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Research summary related to interacting particle models:

@ Interacting particle model for fish migration
@ Behavior of the particle model with noise (with B. Birnir, K. Taylor; simulation assistance from P.

Trethewey, L. Youseff)
o Parallelization of the simulations (with B. Birnir, J. Gilbert, P. Trethewey, L. Youseff)
@ The model applied to the Icelandic Capelin (with B. Birnir, B. Einarsson, S. Sigurdsson, The Marine
Institute of Iceland)
@ Scaling in interacting particle systems (with B. Einarsson) [current]
@ Interacting particle models for gang dynamics
@ A coupled network model for gang rivalry formation (with R. Hegemann, L. Smith, S. Reid, A.
Bertozzi, G. Tita)
@ A statistical mechanics approach to gang territorial development (with L. Chayes, M. R. D’Orsogna)
@ Kinetic and hydrodynamic models for particle systems
e Phase transition and diffusion among socially interacting self-propelled agents (with P Degond)
@ Phase transition in a kinetic Cucker-Smale model with self-propulsion and friction (with J. A. Carrillo,

P. Degond) [current]
@ A kinetic contagion model for fear in crowds (with J. Rosado) [current]
@ An exploration of the effect of normalization and different kinds of noise in Vicsek-type flocking

models (with M. Burger) [current]
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The Data: Icelandic stock of capelin
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The Icelandic stock of capelin

lceland
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An example of the acoustic data:
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Xe(t+ A1)\ [ x(t) . Dki(t) y
( yk(t+At) ) - ( yk(t) ) + At Vk(t)” Dk(t) ” +c(pk(t))

Here, Dy is the directional heading of particle k
At is the timestep

Particle ks position in the plane is pg

P« is the nearest gridpoint to px

C(px) is the current at Py
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Choosing the direction

The directional heading of the particles (apart from environmental effects) is determined as follows:

( cos(¢k(t + At)) ) _di(t+ A
sin(ex(t+AD) ) 7 || di(t+ A ||

where
B px(t) — pr(t) cos(¢o(t)) Pa(t) — P«(t)
Alt+ 80 = (; Il pi(t) — pr(2) | +0§k ( sin(¢o(t)) ) * Z |l Pa(t) — Pk() ||>

Zone of Attraction

Zone of Orientation
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Environmental information
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Thttp://www.wetterzentrale.de/topkarten/fsfaxsem.html
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Temperature function

Function r(T) determines the reaction of the particles to the temperature field.

0 it I<T<T

~(T-T)* it T<T,
r(T) =
{ ~(T-T)p if T<T

-
Hitastig 2
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The model

Dy (1)
| Dk (2) ||

) AL () G

~——

(a8 )= (Gt

where

. cos(¢k(t + At)) Vr(T(p«(1)))
Di(t+ A1) := “( Sin(6x(t + A1) ) P Tor (Ton(®) 1

interaction term temperature term

fora+8=1.
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Acoustic data from 1984-1985
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Figure . The distribution of capelin during the spawning migration of 1984-1985.
(a) Acoustic data from November 1 to November 21 (b) Acoustic data from January 14 to February 8
(c) Close up of the distribution of capelin from February 7 to February 20 of 1985.
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Acoustic data from 1990-1991

Figure . The distribution of capelin during the spawning migration of 1991.

(a) Acoustic data from January 4 to January 11.

(b) Close up of the distribution of capelin southeast of Iceland from February 8 to February 9 of 1991.
(c) Acoustic data from February 17 to February 18.
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1984-1985
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1990-1991
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Figure : Simulation of the 2007-2008 spawning migration.
(a) Early January, day 0

(b) Mid-February, day 47

(c) Late February, day 59

(d) Early March, day 65.
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Acoustic data from 2008

s

Figure : Collected migration data:
(a) Measured distribution of capelin near south coast of Iceland from February 26 to February 27 of 2008.
(b) Measured distribution of capelin near the southeast coast of Iceland from February 29 to March 3 of 2008.
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Sensitivity to perturbed parameters

We measure the sensitivity of the system by seeing how the migration route and timing change.
For details, see to [2].
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The problem of superindividuals

@ In the real migrations which we are trying to accurately capture, it is safe to assume there are
around 5 - 1070 fish
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The problem of superindividuals

@ In the real migrations which we are trying to accurately capture, it is safe to assume there are
around 5 - 1070 fish

@ In our simulations, we use roughly 5 - 10* particles

A. Barbaro (CWRU) Modeling fish migration with an interacting particle mod 17 April 2015 18/43



The problem of superindividuals

@ In the real migrations which we are trying to accurately capture, it is safe to assume there are
around 5 - 1070 fish

@ In our simulations, we use roughly 5 - 10* particles
@ This means each particle represents 10° fish
@ Each particle must therefore be thought of as a superindividual
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The problem of superindividuals

In the real migrations which we are trying to accurately capture, it is safe to assume there are
around 5 - 1070 fish

@ In our simulations, we use roughly 5 - 10* particles
@ This means each particle represents 10° fish

@ Each particle must therefore be thought of as a superindividual
@ With these superindividuals, we captured the migration
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The goal

@ One fish per particle

@ Then we could more confidently justify our behavioral rules, since they are based on data
obtained from interactions among individual fish

So this leads to a question: how does the system change as we change the number of particles?
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The goal

@ One fish per particle

@ Then we could more confidently justify our behavioral rules, since they are based on data
obtained from interactions among individual fish

So this leads to a question: how does the system change as we change the number of particles?
We need to make some assumptions:

@ We assume uniform density of particles and fish in the schools
@ The interaction length of the particles should be much less than the size of the school
@ We further assume the velocities of the particles are equal
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Propagation of information through the school

@ If sufficiently dense, local interactions between particles allows information to propagate
through a school
o Temperature information
e Information about predators
@ Information about food

@ We want to preserve the speed at which this information propagates through the school
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Varying Numbers of Particles
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Relationship between Parameters in the Simulation

@ In the actual migration, there are a given number of fish within a given area
@ Each simulation needs to relate back to this real situation:

A. Barbaro (CWRU) Modeling fish migration with an interacting particle mod 17 April 2015 22/43



Relationship between Parameters in the Simulation

@ In the actual migration, there are a given number of fish within a given area
@ Each simulation needs to relate back to this real situation:

# Real fish # Real fish # Particles in simulation # Zones of interaction
Size of domain # Particles in simulation # Zones of interaction Size of domain
# Particles in simulation # Zones of interaction
(Fish per panicle)
# Zones of interaction Size of domain

- (5) (D/If\rliﬁ,-z) (D/gﬂiz)
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Relationship between Parameters in the Simulation

@ In the actual migration, there are a given number of fish within a given area
@ Each simulation needs to relate back to this real situation:

# Real fish # Real fish # Particles in simulation # Zones of interaction
Size of domain # Particles in simulation # Zones of interaction Size of domain
# Particles in simulation # Zones of interaction
(Fish per panicle)
# Zones of interaction Size of domain
—(E N; D/ R
N D/ R;2 D

@ When particles are uniformly distributed, the second term is roughly the number of interaction
neighbors per particle, which is close to uniform in space. Calling this M; gives:
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Relationship between Parameters in the Simulation

@ In the actual migration, there are a given number of fish within a given area
@ Each simulation needs to relate back to this real situation:

# Real fish # Real fish # Particles in simulation # Zones of interaction
Size of domain # Particles in simulation # Zones of interaction Size of domain
# Particles in simulation # Zones of interaction
(Fish per panicle)
# Zones of interaction Size of domain
—(E N; D/ R
N D/ R;2 D

@ When particles are uniformly distributed, the second term is roughly the number of interaction
neighbors per particle, which is close to uniform in space. Calling this M; gives:

#Realfish _ [ F ) 1
Size of domain — <N,-> (M) (wR,-Z)
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@ Index the simulation where we captured the migration by 0.
@ Index a new simulation by 1.

# Real fish f .
Size of domain remains constant, so:
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@ Index the simulation where we captured the migration by 0.
@ Index a new simulation by 1.
# Realfish _ yomaing constant, so:

Size of domain
£ 1 F 1
NOM0 (Wﬂoz) Ny My (WR12)

=M (7)
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@ Index the simulation where we captured the migration by 0.
@ Index a new simulation by 1.
# Realfish _ yomaing constant, so:

Size of domain
£ 1 F 1
NOM0 (Wﬂoz) Ny My (WR12)

=M (7)
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@ Consider number of interaction partners to be fixed. Then:
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@ Index the simulation where we captured the migration by 0.
@ Index a new simulation by 1.
# Realfish _ yomaing constant, so:

Size of domain
£ 1 F 1
NOM0 (Wﬂoz) Ny My (WR12)

o ()

@ Consider number of interaction partners to be fixed. Then:
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R2N,
R} = R = Ri = Rov/No——
VM
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Index the simulation where we captured the migration by 0.
Index a new simulation by 1.
# Realfish _ yomaing constant, so:

Size of domain
F 1 F 1
NOM0 (Wﬂoz) Ny My (WR12)

o ()

Consider number of interaction partners to be fixed. Then:

!
&
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RZ = ”0’\’0 = Ry = Ro/No——

VN

So, if we want to maintain the number of interaction partners, the radii and the number of
particles should relate as follows:

’
Fi’ocﬁ.
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@ In discrete system, want the portion of the zone traversed per timestep to remain constant as
we vary the number of particles

e So that a particle does not pass outside its zone in one timestep
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@ In discrete system, want the portion of the zone traversed per timestep to remain constant as
we vary the number of particles

e So that a particle does not pass outside its zone in one timestep
@ To guarantee this, vAt = cR where v and c are constant as we vary the number of particles
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@ In discrete system, want the portion of the zone traversed per timestep to remain constant as
we vary the number of particles

e So that a particle does not pass outside its zone in one timestep
@ To guarantee this, vAt = cR where v and c are constant as we vary the number of particles

@ In this way, we see:

1
At(xRoc\?N.
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Constant density of actual fish

@ In the actual migration, there are a given number of fish within a given area
@ Each simulation needs to relate back to this real situation

@ Schematic:
fish ( particles ) fish X interaction- interaction- zone )
region — \interaction-zone /\ particle region
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Constant density of actual fish

@ In the actual migration, there are a given number of fish within a given area
@ Each simulation needs to relate back to this real situation

@ Schematic:
fish =( particles ) fish ) interactiun-zune)
region — \interaction-zone /\ particle region

@ Let N denote the total number of particles in a simulation, F denote the number of fish in the
migration, and A, denote the total area of the region
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Constant density of actual fish

In the actual migration, there are a given number of fish within a given area

Each simulation needs to relate back to this real situation
Schematic:

fish =( particles ) fish )(mteractlun zong )
region — \interaction-zone /\ particle region

@ Let N denote the total number of particles in a simulation, F denote the number of fish in the
migration, and A, denote the total area of the region
@ Let M denote the number of particles per interaction zone

@ Constant across interaction zones due to constant density assumption
o For computational intensity, need M is constant across different simulations (so the number of
neighbors for each particle remains constant)
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Relating time and space to the number of particles

Aw
‘rrrl.2

@ Then for a given simulation indexed by i, 5 = (M)(5)(2%) = 2 = ﬁ
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Relating time and space to the number of particles

Aw
‘rrrl.2

M

@ Then for a given simulation indexed by /, 5 = (M)(#)( = PN

’

= —5
)= %
@ For two different simulations:

M M ny2 _ Mo
e —— = = (+ = Y
(=2)Ng (rr2)Ny (’o) Ny
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Relating time and space to the number of particles

Aw
‘rrrl.2

M

@ Then for a given simulation indexed by /, 5 = (M)(#)( = PN

1
)= 2
@ For two different simulations:

M _ M ny2 _ No

° (=g~ (=PI = (’o) M

N
°n=ryg

A. Barbaro (CWRU) Modeling fish migration with an interacting particle mod 17 April 2015 26/43



Relating time and space to the number of particles

Aw
‘rrrl.2

1 M

@ Then for a given simulation indexed by /, 5 = (M)(#)( =N

)=
@ For two different simulations:

M M ny2 _ Mo
_m = (A2 -1t
(=2)Ng (rr2)Ny (’o) Ny

N
°n=ryg

@ Considering ry and Ny to have come from a reference simulation:

oAturoc\/%
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Our parameters for the migrations

@ At =0.05days

@ Initial speed v, ~ 4 — 8 km/day

@ rr = 0.01 or about ~ 120 m

@ ro =ra = 0.1 orabout ~ 1.2 km

@ Number of particles is roughly 5 - 10*
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Scaling down to an individual level

How do the particles scale as we take N5 to 1? A rough estimate for the total number of fish in a
migration is F ~ 5. 100,
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Scaling down to an individual level

How do the particles scale as we take N5 to 1? A rough estimate for the total number of fish in a
migration is F ~ 5. 100,

@ Ng~5-10*and Ny ~5-10'0
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Scaling down to an individual level

How do the particles scale as we take N5 to 1? A rough estimate for the total number of fish in a
migration is F ~ 5. 100,
@ Ng~5-10*and Ny ~5-10'0

e Aty = 0.05 days and ﬁ—é‘[’) = 2—}7‘1 = At; = 4.32 seconds

A. Barbaro (CWRU) Modeling fish migration with an interacting particle mod 17 April 2015 28/43



Scaling down to an individual level

How do the particles scale as we take N5 to 1? A rough estimate for the total number of fish in a
migration is F ~ 5. 100,
@ Ng~5-10*and Ny ~5-10'0

e Aty = 0.05 days and ﬁ—é‘; = 2—}7‘1 = At; = 4.32 seconds

o B — 29 and Agy =~ 1.2km = Agy =~ 1.2 meters
N
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Scaling down to an individual level

How do the particles scale as we take N5 to 1? A rough estimate for the total number of fish in a
migration is F ~ 5. 100,

@ Ng~5-10*and Ny ~5-10'0
o Afy = 0.05days and 2 — B4 o Ap — 4.32 seconds

Aqg Agy
o B — 29 and Agy =~ 1.2km = Agy =~ 1.2 meters
NI

@ Radii scale with Ag, so

® Iy 120 meters = Iry =~ 12cm
® rog = lag 1.2km:>rl71 =ra ~1.2m
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Scaling down to an individual level

How do the particles scale as we take N5 to 1? A rough estimate for the total number of fish in a
migration is F ~ 5. 100,

@ Ng~5-10*and Ny ~5-10'0

e Aty = 0.05 days and ﬁ—é‘; = 2—}7‘1 = At; = 4.32 seconds
o B — 29 and Agy =~ 1.2km = Agy =~ 1.2 meters
VN o VM

@ Radii scale with Ag, so
® Iy 120 meters = Iry =~ 12cm
® rog = lag 1.2km:>rl71 =ra ~1.2m
These are all biologically reasonable!
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Where to go from here

Toward Data

@ Einarsson, Birnir, and Sigurdsson have created a dynamic energy budget (DEB) model for the
physiology of the capelin [9]
@ Next step: Incorporate this DEB model into the simulations of the spawning migration
Toward Mathematics
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Where to go from here

Toward Data
@ Einarsson, Birnir, and Sigurdsson have created a dynamic energy budget (DEB) model for the
physiology of the capelin [9]
@ Next step: Incorporate this DEB model into the simulations of the spawning migration
Toward Mathematics
@ Numerical validation of the proposed scaling laws
@ Kinetic and hydrodynamic versions of similar models have been and are being studied

@ Models taking into consideration the number of interaction neighbors have also been
proposed and studied

@ Including emotional influences into the model
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City of
Pasadena

East Los Angeles
(Unincorporated)

City of Vernon

.. LAPD Policing Los Angeles

Area boundary city boundary
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Violence data: 1998, 1999, and 2000
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The Rivalry Network




Observed Rivalry Network Among Hollenbeck Gangs 2

@ 29 Active Gangs in Hollenbeck
@ 69 Rivalries Among the Gangs

@ A Set Space is a gang’s center of activity where gang
members spend a large quantity of their time

@ Gang activity in Hollenbeck is generally isolated from gang
activity outside of Hollenbeck

@ Freeways and other geographic features influence the rivalry
network

2S. Radil, C. Flint, and G. Tita,“Spatializing Social Networks: Using Social Network Analysis to Investigate Geographies of Gang Rivalry, Territoriality, and
Violence in Los Angeles.” 2010.
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A control: just diffusion
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What'’s going wrong?
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Potential models

@ Graph Generating Methods
@ Geographical Threshold Graphs
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Potential models

@ Graph Generating Methods
@ Geographical Threshold Graphs

@ Agent-Based Methods

@ Brownian Motion with Semi-Permeable Boundaries
o Biased Lévy Flights with Semi-Permeable Boundaries
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Potential models

@ Graph Generating Methods
@ Geographical Threshold Graphs

@ Agent-Based Methods

@ Brownian Motion with Semi-Permeable Boundaries
o Biased Lévy Flights with Semi-Permeable Boundaries
@ Coupling the rivalry network and avoidance strength
@ Decay on the edges of graph
@ Heading home
@ Avoiding rivals’ set spaces
@ Semi-permeable freeways
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Geographical Threshold Graphs 3

@ Geographical Threshold Graphs (GTGs) randomly assign weights n; to the N nodes

@ The edge between nodes n; and n; exists only if

F((’:_”’"/ ) > Threshold
1

d(nj,np)P
We construct a specific realization of GTGs:

@ n; =size of gang i

@ F(ni,mj) =mi-nj,and B =2

@ Threshold to have the same number of rivalries as observed network

3 M. Bradonijic, A. Hagberg, A. Percus. Giant Component and Connectivity in Geographical Threshold Graphs (2007).
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Biased Lévy walk with semi-permeable boundaries

Movement dynamics:
@ Agents move in free space according to a biased Lévy walk

@ Choose direction of bias according to location of other gangs’ set spaces and location of the agent’s own
set space

@ Agents have some probability of crossing a boundary

Interactions:

@ If two gang members from different gangs cross paths, then an interaction has occurred and the rivalry
between the gangs is excited

@ At the end of the simulation, we exclude rivalries where the number of interactions is mutually insignificant
to both gangs
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Comparison of Networks: Observed, Geogrpahical Threshold Graph (GTG), Brownian Motion Network (BMN), Simulated

Biased Lévy walk Network (SBLN)

Observed GTG BMN SBLN
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Limiting Behavior of ensemble SBLN: graph density

02

Density of Graph

Density of Ensemble SBLN Networks at Each Iteration

== Average Density of Simulated Networks
0.02f ==True Density
o | | | | | | — Density of Simulated Networks !
0 0.2 04 06 0.8 1 12 14 18 18 2
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. x10
Iteration Number

Modeling fish migration with an interacting particle mod

17 April 2015



[ | Density [ Variance [ Centrality |
[ Observed | 0.169951 | 4.32105 | 0.201058 |
GTG 0.169951 9.976219 0.277778
Ensemble 0.163547 3.6642331 0.1503968
BSN =+ 0.005593 | 4 0.483954 | +0.018831

Table : The table provides the shape measures for the observed network, GTG, BMN, and ensemble BSN.
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Performance of the models

@ SBLN and GTG both performed quite well in metric comparisons (accuracy, shape, community structure
metrics)

@ SBLN allows us to explore evolution of the rivalries
@ SBLN produces dynamic stochastic networks:

Y%
g
Q

Comparison (left to right) of ensemble SBLN 100% edge agreement, ensemble SBLN 50% edge agreement, and ensemble SBLN 1% edge
agreement
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Static network model vs. SBLN model

@ SBLN allows us to see where interactions take place

Simulated 1998 1999 2000
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