v ⋅ n < 0) and
f(xg ,v ⋅ n < 0) by WENO type
extrapolation



ILW Procedure in 2D Case
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We consider 2D model

@f
@t
+ vx

@f
@x
+ vy

@f
@y
= 1
"
Q(f ),

Compute f at ghost point xg :
1 Extrapolation of f for the outflow
2 Compute B.C. at the boundary

� R[f(xp,v)] =
f(xp,v − 2(v ⋅ n)n), v ⋅ n > 0� interpolate f on(xp,v − 2(v ⋅ n)n)� M[f(xp,v)] =
µ(xp)exp�− v

2

2Tp
� , v ⋅ n > 0



ILW Procedure in 2D Case
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We consider 2D model

@f
@t
+ vx

@f
@x
+ vy

@f
@y
= 1
"
Q(f ),

Compute f at ghost point xg :
1 Extrapolation of f for the outflow
2 Compute B.C. at the boundary
3 Approximation of f for inflow

� local coordinate system x→ x̂

� @ f̂
@x̂ (x̂p,v) =
− 1

v̂x
� @ f̂
@t + v̂y

@ f̂
@ŷ − 1

"
Q(f̂)��

x̂=x̂p� f(xg ,v) �
f̂(x̂p,v) + (x̂g − x̂p) @ f̂

@x̂ (x̂p,v)



Flow around an airfoil in 2D

Solve the time evolution Boltzmann equation (x , v) ∈ ⌦ ×R3
v , with ⌦ ⊂ R2.

@f
@t
+ v ⋅ ∇x f = 1

Kn
Q(f ).

We consider a Mach number Ma = 0.3 and a Reynolds number Re = 3000.
The Mach, Reynolds and Knudsen numbers relation is given by:

Kn = Ma
Re

�
�⇡

2
, � = 1.4
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Figure: Flow around an object. Domain including an airfoil.



Flow around an airfoil in 2D



D shape Simulation

We still consider the guiding center model but now in a D shape geometry.

1) We first look for a stationary solution of the guiding center model :���������
−∇� ⋅ � ⇢0

B ∇��� = ⇢̄(�) − ⇢0 in ⌦,

� = 0 on @⌦.
(7)

For a suitable function ⇢̄, we have a unique solution.



D shape Simulation

The steady state solution is computed numerically

Now we still consider the previous initial data (�0, ⇢̄0) which is a stationary
solution of the guiding-center model, but perturb it of magnitude of ".



D shape Simulation



Toward plasma physics applications

Let us now consider Particle-In-Cell methods based on semi-implicit
schemes in a disk shape domain where the Poisson equation is solved on a
cartesian grid (we work in cartesian coordinates here)



Conclusion

Current and future works :
Applications in plasma physics

Joint project with european labs (Eurofusion project) : fusion reaction,
plasma confinement using large magnetic fields
Dominant term is a magnetics field 1

"
(v × B) ⋅ ∇v f , no more dissipative

effects
Inter-disciplinary works : computer science (HPC, large data), physics,
engineering

Applications to collective dynamics and self-interactions
there are new kinetic models describing these phenomena (see bacteria
motions)
the structure of this model is simpler but the operators depends on velocity
and space, steady states are not explicitly known
construction of hybrid method
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