High order semi-implicit schemes for kinetic equations

Francis FILBET

Institut Camille Jordan Equipe Projet Inria Kaliffe - Université de Lyon

Madison, 4th-9th May 2015

Outline of the Talk

- Part I: Physical Context
- Part II : Modeling issues
 - Basic Properties of the guiding center model
 - Derivation if the 4D drift kinetic & guiding center models
 - Basic Properties of the 4D drift kinetic model
- Part III: IMEX schemes
 - General semi-linear approach
 - Applications of semi-implicit schemes
- Part IV: Numerical approximation in an arbitrary domain
 - Flow around an airfoil in 2D
 - D shape Simulation
 - Toward plasma physics applications

Physical Context: Controled Fusion Energy

Controlled fusion energy is one of the major prospects for a long term source of energy.

Magnetic fusion

the plasma is confined in tokamaks using a large external magnetic field. The international project ITER is based on this idea and aims to build a new tokamak which could demonstrate the feasibility of the concept.

We assume that electrons are adiabatic and study the motion of electrons

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + \frac{e}{m} \left[E + v \times \frac{B_{\text{ext}}}{\varepsilon} \right] \cdot \nabla_v f = 0.$$

coupled with Maxwell's or Poisson equations for electromagnetic fields.

The 2D guiding center model

It gives the 2D guiding center model in the transverse plane of a Tokamak.

$$\left\{ \begin{array}{l} \frac{\partial \rho}{\partial t} + \mathbf{U} \cdot \nabla_{\mathbf{x}_{\perp}} \rho = \mathbf{0}, \\ \\ \mathbf{U} = \mathbf{E}^{\perp}, \\ \\ -\Delta_{\mathbf{x}_{\perp}} \phi = \rho. \end{array} \right.$$

Boundary condition:

$$\phi(\mathbf{x}_{\perp}) = 0, \quad \mathbf{x}_{\perp} \in \partial D,$$

where ∂D can be arbitrary boundary.

If f is smooth, we have

- (1) Maximum principle : $0 \le \rho(t, \mathbf{x}_{\perp}) \le \max_{\mathbf{x}_{\perp} \in D} (\rho(0, \mathbf{x}_{\perp}))$.
- (2) L^p norm conservation : $\frac{d}{dt} \left(\int_D (\rho(t, \mathbf{x}_\perp))^p d\mathbf{x}_\perp \right) = 0.$
- (3) Energy conservation : $\frac{d}{dt} \left(\int_D |\nabla \phi|^2 d\mathbf{x}_\perp \right) = 0.$

Towards reduced kinetic models

We assume

- the magnetic field is uniform $\mathbf{B}_{\text{ext}} = \mathbf{B} \, \mathbf{e}_z$, where \mathbf{e}_z stands for the unit vector in the toroidal direction,
- the ratio between orthogonal and longitudinal characteristic lenght is $L_{\perp}/L_{z} = \varepsilon \ll 1$,
- f is vanishing at infinity of velocity field and periodic boundary condition is taken in z direction.
- we are interesting by the long time asymptotic

To derive the Drift-Kinetic model, we formally follow the same ideas as for the guiding center model and split the variables as

$$\mathbf{x} = (\mathbf{x}_{\perp}, \mathbf{x}_{\parallel})$$

with $x_{\parallel} = z$ and $\mathbf{x}_{\perp} = (x, y)$.

4D drift kinetic & guiding center models

For the Poisson equation, setting that $L_{\perp}/L_{z} = \varepsilon$, it leads to

$$-\Delta_{\perp}\phi - \varepsilon^{2}\partial_{zz}\phi = n(t, \mathbf{x}_{\perp}, z) - n_{0}.$$

We split **E** into components along **B**_{ext} and perpendicular to **B**_{ext}: it gives

$$\mathbf{E} = \mathbf{E}_{\perp} + \varepsilon \, \mathbf{E}_{\parallel} \, \mathbf{e}_{z}.$$

Assuming that $B = O(1/\varepsilon)$ and substituting this expression in the Vlasov equation, it yields

$$\varepsilon \frac{\partial f}{\partial t} + \mathbf{v}_{\perp} \cdot \nabla_{\mathbf{x}_{\perp}} f + \varepsilon \, \mathbf{v}_{z} \partial_{z} f + \left(\mathbf{E}_{\perp} + \frac{\mathbf{v}_{\perp}^{\perp}}{\varepsilon} \right) \cdot \nabla_{\mathbf{v}_{\perp}} f + \varepsilon E_{z} \partial_{\mathbf{v}_{z}} f = 0.$$

Then we integrate with respect to $\mathbf{v}_{\perp} = (v_x, v_y)$, we get formally an equation for $\tilde{f} = \int_{-\infty} f \, d\mathbf{v}_{\perp}.$

4 D > 4 B > 4 B > 4 B > 9 Q P

4D drift kinetic & guiding center model

It yields to the $3D \times 1D$ drift kinetic system

$$\begin{cases} \frac{\partial \tilde{t}}{\partial t} + \mathbf{U}_{\perp} \cdot \nabla_{\mathbf{x}_{\perp}} \tilde{t} + v_z \partial_z \tilde{t} + E_z \partial_{v_z} \tilde{t} = 0. \\ -\Delta_{\perp} \phi = \int_{\mathbb{R}} \tilde{t} dv_z - n_0 \end{cases}$$

with $\mathbf{U}_{\perp} = (\partial_{y}\phi, -\partial_{x}\phi)$ and $E_{z} = -\partial_{z}\varphi$.

Remark integrating on the longitudinal direction in space and velocity, we recover the guiding center model:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \mathbf{U}_{\perp} \cdot \nabla_{\mathbf{x}_{\perp}} \rho = 0, \\ \\ -\Delta_{\perp} \phi = \int_{\mathbb{R}} \tilde{f} dv_z - n_0 \end{cases}$$

4D Drift-Kinetic Model

Normalized Drift-Kinetic model reads (cf. Grandgirard et al.)

$$\left\{ \begin{array}{l} \frac{\partial f}{\partial t} + \mathbf{U}_{\perp} \cdot \nabla_{\mathbf{x}_{\perp}} f + v_{\parallel} \partial_{z} f + E_{\parallel} \partial_{v_{\parallel}} f = 0, \\ \\ -\nabla_{\perp} \cdot \left(\frac{\rho_{0}(\mathbf{x}_{\perp})}{B} \nabla_{\perp} \phi \right) + \frac{\rho_{0}(\mathbf{x}_{\perp})}{T_{e}(\mathbf{x}_{\perp})} \left(\phi - \overline{\phi} \right) = \rho. \end{array} \right.$$

In the following simulation, we consider a cylinder domain

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, 0 \le z \le L_z\}.$$

Boundary condition:

- $\phi(\mathbf{x}) = 0 \text{ on } \partial D \times [0, L_z].$
- Periodic boundary condition in z-direction.

If f is smooth, we have

- Maximum principle : $0 \le f(t, \mathbf{x}, v_{\parallel}) \le ||f(0)||_{\infty}$.
- (2) L^p norm conservation : $\frac{d}{dt} \left(\int_{\mathbb{R}} \int_{\Omega_{\mathbf{x}}} (f(t, \mathbf{x}, v_{\parallel}))^p d\mathbf{x} dv_{\parallel} \right) = 0.$
- (3) Kinetic entropy conservation : $\frac{d}{dt} \left(\int_{\mathbb{R}} \int_{\Omega_{\mathbf{x}}} f \ln |f| d\mathbf{x} dv_{\parallel} \right) = 0.$
- (4) Energy conservation

Difficulty for the Numerical Simulations

- High dimension of the problem. Kinetic equations are set in phase space $(x, v) \in \mathbb{R}^3 \times \mathbb{R}^3$.
- Various instability occurs: microscopic phenomena (like two stream instability), macroscopic phenomena (fluid like instability Raleight-Taylor, Kelvin-Helmholtz instability in fluid mechanics).
- Nonlinearities
- Effect of collisions (not take into account here)
- multi-species plasma and quasineutral with large mass ratio
- Describe bounadry effects when they occur or the effect of the geometry (tokamak in the poloidal plane).

IMEX schemes: additive and partitioned form

Here we shall use finite difference discretization in space for simplicity, and concentrate on time discretization, so we can see the problem as a system of ODES:

$$\frac{dy}{dt} = \underbrace{f(y)}_{\text{Explicit}} + \underbrace{\frac{1}{\varepsilon}g(y)}_{\text{Implicit}},\tag{1}$$

- The stiffness is associated to one of the terms on the RHS. We say that in this case the stiffness is additive.
- In other cases the stiffness can be associated to a variable, e.g.

$$\frac{du}{dt} = F(u, v), \quad \frac{dv}{dt} = \frac{1}{\varepsilon} G(u, v)$$
 (2)

We say that the system is partitioned.

Let us emphasize that setting $y = (u, v)^T$, $f = (F, 0)^T$, $g = (0, G)^T$, partitioned can be seen as a particular case of additive.

→ A natural choice for all such cases is offered by IMEX methods.

General formulation

In many cases the separation of scales is not additive nor partitioned. We may have a situation of the form

$$\begin{cases}
\frac{du}{dt}(t) = \mathcal{H}(t, \mathbf{u}(t), \mathbf{u}(t)), & \forall t \ge t_0, \\
u(t_0) = u_0,
\end{cases}$$
(3)

with $\mathcal{H}: \mathbb{R} \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$ sufficiently regular

- ullet Dependence on the second argument of ${\cal H}$ is non stiff.
- Dependence on the third argument is stiff.

This includes partitioned and additive as particular cases.

Strong relation with partitions systems: by setting y = u and z = u, system (3) implies

$$\begin{cases} \frac{dy}{dt}(t) = \mathcal{H}(t, y(t), z(t)), \\ \frac{dz}{dt}(t) = \mathcal{H}(t, y(t), z(t)), \end{cases}$$

Doubled system?

By doubling the variables, the systems takes a partitioned form.

Partitioned methods: apply two different R-K methods, i.e.

$$\begin{array}{c|cccc}
\hat{c} & \hat{A} & c & A \\
\hline
& \hat{b}^T & b^T
\end{array}$$
(4)

treat y with the method on the left, and z with the one on the right. Then one has, for the stage fluxes:

$$k_i \,=\, \mathcal{H}\left(t^n + \hat{c}_i \Delta t,\, Y_i, Z_i\right), \quad \ell_i \,=\, \mathcal{H}\left(t^n + c_i \Delta t,\, Y_i, Z_i\right), \quad 1 \leq i \leq s,$$

with

$$Y_i = y^n + \Delta t \sum_{j=1}^s \hat{a}_{i,j} k_j, \quad Z_i = y^n + \Delta t \sum_{j=1}^s a_{ij} \ell_j, \quad 1 \le i \le s,$$

and the numerical solutions at the next time step are

$$y^{n+1} = y^n + \Delta t \sum_{i=1}^s \hat{b}_i k_i, \quad z^{n+1} = y^n + \Delta t \sum_{i=1}^s b_i \ell_i.$$

How to avoid doubling the number of variables

Remark 1. If $\hat{c} = c$ then $k = \ell \Rightarrow \mathcal{H}$ has to be computed only once per stage.

Remark 2. Furthermore,

- if $\hat{b} = b \Rightarrow y^{n+1} = z^{n+1}$,
- if $\hat{b} \neq b$ and $y^n = z^n \Rightarrow y^{n+1} \neq z^{n+1}$, however if both schemes are consistent to order p once can choose any one of the two, say the one to compute y^{n+1} , and then set $n \leftarrow n+1$, and $z^n = y^n$

Remark 3. If $\hat{c} = c$ and the two schemes have different orders, then the difference $y^{n+1} - z^{n+1}$ can be used to estimate the local error \Rightarrow time step control.

In all such cases, no duplication of variables is needed!

Construction of schemes

Is it possible to construct such a scheme?

- For autonomous problems, it is all right!
- Up to second order, two stages schemes it is easy since we can impose that

$$\sum_{j} \hat{a}_{i,j} \neq \hat{c}_{i}, \quad \text{and} \quad \sum_{j} a_{ij} \neq c_{i}, \quad \text{for} \quad 1 \leq i \leq s.$$
 (5)

The IMEX-SSP2(2,2,2) L-stable scheme

We choose $b_2 = 1/2$, $\hat{c} = 1$ and $\gamma = 1 - 1/\sqrt{2}$, *i.e.* the corresponding Butcher tableau is given by

Solution: Replace $(\hat{c}_1, \hat{c}_2) = (0, 1)$ by $(\hat{c}_1, \hat{c}_2) = (\gamma, 1 - \gamma)$

Third order conditions and scheme

The semi-implicit Runge-Kutta method is of order three, if it satisfies the conditions

$$\sum_{i} b_{i} = 1$$
, $\sum_{i} b_{i} c_{i} = 1/2$, $\sum_{i} b_{i} \hat{c}_{i} = 1/2$.

and the implicit part satisfies the classical third order conditions

$$\sum_{i} b_{i} c_{i}^{2} = 1/3, \quad \sum_{i,j} b_{i} a_{ij} c_{j} = 1/6,$$

the explicit part satisfies the classical third order conditions

$$\sum_{i} b_{i} \, \hat{c}_{i}^{2} \, = \, 1/3, \quad \sum_{i,j} b_{i} \, \hat{a}_{ij} \, \hat{c}_{j} \, = \, 1/6,$$

and moreover the additional coupling conditions

$$\sum_{i} b_{i} \, \hat{c}_{i} \, c_{i} \, = \, 1/3, \quad \sum_{i,j} b_{i} \, a_{ij} \, \hat{c}_{j} \, = \, 1/6, \quad \sum_{i,j} b_{i} \, \hat{a}_{ij} \, c_{j} \, = \, 1/6.$$

are satisfied.

Third order conditions and scheme

A possible choice satisfying these properties is given by the IMEX-SSP3(4,3,3) L-stable scheme, *i.e.*

0	0	0	0	0	α	α	0	0	0
0	0	0	0	0				0	
1	0	1	0	0	1	0	$1 - \alpha$	α	0
1/2	0	1/4	1/4	0	1/2	β	η	$1/2 - \beta - \eta - \alpha$	α
	0	1/6	1/6	2/3		0	1/6	1/6	2/3

with α = 0.24169426078821, β = α /4 and η = 0.12915286960590.

What about fourth order schemes?

Reaction diffusion problem

We consider the reaction diffusion system $\omega = (\omega_1, \omega_2) : \mathbb{R}^+ \times (0, 2\pi)^2 \mapsto \mathbb{R}^2$

$$\begin{cases} \frac{\partial \omega_1}{\partial t} = \Delta \omega_1 - \alpha_1(t) \omega_1^2 + \frac{9}{2} \omega_1 + \omega_2 + f(t), \\ \frac{\partial \omega_2}{\partial t} = \Delta \omega_2 + \frac{7}{2} \omega_2, & t \geq 0, \end{cases}$$

with $\alpha(t) = 2e^{t/2}$ and $f(t) = -2e^{-t/2}$. Initial conditions compatible with exact solution

$$\begin{cases} \omega_1(t, x, y) = \exp(-0.5t) (1 + \cos(x)), \\ \omega_2(t, x, y) = \exp(-0.5t) \cos(2x). \end{cases}$$

Separate explicit variable $u = (u_1, u_2)$ from implicit $v = (v_1, v_2)$, according to:

$$\mathcal{H}(t,\boldsymbol{u},\boldsymbol{v}) = \left(\begin{array}{cccc} \Delta \boldsymbol{v}_1 & - & \alpha(t)\boldsymbol{u}_1 \,\boldsymbol{v}_1 & + & \frac{9\boldsymbol{u}_1}{2} & + & \boldsymbol{v}_2 & + & f(t) \\ \\ \Delta \boldsymbol{v}_2 & + & \frac{7\,\boldsymbol{v}_2}{2} & & & \end{array} \right).$$

Reaction-Diffusion equation: results

- Fourth order accurate space discretization (error is mainly in time discretization).
- Hyperbolic CFL condition $\Delta t = \Delta x/2$.
- Schemes SSP2 and SSP3.

Nonlinear convection-diffusion equation

We consider the convection diffusion equation

$$\begin{cases} \frac{\partial \omega}{\partial t} + [V + \mu \nabla \log(\omega)] \cdot \nabla \omega - \mu \Delta \omega = 0, & (t, x) \in \mathbb{R}^+ \times \mathbb{R}^2, \\ \omega_0(t = 0) = e^{-\|x\|^2/2}, \end{cases}$$

where $V = (1, 1)^T$, $\mu = 0.5$. The exact solution is given by

$$\omega(t,x) = \frac{1}{\sqrt{4 \mu t + 1}} \exp\left(-\frac{\|x - Vt\|^2}{8 \mu t + 2}\right), \quad t \ge 0, \quad x \in \mathbb{R}^2.$$

We choose \mathcal{H} as follows

$$\mathcal{H}(t, \boldsymbol{u}, \boldsymbol{v}) = -(V + \mu \nabla \log(\boldsymbol{u})) \cdot \nabla \boldsymbol{v} + \mu \Delta \boldsymbol{v}.$$

Nonlinear convection-diffusion equation: results

We apply the same discretization in space and time with $x \in (-10, 10)^2$. Final time T = 0.5.

Surface diffusion flow

We consider the following nonlinear fourth order differential equation

$$\frac{\partial \omega}{\partial t} + \operatorname{div} S(\omega) = 0, \quad x \in \mathbb{R}^2, \quad t \ge 0, \tag{6}$$

where the nonlinear differential operator S is given by

$$S(\omega) \coloneqq \left(Q(\omega) \left(I - \frac{\nabla \omega \otimes \nabla \omega}{Q^2(\omega)} \right) \nabla N(\omega) \right),$$

where Q is the area element

$$Q(\omega) = \sqrt{1 + |\nabla \omega|^2}$$

and N is the mean curvature of the domain boundary Γ

$$N(\omega) := \left(\frac{\nabla \omega}{Q(\omega)}\right).$$

Surface diffusion flow

For this aplication we choose

$$\mathcal{H}(u,v) \coloneqq \left(Q(u) \left(I - \frac{\nabla u \otimes \nabla u}{Q^2(u)}\right) \nabla \mathbb{N}(u,v)\right),$$

Hyperbolic CFL condition is used on the time step.

Towards plasma physics : one single particle motion

with B(X) = (1 + 0.1 y) and

Let us conside
$$\mathbf{X}(t) = (x(t), y(t))$$
 and $\mathbf{V}(t) = (v_x(t), v_y(t))$ with
$$\begin{cases} \frac{d\mathbf{X}}{dt} = \frac{1}{\varepsilon}\mathbf{V} \\ \frac{d\mathbf{V}}{dt} = \frac{1}{\varepsilon}\left(\mathbf{E}(\mathbf{X}) + B(\mathbf{X})\frac{\mathbf{V}^{\perp}}{\varepsilon}\right) \end{cases}$$

 $\mathbf{E}(\mathbf{X}) = -0.1 \left(X + \begin{pmatrix} x^3(t) \\ v^3(t) \end{pmatrix} \right)$

Towards plasma physics : one single particle motion

Comparison with semi-implicit schemes with large time steps $\Delta t = 0.01$

Comparison with semi-implicit schemes with large time steps $\Delta t = 0.01$

Comparison with semi-implicit schemes with large time steps $\Delta t = 0.01$

Part II: Treatment of boundary conditions

Solve numerically kinetic type equation on complex geometry. Some algorithms based on Cartesian meshes

- * Immersed boundary method (IBM) of Peskin, Lai and etc
 - popular in fluid mechanics applications,
 - add a singular source term to fluid mechanics equations to take into account boundary effects
 - poor accuracy
- Cartesian cut-cell method (D. Ingram, D. Causon and C. Mingham)
 - reconstruct the domain around the boundary
 - apply a finite volume scheme on the new control volume
- Inverse Lax-Wendroff (ILW) procedure (finite difference method or whatever)

S. TAN AND C.-W. Shu, *Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws*, Journal of Computational Physics, 229 (2010), 8144–8166.

ILW Procedure in 2D Case

Figure: Spatially 2D Cartesian mesh. • is interior point, ■ is ghost point, □ is the point at the boundary, ○ is the point for extrapolation, the dashed line is the boundary.

We consider 2D model

$$\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} = \frac{1}{\varepsilon} \mathcal{Q}(f),$$

Compute f at ghost point x_g :

- Extrapolation of f for the outflow
 - * compute $f(\mathbf{x}_{\rho}, \mathbf{v} \cdot \mathbf{n} < 0)$ and $f(\mathbf{x}_{g}, \mathbf{v} \cdot \mathbf{n} < 0)$ by WENO type extrapolation

ILW Procedure in 2D Case

Figure: Spatially 2D Cartesian mesh. • is interior point, ■ is ghost point, □ is the point at the boundary, ○ is the point for extrapolation, the dashed line is the boundary.

We consider 2D model

$$\frac{\partial f}{\partial t} + v_{x} \frac{\partial f}{\partial x} + v_{y} \frac{\partial f}{\partial y} = \frac{1}{\varepsilon} \mathcal{Q}(f),$$

Compute f at ghost point x_g :

- Extrapolation of f for the outflow
- Compute B.C. at the boundary

*
$$\mathcal{R}[f(\mathbf{x}_p, \mathbf{v})] = f(\mathbf{x}_p, \mathbf{v} - 2(\mathbf{v} \cdot \mathbf{n})\mathbf{n}), \quad \mathbf{v} \cdot \mathbf{n} > 0$$

* interpolate f on

$$(\mathbf{x}_p, \mathbf{v} - 2(\mathbf{v} \cdot \mathbf{n})\mathbf{n})$$

*
$$\mathcal{M}[f(\mathbf{x}_p, \mathbf{v})] = \mu(\mathbf{x}_p) \exp\left(-\frac{\mathbf{v}^2}{2T_p}\right), \quad \mathbf{v} \cdot \mathbf{n} > 0$$

ILW Procedure in 2D Case

Figure: Spatially 2D Cartesian mesh. • is interior point, ■ is ghost point, □ is the point at the boundary, ○ is the point for extrapolation, the dashed line is the boundary.

We consider 2D model

$$\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} = \frac{1}{\varepsilon} \mathcal{Q}(f),$$

Compute f at ghost point x_g :

- Extrapolation of f for the outflow
- Compute B.C. at the boundary
- Approximation of f for inflow
 - * local coordinate system $\mathbf{x} \to \hat{\mathbf{x}}$

$$\begin{array}{ll} \star & \frac{\partial \hat{f}}{\partial \hat{x}}(\hat{\mathbf{X}}_{p},\mathbf{V}) = \\ & -\frac{1}{\hat{v}_{x}} \left(\frac{\partial \hat{f}}{\partial t} + \hat{v}_{y} \frac{\partial \hat{f}}{\partial \hat{y}} - \frac{1}{\varepsilon} \mathcal{Q}(\hat{f}) \right) \Big|_{\hat{\mathbf{X}} = \hat{\mathbf{X}}_{p}} \end{array}$$

*
$$f(\mathbf{x}_g, \mathbf{v}) \cong$$

 $\hat{f}(\hat{\mathbf{x}}_\rho, \mathbf{v}) + (\hat{x}_g - \hat{x}_\rho) \frac{\partial \hat{f}}{\partial \hat{x}} (\hat{\mathbf{x}}_\rho, \mathbf{v})$

Flow around an airfoil in 2D

Solve the time evolution Boltzmann equation $(x, v) \in \Omega \times \mathbb{R}^3_v$, with $\Omega \subset \mathbb{R}^2$.

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f = \frac{1}{Kn} \mathcal{Q}(f).$$

We consider a Mach number Ma = 0.3 and a Reynolds number Re = 3000. The Mach, Reynolds and Knudsen numbers relation is given by:

$$Kn = \frac{Ma}{Re} \sqrt{\frac{\gamma \pi}{2}}, \quad \gamma = 1.4$$

Figure: Flow around an object. Domain including an airfoil.

Flow around an airfoil in 2D

D shape Simulation

We still consider the guiding center model but now in a D shape geometry.

1) We first look for a stationary solution of the guiding center model :

$$\begin{cases}
-\nabla_{\perp} \cdot \left(\frac{\rho_0}{B} \nabla_{\perp} \phi\right) = \bar{\rho}(\phi) - \rho_0 & \text{in } \Omega, \\
\phi = 0 & \text{on } \partial\Omega.
\end{cases}$$
(7)

For a suitable function $\bar{\rho}$, we have a unique solution.

D shape Simulation

The steady state solution is computed numerically

Now we still consider the previous initial data $(\phi_0, \bar{\rho}_0)$ which is a stationary solution of the guiding-center model, but perturb it of magnitude of ε .

D shape Simulation

Toward plasma physics applications

Let us now consider Particle-In-Cell methods based on semi-implicit schemes in a disk shape domain where the Poisson equation is solved on a cartesian grid (we work in cartesian coordinates here)

Conclusion

Current and future works:

- Applications in plasma physics
 - Joint project with european labs (Eurofusion project): fusion reaction, plasma confinement using large magnetic fields
 - Dominant term is a magnetics field ¹/_ε (v × B) · ∇_V f, no more dissipative effects
 - Inter-disciplinary works: computer science (HPC, large data), physics, engineering
- Applications to collective dynamics and self-interactions
 - there are new kinetic models describing these phenomena (see bacteria motions)
 - the structure of this model is simpler but the operators depends on velocity and space, steady states are not explicitly known
 - construction of hybrid method