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Scope and Hallmarks

Objective
We examine a class of large-scale engineered systems that are
capable of exhibiting complex adaptive system behavior during
operation.
Electric power consumption with dynamic consumer pricing is used
to demonstrate the modeling approach.
Consumers are modeled as interacting agents and identified by
preference-behavior classes impacted by innate characteristics,
supplier rewards and social relationships.
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Integration

An Agent-Based Modeling Integrating:
Social Networks (interpersonal relationships; scale-free & single-scale
networks),
Social Science (friend influence, media impact, and economics),
Complexity Theory (emergenct behavior and adaptation),
Diffusion Theory (adaptability and innovativeness), and
Decision Theory (normative utility and subjective behavior).
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Motivation and Application

A

B

(a) 4:50 pm (b) 5:00 pm (c) 5:10 pmRef: www.midwestiso.org

LMP = Locational Marginal Price (System for majority of US)
Supply cost high, a 5% drop in peak demand can save $3B a year.
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Motivation and Application

The US electricity power system as an ECAS
From producer-controlled to consumer-interactive (decreasing
centralization),
Time dependency of the network (Braha and BarYam 2007),
Scale-free/single-scale feature of the networks (Shargel et al. 2003),
Decisions based on social relationships and (irrational) preferences,
Emerging technologies: time-based pricing, smart meters, and home
solar systems.

See (Li and Tesfatsion 2009), (ANL 2002), (Barton et al. 2000), and (Wildberger and
Amin 1999).
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Literature Review and Background

Engineered and mathematically modeled complex network systems
Dayan-Rosenman (2007) evolutionary structure of networks;
Barabasi et al. (2002, 2003) statistical mechanics of complex
networks, node degree distribution of social networks follows a power
law and make scale-free (Exponential Distribution) of single-scale
(Gaussian Distribution) networks.
Hanaki et al. (2007) emergence of cooperative behavior by
combining social network dynamics and stochastic learning;
Amaral et al. (2000) structural properties of SoCal power grid;
Strogatz (2001) complexity of New York power grid.
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Literature Review and Background

Impact of network structure on innovation diffusion
Montanaria and Saberi (2010) agent adopts behavior from
neighbors;
Guardiola et al. (2002) dynamic pricing in modeling diffusion of
innovations;
Bohlmann et al. (2010) analyze network topologies and
communication links between innovator and followers in diffusion;
Rahmandad and Sterman (2008) compared effect of individual
heterogeneity and network topologies on diffusion with agent-based
and differential equation models;
Kempe et al. (2003 and 2005) effect of word-of-mouth
recommendations.
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Literature Review and Background

Engineered systems involve human designers, controllers, and consumers
Fowler and Christakis (2008) classify individuals by influence in large
social networks (LSNs);
Tucker (2008) impact of authority structure (managers & workers)
can add to or subtract to influences ;
Leskovec et al. (2006) information cascades in LSNs ;
Kleinberg (2007) probabilistic & game-theoretic models for
information flow and influence.
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Literature Review and Background

ABMs used to study the impact of new electricity technologies.
Hamilton et al. (2009) new technology versus old, and effects of
specific externality (fashion effect). Dynamics of technology
diffusion among bounded rational agents with uncertainty;
Zhang and Nuttall (2008) effects of government strategies on
promoting new electricity technologies ;
Athanasiadis et al. (2005) control consumer demands by supporting
interaction between consumers;
Ma and Nakamori (2009) advantages of optimization models and
ABM for technological change.
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Literature Review and Background

Agent-based modeling of complex adaptive national electricity
markets

Comprehensive surveys - Weidlich and Veit (2008), Zhou et al.
(2007), and Sensfub et al. (2007);
UK; Bunn et al. (2001, 2003, 2007, 2009) market power and
price-formation of utilities and generators. Bagnall and Smith (2005)
multi-agent model for UK power generation market.
Germany; Bower (2001) studied biding strategies, and an
agent-based German electricity market is presented by Sensfub
(2007). Wehinger et al. (2010) applied an agent-based model to
study the German electricity wholesale market.
Australia-NEMSIM; Grozev et al. (2005), Chand et al. (2008)
agent-based model for the CAS interactions between humans,
infrastructures and environment of Australia’s national electricity
market by using the National Electricity Market Simulator
(NEMSIM).
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Literature Review and Background

US;
AMES: The Agent-Based Modeling of Electricity Systems (AMES)
is designed for computational study of wholesale power market
(Tesfatsion (2011), Li and Tesfatsion (2009)).
EMCAS: Argonne National Laboratory developed the Electricity
Market Complex Adaptive System (EMCAS) to analyze the possible
impacts on the power system of various events (Conzelmann et al.
(2004), North et al. (2002)).
ASPEN-EE: Sandia National Laboratories presented the Aspen-EE
(Electricity Enhancement) to simulate the effects of market decisions
in the electric system on critical infrastructures of the US economy
(Barton et al. (2000)).
SEPIA: Honeywell Technology Center (HTC) constructed the
Simulator for Electric Power Industry Agents (SEPIA) (Wildberger
and Amin (1999)).
Pacific Northwest National Laboratory studied power systems as
complex adaptive systems (Chassin et al. (2004)).
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Literature Review and Background

Table : learning algorithms

Framework Algorithm
UK RL
NEMSIM DT*
Germany GA & RL
AMES RL
EMCAS DT
ASPEN-EE GA
SEPIA GA & RL

RL: Reinforcement Learning,
GA: Genetic Algorithm,

DT: Decision Tree,
* : It is not clear completely
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Demand Response

Demand Response: "Changes in electric usage by end-use customers
from their normal consumption patterns in response to changes in
the price of electricity over time, or to incentive payments designed
to induce lower electricity use at times of high wholesale market
prices or when system reliability is jeopardized" DOE (2006).
US Energy Policy Act of 2005, DOE report quantifies DR benefits.
US Federal Energy Regulatory Commission (FERC) 2011 order to
remove barriers to DR.
Large-scale social science field experiments by Ayres et al. (2009),
academic studies by Allcott (2011) suggest that social and behavioral
programs can increase the efficiency of load management programs.
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Controlling/Engineering Engineered Complex Adaptive Systems

CAS Hallmarks
Emergence capability of components of a system to do something or
to present a new behavior in interaction and dependent to other
components that they are unable to do or present individually.
Evolution process of change and agility for the whole system.
Adaptation ability of systems to learn and adjust to a new
environment to promote their survival.

ECASs
Objectives are artificially defined and interoperabilities between
components can be manipulated to achieve desired goals,
Objectives and interoperabilities of natural systems are naturally
embedded.
Does not preclude unintended complexity behaviors but allows for a
design and control aspect of the system.
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A Framework for ECASs
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i Features:
components readjust themselves continuously;
i Interoperabilities:
components update their interdependences;
i System Traits:
system tries to improve its efficiency and effectiveness;
i Learning:
system has flexibility to perform in unforeseen situations;

_ Assumptions:
Cq

i (w): consumption of electricity at time w for pattern i
in period q.
Where,
(i = 1, ..., n), 0 ≤ w ≤ w0 , and (q = 1, ...,T).
Xq

i : population of pattern i at period q.

Pq
i : percentage of consumers with pattern i at period q.

bi : growth rate of pattern i.
Eq : entropy of the system at period q.
Dq

i : individual dis-uniformity of pattern i at period q.
Dq : total dis-uniformity of the system at period q.
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Definitions

Individual Dis-uniformity, Eq. 2, is the sum of squared error of differences
between the current state of a component and its goal state (here is the average
daily consumption of the consumer agent).
Total Dis-uniformity, Eq. 3, is the mean squared error of differences between the
current state of components and the goal state of the whole system (total
average consumption).
Interoperability is the capability of two or more components to provide
information and to use exchanged information to operate together in a
predictable way and without significant user intervention. Intuitively, it measures
the effects of a component in the operations of the other one.
Conditional interoperability is the expected value of the effect of two
components on each other given the third component is added to the system as
a catalyst (we do not need to study the state of a catalyst but it can increase or
decrease the interoperability between other components).
Entropy measures the disorder in a population of consumers with n patterns of
behaviors. We defined the joint probability to find simultaneously two patterns
in their possible states.
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Proposed Three Layer Model Structure
 

 Strategies (e.g. dynamic pricing) 

Optimizing (e.g. maximum 
profits and peak reduction) 

 Plans (e.g. new generators) 

 Investments (e.g. transmission 
and distribution infrastructure) 

 Information sharing (e.g. 
communicate energy 
information) 

Regulator(s) 

(d) Decision Layer
 

Bounded rationality  
Externalities (e.g. fashion effects)  
Learning algorithms (e.g. reinforcement learning) 

(e) Social Layer

 

Components  
Features  
Networks 

(f) Physical Layer

- Strategies (e.g. dynamic
pricing),
- Optimizing (e.g. maximum
profits and peak reduction),
- Plans (e.g. new generators),
- Investments (e.g. transmis-
sion and distribution infras-
tructure),
- Information sharing (e.g.
communicate energy informa-
tion).

- Interrelationships between
agents and preferences,
- Bounded rationality for
agents and externalities (e.g.
fashion effects),
- Some non-physical at-
tributes of agents (e.g.
attractiveness),
- Learning algorithms (e.g.
reinforcement learning) and
adaptation scenarios.

- Features, mechanism of
components of the system,
and their network.
- Generators (e.g. main power
plant, wind forms, solar pan-
els, and small generators),
- Transmission, and distribu-
tors,
- Consumers (e.g. homes,
businesses, and industries).
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Patterns of behaviors
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C q
i (w): consumption of electricity at time w for pattern i period q.

Where, (i = 1, ...,n), 0 ≤ w ≤ w0, and (q = 1, ...,T ).
Xq

i : population of pattern i at period q.
Average daily consumption of a pattern i at period q:

C q
i =

∫ w0
0

Cq
i (w)dw

w0
.

Average daily consumption per consumer (we remove q’s here to
increase its readability): C =

∫ w0
0 (

∑n
i=1

Ci(w)Xi

w0
∑n

i=1
Xi

)dw.
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Entropy and Dis-uniformity

Without Influence, population of pattern i (Xi ; i = 1, ...,n) ,
∆Xi = biXi . Entropy, E = −

∑
Pi log2 Pi , of the system.

∆E
∆q =

∑
biPi(

∑
Pi log2 Pi − log2 Pi). (1)

Individual Dis-uniformity:

Dq
i =

∫ w0

0
(C q

i (w)− C q
i )2dw, i = 1, ...,n, q = 1, ...,T . (2)

Aggregate Dis-uniformity: consumers cooperate to have uniform
aggregate consumption at each period,

Dq =
∫ w0

0
(
∑n

i=1(C q
i (w)− C q

i )Xq
i∑n

i=1 Xq
i

)2dw. (3)
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Decision Makers/Agents
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Complex network
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Figure : Log-log plot
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Class of interoperabilities

Interoperability class defined by node degree; Class defines how
agents influence each other. Given a set of α, β

Lin(αδυ , βδυ ) = αδυ .ln(|E(G)|)− βδυ , (4)

where,
δυ ∈ {INF ,EF ,LF , ISO}, class of agentυ

αINF > αEF > αLF > αISO,

βINF > βEF > βLF > βISO,

(5)

|E(G)| shows the number of links in the social network G.
Degυ is the degree of Node υ in the network.

δυ =


INF , if Degυ ≥ Lin(αINF , βINF),
EF , if Lin(αEF , βEF) ≤ Degυ < Lin(αINF , βINF),
LF , if Lin(αLF , βLF) ≤ Degυ < Lin(αEF , βEF),
ISO, o.w.

(6)
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Introduction
Structure of the Study
Agent-based Modeling

Agent-based Simulation
Conclusions
Appendix

Self-Organization and Interoperability
Optimization Engine

Interoperabilities

Interoperability Matrix I c
δυδz

Let I c
δυδz

represent interoperability between classes of agents.
I c
δυδz

is a monotonic function of the influence that a agent of Class
δz has on a agent of Class δυ.
Interoperability is a positive number with maximum of one where,
I c
δυδz

= 0 shows autonomic (independent) class of agents and
I c
δυδz

= 1 when they follow each other (identical).

Table : Interoperability between consumer agents

I c
δυδz

INF EF LF ISO
INF 0.8 0.6 0.4 0.3
EF 0.6 0.5 0.3 0.2
LF 0.4 0.3 0.2 0.1
ISO 0.3 0.2 0.1 0.001
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Interrelationships

Interrelationship Between Agent Pairs, <
Self-preference, 0.5 ≤ θυz ≤ 1, lets agents vary their individual
interoperability. Note could have θυz = Θυ.Θz
To simplify the formulation we use average self-preference,

θυδz =
∑

z∈δz
θυz

Xz∈δz
(Agent υ with class δz).

<υi =
∑
δz
θυδz .I c

δυδz
.Xδzi∑

δz

∑
i Xδzi

, i = 1, ...,n, υ = 1, ...,Q, (7)

Note i = pattern; Xδzi = no. agents in class δz with i
Select an appropriate pattern as a switching target:

switchq
υ = argi{max(<υi)}, ∀i,<υi > Υυ. (8)

switchq
υ = argi{max(<υi)}, ∀i 6= Pattern(υ),<υi > Υυ. (9)
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Example

Interoperability between agents are assigned to the arcs.
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If agent υ, does not have any self-preference
(i.e. θυz = 1):

<υi = 0.6+0.4
6 = 0.17,

<υj = 0.6+0.4+0.8
6 = 0.3,

<υk = 0.8
6 = 0.13.

From Eq. 8, switch = j in all cases.
From Eq. 9, switch = i if Pattern(υ)= j
and switch = j if Pattern(υ) 6= j.

If decision maker υ "prefers" to have half of its
maximum interoperability with the EF class of pattern i (θυi = 0.5):
<υi = 0.5∗0.6+0.4

6 = 0.12,
switch = k if we use Eq. 9 and Pattern(υ)= j.
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Attributes of Agents

Each agent runs a pattern that has three attributes (price, attentiveness,
and attractiveness)

Price defines the total cost of consumption in a 24 hour cycle time
for the related pattern.
Attentiveness shows how fast and easy consumers can make a
decision to switch to this pattern.
Attractiveness shows the effects of advertisement or other fashion
attributes of the patterns.

The Utility Value Uυ, is the weighted average of the desirability scores
Ωυs of its pattern attributes . Agents can assign their own importance
weight Wυs, to attribute S .

Uυ =
∑

s WυsΩυs∑
s Wυs

, υ = 1, ...,Q, s = 1, 2, 3. (10)
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Desirability and value

An agent’s total utility Uυ (value) of a pattern is a weighted average of
desirability scores Ωυs:

Ωυs =
{

1−exp(γυs∗ ys−Ls
Us−Ls )

1−exp(γυs) , if γυs 6= 0, υ = 1, ...,Q, s = 1, 2, 3,
ys−Ls
Us−Ls

, if γυs = 0, υ = 1, ...,Q, s = 1, 2, 3.
(11)

Ωυs =
{

1−exp(γυs∗ Us−ys
Us−Ls )

1−exp(γυs) , if γυs 6= 0, υ = 1, ...,Q, s = 1, 2, 3,
Us−ys
Us−Ls

, if γυs = 0, υ = 1, ...,Q, s = 1, 2, 3.
(12)
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targeting maximum (left): risk-averse agents (γ < 0) and risk-seeking agents (γ > 0),
targeting minimum (right): risk-averse agents (γ > 0) and risk-seeking agents (γ < 0).
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Decision Rules

Agent’s Optimal Choice

max πq
υ = kr̂ R̂q + krRq

υ + kuU q
υ − kϕϕq, (13)

where,

R̂q = f0(Dq), cooperation reward, ∀q, (14)
Dq = g0(C q

i (w)), total dis-uniformity, ∀i, q,w, (15)
Rq
υ = f ′0(Dq

υ), individual reward, ∀υ, q, (16)
Dq
υ = g′0(C q

i (w)), individual dis-uniformity, ∀υ, i, q,w, (17)
U q
υ = f1(Ωυs), quantitative values, ∀υ, q, s, (18)

ϕq
υ = f2(C q

υ (w),C q−1
υ (w)), dissatisfaction, ∀υ, q,w. (19)

Ronald Askin ASU 28 / 53



Introduction
Structure of the Study
Agent-based Modeling

Agent-based Simulation
Conclusions
Appendix
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Irrationality

Irr-I: The probability that agent υ does not switch to the new
pattern even if the objective function of the new pattern is higher
than the objective function of the old pattern.
Irr-II: The probability that agent υ switches to a new pattern even if
the objective functions do not satisfy the switching threshold.

Probυ = exp(kI ∗ObjNew)
exp(kI ∗ObjNew) + exp(kI ∗ObjOld) (20)

where, kI shows the sensitivity of the agents to differences between the
objective functions (the higher the kI , the more sensitive agents).
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Integration and Possible Outcomes
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When (what day) is the best time to trigger a demand response event?
How much trigger is required?
What type of events/trigger are more effective and efficient?
Who are the event recipient? What is the schedule to receive their
triggers?
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Variables

Table : State variables for running the simulation

300 runs of 400 periods each
Parameter Variable Range Units Default Area*
Initial Population υ = 1, ...,

∑
i

Xi 100- inf # of consumers 500 E

Initial Patterns Xi∑
i

Xi
, i = 1, 2, 3 0 to 1 % of total population 0.15,0.65,0.20 E

Growth Rate bi , i=1,2,3 0 to 1 % of pattern population 0, 0, 0 E
Max Link Generation %max 1 to 10 number 1 E
Price S1 3-8 Currency (cents/KWh) 5, 5, 5 C
Attentiveness S2 2-5 Time (min/decision) 4, 4, 4 C
Attractiveness S3 1-10 Qualitative 3, 3, 3 C
Desirability Coefficient γυs ∼Normal (0, 4) N/A N/A A
Attribute Weight Wυ ∼Normal (1, 0.2) N/A N/A A
Average Self-preference θυδz ∼Uniform (0.5, 1) N/A N/A A

* Here E, C, and A stand for Environment, Consumption and Agents respectively.
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Analyzing Behaviors

The entropy of the system is less than 0.3364 i.e. when at least 95% of
agents converge to a pattern.
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Figure : Distribution of convergence to Pattern i
Ronald Askin ASU 33 / 53



Introduction
Structure of the Study
Agent-based Modeling

Agent-based Simulation
Conclusions
Appendix

Integrated Model
Discussion
Number of friendships
Limited Rationality
Network Topology
Dynamic Price

Analyzing Behaviors

Th=0 Th=0.1 Th=0.2 Th=0.3

1.278899 1.278899 1.278899 1.278899

1.552397 1.502058 1.387334 1.306998

1.522829 1.526618 1.433907 1.332431

1.481825 1.521885 1.463869 1.354272

1.44295 1.505751 1.485003 1.372586

1.403311 1.486321 1.50028 1.388672
1.2

1.4

1.6

1.8

y1.403311 1.486321 1.50028 1.388672

1.36407 1.467249 1.510736 1.402339

1.325917 1.44456 1.517728 1.415224

1.287287 1.420105 1.521325 1.426525

1.247771 1.39821 1.522141 1.436724

1.208523 1.374004 1.52085 1.446221

1.173367 1.34836 1.518426 1.454407

1 138751 1 322206 1 515625 1 46199
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1

2
1

4
1

6
1

8
1

0
1

2
1

4
1

6
1

8
1

0
1

2
1

4
1

6
1

8
1

0
1

2
1

4
1

6
1

8
1

0
1

En
tr
op

y

Th=0

Th=0.1

Th=0.2

Th=0.30.3364

1.138751 1.322206 1.515625 1.46199

1.100973 1.298723 1.511883 1.468582

1.060251 1.274652 1.506561 1.474632

1.020694 1.25237 1.500874 1.47962

0.98513 1.229408 1.492935 1.484231

0.94894 1.20928 1.484853 1.488423

0.913652 1.189322 1.476372 1.491923

0

0.2

1

2
1

4
1

6
1

8
1

1
0
1

1
2
1

1
4
1

1
6
1

1
8
1

2
0
1

2
2
1

2
4
1

2
6
1

2
8
1

3
0
1

3
2
1

3
4
1

3
6
1

3
8
1

4
0
1

Time Period

0.877494 1.169213 1.467826 1.49484

0.838336 1.150065 1.458085 1.497801

0.793522 1.131047 1.448608 1.500304

0.752796 1.110505 1.438873 1.502703

0.716704 1.09158 1.428984 1.504603

0.680233 1.07298 1.418564 1.506395

0 644997 1 056852 1 408608 1 5076280.644997 1.056852 1.408608 1.507628

0.610174 1.039158 1.399064 1.508801

0.582107 1.019337 1.389488 1.509581

0.558207 1.001463 1.378385 1.510347

0.533707 0.984948 1.367345 1.510888

0.517528 0.967713 1.356069 1.511049

0.499162 0.949144 1.344119 1.511095

0.481554 0.933973 1.332918 1.511075

0.461776 0.919075 1.322165 1.511346

0.443408 0.902102 1.31163 1.511552

0.425548 0.888131 1.301228 1.511037

0.408713 0.87302 1.290181 1.510667

0.394039 0.858956 1.279809 1.510151

0.378443 0.844296 1.269808 1.5092570.378443 0.844296 1.269808 1.509257

0.363998 0.828704 1.260771 1.508215

0.351473 0.8132 1.250894 1.507234

0.338213 0.797637 1.241491 1.505994

0.324855 0.784265 1.232561 1.504796

0.310773 0.771309 1.22312 1.50349

0.30067 0.75417 1.213035 1.502

0 291518 0 739439 1 202464 1 500360.291518 0.739439 1.202464 1.50036

0.283232 0.724127 1.192085 1.498392

0.273707 0.711033 1.18316 1.496596

0.266105 0.698883 1.174382 1.494769

0.25851 0.686736 1.16549 1.492672

Figure : Convergence of the Average Entropies

Ronald Askin ASU 34 / 53



Introduction
Structure of the Study
Agent-based Modeling

Agent-based Simulation
Conclusions
Appendix

Integrated Model
Discussion
Number of friendships
Limited Rationality
Network Topology
Dynamic Price

Analyzing Behaviors

∑
i

∑
q
|P(1)

iq − P(2)
iq | i = 1, 2, 3; q = 1, ..., 400. (21)
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Improving Effect of the Social Network
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Externalities and irrationality
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Effects of saturated interrelationships
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Sensitivity to the Price of Pattern i
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Summary

Embedded an optimization model in an agent-based simulation to
study human behaviors in a complex adaptive system.
Analyze the structure of a human decision network and show how
agents behave as a result of their interoperability through a
scale-free network and in relationship with the environment.
Control and predict the behavior of dis-uniformity and entropy in a
power system. Decrease the dis-uniformity while considering the
stable and equilibrium states.
Agents dynamically update their optimization models at each time
increment on the basis of new information and observed system
behavior and may emerge to new patterns.
This optimized emergence causes optimized evolution in the system.
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For more details and references see:
M. Haghnevis and R. Askin, “A modeling framework for engineered complex adaptive
systems,”IEEE Systems Journal, vol. 6, no. 3, pp. 520-530, 2012. Special Issue;
Complexity in Engineering: from Complex Systems Science to Complex Systems
Technology.
M. Haghnevis and R. G. Askin, “Modeling properties and behavior of the US power
system as an engineered complex adaptive system,”in proceedings of the 2011 CAS
AAAI Fall Symposium, (Arlington, VA, USA), Association for the Advancement of
Artificial Intelligence, November 2011.
M. Haghnevis, A. Shinde, and R. G. Askin, “An integrated optimization and
agent-based framework for the U.S. power system,”in proceedings of the Complex
Adaptive Systems 2011, (Chicago, IL, USA), Missouri University of Science and
Technology, October-November 2011
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Definitions and Hallmarks
Entropy vs. Dis-uniformity
Simulation

Complex Adaptive Systems

i Complex Systems
System structure:

displays no or incomplete central organizing for the system
organization (prescriptive hierarchically controlled systems are
assumed to not be complex systems),
behavioral interactions among components at lower levels are
revealed by observing behavior of the system at higher level.

Analysis of system behavior:
analyzing components fails to explain higher level behavior,
reductionist approach does not satisfactorily describe the whole
system.

i Complex Adaptive Systems (CASs) consist a huge number of
interacting components. Self-organization, emergent phenomenon,
evolutionary behaviors, and adaptation are basic hallmarks of such
systems.
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Agent-based Modeling and simulation

Agent-based modeling and simulation (ABMS) aims to model
interacting autonomous agents

This topic promised to propose novel approaches when it was
presented in 1990s; however,
Initial discussion about this subject began in 1970s based on Cellular
Automata (CA).

Agent-based models include agents, their relationships, and their
environment.

Agents have behaviors and interactions with other agents and the
environment. Their behaviors (often described by simple rules) relate
information sensed by the agents to their decisions.
Interactions include a topology of connectedness and protocols for
the interactions.
Agents may be affected by their positions in the environment.

see (Macal and North 2010 and 2006) (Siebers wt al. 2010), (Suematsu et al. 2003),
and (Anderson 1999)
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The characteristics of ABMs

Agents:
Agents act autonomously (self-directed) i.e., they make independent
decision without external direction, however, they interact with their
environment and other agents (their interactions influence their
behaviors).
An agent is self-contained (uniquely identifiable) i.e., we can
determine what is part of an agent or not.
An agent has a state that represents the attributes of its current
situation.

Interactions:
The topology of interactions defines who is, or could be, connected
to who.
The protocols of interactions are the mechanisms of the dynamics of
the interactions.
These specifications limit the agents to their local information.

Agent-based systems are decentralized i.e. there is no global control
or authority, however, some agents may have more power to
influence other agents.
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ABMs and CASs

These characteristics enable agents to be:
adaptive (can learn based on experiences),
goal-directed (adjust themselves or their interactions based on a
goal), and
heterogeneous (their attributes and behaviors may vary and change
dynamically).

The most important advantage of ABMs is their capability to
explicitly model complex adaptive systems (CASs).

Complex behaviors such as altruistic versus selfish and cooperation
versus competition can be studied by agent-based models.
ABMs can study and analyze the complexities that arise from
individual actions and interactions that exist in the real world by
bottom-up iterative design methodologies.
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ABMs, CASs, and OOP

ABM and CAS
Instead of reducing nonlinear systems to a set of causal variables and
error terms, ABMs show how complex adaptive outcomes flow from
simple phenomena and depend on the way that agents are
interconnected.
Rather than aggregating outcomes to find a total equilibrium, ABMs
present the evolution of outcomes as the result of the efforts of
agents to achieve better fitness

ABM and OOP
Agent-based simulation and object-oriented simulation are not the
same, however, object-oriented modeling is a useful basis for ABMs.
An agent can be considered as a self-directed (autonomous) object
that has the capability to make decisions individually based on its
situation and its interactions with other agents.
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Tools

Different tools are developed for modeling and simulating SD (e.g.
VensimTM, ModelMakerTM), DE (e.g. ArenaTM, SLAMTM, AutoModTM),
and ABM (e.g. NetLogoTM, RepastTM)

Table : Characteristics of different types of modeling paradigms

DE SD ABM
Basic elements entities, entities, agents,

resources, flow interactions,
blocks environment

Modeling approach top-down bottom-up bottom-up
Control centralized centralized decentralized
Components passive active active
Data objective objective subjective
Strategy no no yes
Population homogeneous homogeneous heterogeneous
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We can not consider ABMS as a replacement of all other traditional
techniques.

Typically, ABMs need more detailed information and computation
times.
Even with powerful computers, modelers face trade-offs between
complex detailed individual behaviors and simple decomposable
models.
Also, frameworks for verification and validation of ABMS are still
incomplete and fragmented.

Generally, we may propose ABMs in the following situations:
When our goal is to model evolving outcomes of individual behaviors,
When the components operate in interaction with each other and
their environment based on a topology and a protocol,
When self-organizing agents can learn and adopt to new situations
and make evolution in a system,
When heterogeneous agents can make strategic decisions to
cooperate or collude or compete to achieve their goals.
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Dominance Types

Dominance: behavior i dominates behavior j (i v j) if Di ≤ Dj .
Strict Positive Dominance: behavior i strictly positively dominates
behavior j (i � j) if Di < Dj , |Ci(w)− C | ≤ |Cj(w)− C | for all w
and sgn(Ci(w)− C ) = sgn(Cj(w)− C ) for all w.
Positive Dominance: behavior i positively dominates behavior j
(i 3 j) if Di < Dj , |Ci(w)− C | > |Cj(w)− C | for some w and
sgn(Ci(w)− C ) = sgn(Cj(w)− C ) for all w.
Strict Negative Dominance: behavior i strictly negatively dominates
behavior j (i % j) if Di < Dj , |Ci(w)− C | ≤ |Cj(w)− C | for all w
and sgn(Ci(w)− C ) 6= sgn(Cj(w)− C ) for all w.
Negative Dominance: behavior i negatively dominates behavior j
(i < j) if Di < Dj , |Ci(w)− C | > |Cj(w)− C | for some w and
sgn(Ci(w)− C ) 6= sgn(Cj(w)− C ) for all w.
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Summary of Emergence

− log2 Pi > E − log2 Pi < E
bi > bj bi < bj bi > bj bi < bj

i � j E ↑ ∧ D ↓ E ↓ ∧ D ↑ E ↓ ∧ D ↓ E ↑ ∧ D ↑
i 3 j E ↑ ∧ D ↓ E ↓ ∧ D ↑ E ↓ ∧ D ↓ E ↑ ∧ D ↑
i % j E ↑ ∧ D ↓ (1), D ↑ (2) E ↓ ∧ D ↑ E ↓ ∧ D ↓ (1), D ↑ (2) E ↑ ∧ D ↑
i < j E ↑ ∧ D ↓ (1), D ↑ (2) E ↓ ∧ D ↑ E ↓ ∧ D ↓ (1), D ↑ (2) E ↑ ∧ D ↑

(1) if
∑

Xi
∫

(Ci(w)− Ci)dw >
∑

Xj
∫

(Cj(w)− Cj)dw,
(2) if

∑
Xi

∫
(Ci(w)− Ci)dw <

∑
Xj

∫
(Cj(w)− Cj)dw.

Theorem V (mechanisms of components): If i v j, i.e., i’s dominate
j’s, dis-uniformity of the system is decreasing in period if the entropy
increases in period when − log2 Pi > E or if the entropy decreases in
period when − log2 Pi < E while,∑

Xi
∫

(Ci(w)− Ci)dw <
∑

Xj
∫

(Cj(w)− Cj)dw for both conditions.
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Applying this integrated optimization and agent-based model has the
following benefits for the US power system and leading to a reduction in
investment on the power grid infrastructure:

motivates consumers to balance the total workload by providing
incentives and social education,
encourages agents to cooperate with the grid regulators in high
stress times and environments by communicating energy information,
increases the grid’s security and reliability by analyzing its behavior
during accidents or system faults,
allows studying complex system response to dynamic pricing and
other control strategies,
predicts and controls emergent behavior of the agents and system
evolution by mathematical modeling in respect to economic
incentives and social interactions.
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