
Kinetic models of chemotaxis
and Traveling Bands
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MOTIVATION

• Adler’s famous experiment for E. Coli (1966)

• Explain this pattern ; its asymmetry (Buguin, Saragosti, Silberzan,
Curie institute)

• Is it a phenomena explanable at the macroscopic scale ?
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MOTIVATION

E. Coli is known (since the 80’s) to move by run and tumble

depending on the coordination of motors that control the flagella

E. coli, size ≈ 1µm Run size ≈ 10µm



MOTIVATION

Another remarkable pattern for E. coli

Mittal, Budrene, Brenner, van Oudenaarden : PNAS 2003

                                 

Cluster of bacteria (scale 100µm) Tumbling frequency as a function of cell position



MOTIVATION

• E. coli is a chemotactic bacterium

• Time scale is too short for cell multiplication

• Medium contains various chemicals (chemoattractant, nutrients)

• Interaction with fluid is not an important effect here

• Several strains are used ; the phenomena is robust



METHOD

• The standard Keller-Segel model does not sustain such solutions

• Even the many variants introduced for other patterns

• Use extensions of the Keller-Segel system from kinetic theory

• Based on refined experimental measurements on run-tumble

phenomena
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I. Macroscopic models (Keller-Segel)

II. Kinetic models
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CHEMOTAXIS : Keller-Segel model (macroscopic)

n(t, x) = cell population density at time t and position x,

c(t, x) = concentration of chemoattractant,

∂

∂t
n(t, x)− ∆n(t, x)︸ ︷︷ ︸

brownian motion

+ div(nχ∇c)︸ ︷︷ ︸
oriented drift

= 0,

τ
∂c

∂t
− ∆c(t, x)︸ ︷︷ ︸

molecular diffusion

+ rc(t, x)︸ ︷︷ ︸
degradation

= n(t, x)︸ ︷︷ ︸
production

,

The parameter χ is the sensitivity of cells to the chemoattractant.



CHEMOTAXIS : Keller-Segel model

∂

∂t
n(t, x)−∆n(t, x) + div(nχ∇c) = 0,

−∆c(t, x) = n(t, x),

Theorem (Blanchet, Dolbeault, Perthame)

In R2 we have

For M0 < 8π
χ there are global smooth solutions, that disperse to 0

For M0 > 8π
χ solutions blow-up in finite time

Claim Singularities are pointwise Dirac masses

This is proved in many situations M. Herrero, J.-L. Velazquez



. From J. Murray’s book ; computations by A. Marrocco (INRIA, BANG)



CHEMOTAXIS : Keller-Segel model

Biologists and biomathematicians have proposed variants as Maini,

Murray, Budrene and Berg, Brenner et al...

∂n

∂t
= ∆n−∇ · (nχ∇c)

−∆c = nf − rc,
∂f

∂t
= −nf.

See analysis in Calvez and Perthame, BIT Num. Math 2006

These models do not exhibit robust Traveling Pulses



CHEMOTAXIS : Keller-Segel model

Traveling waves of speed σ are 1-D solutions n(x− σt), c(x− σt)
−σn′ = n′′ − χ(nc′)′

−c′′ = nf − rc...etc,

−σn = n′ − χnc′

ln(n)′ = −σ + χc′

ln(n) = −σx+ χc+ µ

This is incompatible with any rule for the production/regulation of c
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KINETIC MODELS

E. Coli is known (since the 80’s) to move by run and tumble
depending on the coordination of motors that control the flagella

See Alt, Dunbar, Othmer, Stevens, Hillen....

file:///Users/perthame/Ex-Powerbook/images_bio/talk_pulse_EColi/Curie_Trackmini.avi




KINETIC MODELS

Denote by f(t, x, ξ) the density of cells moving with the velocity ξ

∂

∂t
f(t, x, ξ) + ξ · ∇xf︸ ︷︷ ︸

run

= K[c, f ]︸ ︷︷ ︸
tumble

,

K[c, f ] =
∫
B
K(c; ξ, ξ′)f(ξ′)dξ′ −

∫
B
K(c; ξ′, ξ)dξ′ f,

−∆c(t, x) = n(t, x) :=
∫
B
f(t, x, ξ)dξ,

• There are now TWO variables x, ξ (difficult to compute)

• Used to derive macroscopic models (Boltzmann → Navier-Stokes)



KINETIC MODELS

Denote by f(t, x, ξ) the density of cells moving with the velocity ξ.

∂

∂t
f(t, x, ξ) + ξ · ∇xf︸ ︷︷ ︸

run

= K[c, f ]︸ ︷︷ ︸
tumble

,

K[c, f ] =
∫
B
K(c; ξ, ξ′)f(ξ′)dξ′ −

∫
B
K(c; ξ′, ξ)dξ′ f,

−∆c(t, x) = n(t, x) :=
∫
B
f(t, x, ξ)dξ,

• Various forms of the tumbling kernel have been proposed

• Most probably K only depends on ξ



KINETIC MODELS

Simplest example

∂

∂t
f(t, x, ξ) + ξ · ∇xf︸ ︷︷ ︸

run

= K[f ]︸ ︷︷ ︸
tumble

,

K[f ] =
∫
B
K(c; ξ, ξ′)f(ξ′)dξ′ −

∫
B
K(c; ξ′, ξ)dξ′ f,

−∆c(t, x) = n(t, x) :=
∫
B
f(t, x, ξ)dξ,

K(c; ξ, ξ′) = k−(c(x− εξ′)) + k+(c(x+ εξ)).

Related to linear scatering with a changing background.



KINETIC MODELS

Theorem (Chalub, Markowich, P., Schmeiser)
For 0 ≤ k±(c; ξ, ξ′) ≤ C(1 + c), there is a GLOBAL solution to the
kinetic model and

‖f(t)‖L∞ ≤ C(t)[ ‖f0‖L1 + ‖f0‖L∞]

-) Situation better for a hyperbolic model !
-) Open question : Is it possible to prove a bound in L∞ when we
replace the specific form of K by (see also Hwang, Kang and
Stevens)

0 ≤ K(c; ξ, ξ′) ≤ ‖c(t)‖L∞loc
or ‖∇c(t)‖L∞loc

?

-) Related questions Internal variables (Erban-Othmer, M. Tang),
quorum sensing, mesenchymal (Hillen)



KINETIC MODELS

Idea of the proof

Use dispersive effects and change of variable

ξ 7→ x− εξ = y



KINETIC MODELS

Another class of turning kernels

-) Hwang, Kang, Stevens : k
(
∇c(x− εξ′)

)
or k

(
∇c(x+ εξ)

)

k
(
∇c(x− εξ′)

)
+ k

(
∇c(x+ εξ)

)
.

Theorem (Bournaveas, Calvez, Gutierrez, P.)

For SMALL initial data, there is a GLOBAL solution.

Based on Strichartz inequalities

Blow-up

can occur with spherically symmetric data (Bournaveas, Calvez)

Numerics indicates different type of blow-up (Vauchelet, Filbet)



KINETIC MODELS : diffusion limit

One can perform a parabolic rescaling based on the memory scale
K[f ] =

∫
K(c; ξ, ξ′)f ′dξ′ −

∫
K(c; ξ′, ξ)dξ′ f,

K(c; ξ, ξ′) = k−
(
c(x− εξ′)

)
+ k+

(
c(x+ εξ)

)
.


∂
∂tf(t, x, ξ) + ξ·∇xf

ε = K[c,f ]
ε2 ,

−∆c(t, x) = n(t, x) :=
∫
f(t, x, ξ)dξ.

Diffusion scaling law : K(ξ, ξ′) = symmetric + ε anti-symmetric



KINETIC MODELS : diffusion limit

Theorem With the same assumptions, as ε→ 0, then for short times,

fε(t, x, ξ)→ n(t, x), cε(t, x)→ c(t, x),


∂
∂tn(t, x)− div[D∇n(t, x)] + div(nχ∇c) = 0,

−∆c(t, x) = n(t, x).

and the transport coefficients are given by

D(n, c) = D0
1

k−(c) + k+(c)
,

χ(n, c) = χ0
k′−(c) + k′+(c)

k−(c) + k+(c)
.



KINETIC MODELS : hyperbolic limit

Hyperboloc scaling law : K = symmetric + O(1) anti-symmetric.

Then the scaling is different
∂
∂tf(t, x, ξ) + ξ · ∇xf = K[c,f ]

ε ,

−∆c(t, x) = n(t, x) :=
∫
f(t, x, ξ)dξ.


∂
∂tn(t, x) + div[n U(c)] = 0,

−∆c(t, x) = n(t, x).



Pulse waves

Asymmetric pulse wave of E. Coli A. Buguin, P. Silberzan, J. Saragosti (Curie

Institute)



Pulse waves

                                                                  

When c increases, jumps are longer



Pulse waves

∂

∂t
f(t, x, ξ) + ξ · ∇xf =

∫
K(c; ξ, ξ′)f(ξ′)dξ′ −

∫
K(c; ξ′, ξ)dξ′ f,

−∆c(t, x) = n(t, x) :=
∫
f(t, x, ξ)dξ,

This leads Dolak and Schmeiser to choose

K(c; ξ, ξ′) = k
(∂c
∂t

+ ξ′.∇c
)
.

With (stiff response)

k(z) =


k− for z < 0,

k+ < k− for z > 0.

More generally k(·) a (smooth) decreasing function



Pulse waves

The diffusion limit is the Flux Limited Keller-Segel system
∂
∂tn(t, x)−∆n(t, x) + div(nU) = 0,

U = χ(ct, cx) ∇c|∇c|

And the nonlinear sensitivity χ depends on k(·).

With a nutrient and a chemoattractant and in one dimension

U = χc
(
1− (ε

ct

cx
)2
)

+
sgn(cx) + χN

(
1− (ε

Nt

Nx
)2
)

+
sgn(Nx)

See also Caselles, Mazón, Bellomo, Bellouquid, Nieto and Soler

James, Vauchelet



Pulse waves

Theorem Asymmetric traveling pulses to the FLKS model exist with
• stiff response
• both chemoatraction and nutrient.

Superimposition of the FLKS solution and the experimental concentration profiles

at three different times.



Run/tumble

Left : angular distribution of runs Right : duration of runs w.r. position

Tumbling events : K depend on ξ also (post-tumble velocity
depends on velocity before tumbles) ; not included in

K(c; ξ, ξ′) = k
(∂c
∂t

+ ξ′.∇c
)
.



Run/tumble

Superimposition of the calculated (pink) and the experimental (blue)

concentration profiles at three different times.



Conclusion

• Kinetic models explain quantitatively collective motion by

chemotaxis

• Detailed rules at the individual scale explain flux limitations in the

Keller-Segel equations

• Follow-up : accelerating waves (E. Bouin, V. Calvez, G. Nadin, F.

Filbet, N. Vauchelet)

THANK YOU
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