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Riccati equation

Jacopo Riccati (1676-1754)

Riccati equation{
d ′(t) = d2(t), t ∈ [0,?)
d(0) = d0.

• Integration gives

d(t) =
d0

1− td0
, for t ∈ [0,?)
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Critical Threshold in Riccati equation

The graph of d(t)

Riccati equation{
d ′(t) = d2(t), t ∈ [0,?)
d(0) = d0.

• d(t) = d0
1−td0

, for t ∈ [0,?)
• If d0 > 0, then

d(t)→ ∞ as t→ 1/d0

• If d0 ≤ 0, then

d(t) continuous for t ∈ [0,∞)
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Global regularity questions in PDEs

• Physical fluids : velocity can’t actually go to infinity → Finite time blow-up
scenario does not occur.
• PDE models for physical fluids(e.g. Euler Equation, Navier-Stokes Equations,
Euler-Poisson Equations: d := ∇ ·~u, where ~u = velocity field ):
If an answer to the global regularity problem is negative → For certain choice
of initial data, finite time blow-up may occur → the equations will at some
point be an inaccurate model for a physical fluid.
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The problems we are considering

We are concerned with the threshold phenomenon in multi-dimensional
Euler-Poission equations.

Multi-D Euler-Poisson equations

ρt + ∇ · (ρu) = 0, x ∈ Rn, t ∈ R+,

ut + (u ·∇x )u = k∇∆−1ρ,

where u(t,x) =velocity and ρ(t,x) =density. Here k is a physical constant
which parameterizes the repulsive k > 0 or attractive k < 0 forcing.

This hyperbolic system with non-local forcing describes the dynamic behavior
of many important physical flows, including plasma with collision, cosmological
waves, charge transport, and the collapse of stars due to self gravitation.
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We are concerned with the questions of the persistence of the C1 solution
regularity for the conservation laws and Euler-Poisson equations.

The natural question︸ ︷︷ ︸
why?

is whether there is a critical threshold for the initial

data such that the persistence of the C1 solution regularity depends only
on crossing such a critical threshold.

Threshold configuration for initial data

This concept of critical threshold and associated methodology is
originated and developed in a series of paper by Engelberg, Liu, and
Tadmor.
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The natural question︸ ︷︷ ︸
why?

...

Let us temporarily ignore the role of incompressibility and the pressure in the
NS equations:

Navier-Stokes equations, heuristic view

∂tu+ (u ·∇x )u = ν∆u−��∇p

One can view this equation as a contest between (u ·∇x )u and ν∆u.

If (u ·∇x )u>> ν∆u,

We expect the solution to the NS equations to behave like ∂t u ≈ (u ·∇x )u
→ expect finite time blow-up(Burgers equation)

If (u ·∇x )u<< ν∆u,

We expect the solution to the NS equations to behave like
∂t u ≈ ν∆u → expect global smooth solution(heat equation)
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Euler-Poisson equations
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Problem description

We are concerned with the threshold phenomenon in two dimensional
Euler-Poission equations.

Multi-D Euler-Poisson equations

ρt + ∇ · (ρu) = 0, x ∈ Rn, t ∈ R+,

ut + (u ·∇x )u = k∇∆−1ρ,

where u(t,x) =velocity and ρ(t,x) =density. Here k is a physical constant
which parameterizes the repulsive k > 0 or attractive k < 0 forcing.

We consider a gradient flow M(t,x) := ∇u governed by Euler-Poisson
equations, subject to initial data

(M,ρ)(0, ·) = (M0,ρ0).
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Dynamics of u

Multi-D Euler-Poisson equations

ρt + ∇ · (ρu) = 0, x ∈ Rn, t ∈ R+,

ut + (u ·∇x )u = k∇∆−1ρ,

Expanding the second equation(in 2D):

ui
t +
(
u1 ∂

∂ x
+ u2 ∂

∂ y

)
ui = k

∂

∂ xi
∆−1ρ, i = 1,2.

Here,

k
∂

∂ xi
∆−1ρ(t,~x) = k ·pv

∫
R2

∂

∂ yi
G(~y)ρ(t,~x−~y)d~y , G : Poisson kernel in 2D

= k ·pv
∫
R2

1

2π
· yi

y2
1 + y2

2

ρ(t,~x−~y)d~y

Yongki Lee Univ. of California, Riverside Blow-up conditions for 2D MEP equations



Introduction Euler-Poisson equations

Dynamics of u (cont’d)

Thefore, re-writing the second equation gives

ut + (u ·∇x )u = k∇∆−1ρ

⇒ D

Dt
ui = k ·pv

∫
R2

1

2π
· yi

y2
1 + y2

2

ρ(t,~x−~y)d~y

The role of k∇∆−1ρ when k > 0(repuslive case)

D
Dt u1 < 0 D

Dt u2 < 0
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Ultimate Goal

Multi-D Euler-Poisson equations

ρt + ∇ · (ρu) = 0, x ∈ Rn, t ∈ R+,

ut + (u ·∇x )u = k∇∆−1ρ,

where u(t,x) =velocity and ρ(t,x) =density. Here k is a physical constant
which parameterizes the repulsive k > 0 or attractive k < 0 forcing.

We are concerned with the questions of global regularity vs finite-time
breakdown of Eulerian flows.

Q: whether the smooth solution develops singularity in finite time?
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Main obstacle

Multi-D Euler-Poisson equations

ρt + ∇ · (ρu) = 0, x ∈ Rn, t ∈ R+,

ut + (u ·∇x )u = k∇∆−1ρ.

Let M := ∇u and apply ∇ to the second equation,

⇒ ∂t M + u ·∇M + M2 = k∇⊗∇∆−1[ρ].

⇒M ′+ M2 = kR[ρ],

where ′ := ∂t + u ·∇ and R = {Rij}= {∂xi xj ∆
−1}.

Difficulty: There is no clear idea on how strong kR[ρ] is compare to M2. More
precisely, it is the global forcing, R[ρ], which presents the main obstacle to
studying the CT phenomenon of the multi-dimensional Euler-Poisson setting.
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Highly cited works

Multi-D Euler-Poisson equations

ρt + ∇ · (ρu) = 0, x ∈ Rn, t ∈ R+,

ut + (u ·∇x )u = k∇∆−1ρ.

1 dimension: Critical Threshold [Liu-Tadmor 2002]

Blow-up of a spherically symmetric solution[B. Perthame 1990]

Construction of a global smooth solution

3D irrotational solution [Y. Guo 1998]: Let n(x),v(x) ∈ C ∞
c (R3).

Suppose ∇×u = 0. Then there exists ε0 > 0 such that for 0 < ε < ε0,
there exist unique smooth solutions (ρε (t,x),uε (t,x)) to the
Euler-Poisson equations for 0≤ t < ∞ with initial data (εn(x),εv(x)).

Analogous theorem in 2D is open.

2D radial symmetric solution [J. Jang 2014]
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My works in Restricted type Euler-Poisson Equations

(the original) Euler-Poisson equations

ρt + ∇ · (ρu) = 0, x ∈ Rn, t ∈ R+,

M ′+ M2 = kR[ρ].

Restricted EP(Local)

M ′+ M2 = k
n ρIn×n

Weakly Restricted EP

M ′+M2 = k
n ρIn×n +Roff

dig

Modified EP(Global)

M ′+ M2 = kRν [ρ]

• 2D
Critical Threshold
Liu-Tadmor 2002

• Roff
dig :=off-diagonal

elements matrix of kR[ρ]

• Rν [ρ] :=modified
Riesz transform where
the singularity at the
origin is removed

• nD
Gloabl Existence,
Blow-up
Lee-Liu 2013

• 2D Blow-up,
Lee 2017

• 2D Blow-up,
Lee 2016
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d = ∇ ·u dynamics equation in 2D

• d = ∇ ·u, ω := ∇×u
• All restricted type EPs and the original EP share the same d dynamics
equation. However, the evolutions of η and ξ are differ by models.
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Derivation of the d dynamics equation

Expanding M ′+ M2 = kR[ρ], we obtain

Euler-Poisson system

[
M11 M12

M21 M22

]′
+

[
M2

11 + M12M21 dM12

dM21 M12M21 + M2
22

]
= k

[
R11[ρ] R12[ρ]
R21[ρ] R22[ρ]

]
,

ρ
′+ ρtrM = 0.

We let

d := trM = ∇ ·u(divergence)

ω := ∇×u = M21−M12(vorticity)

η := M11−M22

ξ := M12 + M21
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Derivation of the d dynamics equation(cont’d)

Taking the trace, one obtain

d ′ =−(M2
11 + M2

22)−2M12M21 + k(R11[ρ] + R22[ρ])

=−
{

(M11 + M22)2

2
+

(M11−M22)2

2

}
+

(M21−M12)2

2
− (M12 + M21)2

2
+ kρ

=−1

2
d2− 1

2
η
2 +

1

2
ω
2− 1

2
ξ
2 + kρ

(Riccati type Ordinary Differential Equation).
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d-dynamics equation

d-dynamics equation of Euler-Poisson system

d ′ =−1

2
d2−1

2
η
2 +

1

2
ω
2−1

2
ξ
2 + kρ.

One can view the dynamics of d as the result of a

contest between negative and positive terms

in the d-dynamics equation. For example, one might think bigger
|ω|(correspond to the size of vorticity) prevents the finite time blow-up as
opposed to the bigger η, ξ help the finite time blow-up.
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d-dynamics equation(cont’d)

d-dynamics equation of Euler-Poisson system

d ′ =−1

2
d2−1

2
η
2 +

1

2
ω
2−1

2
ξ
2 + kρ.

From the matrix equaion we obtain

η
′+ ηd = k(R11[ρ]−R22[ρ]), (1a)

ω
′+ ωd = k(R21[ρ]−R12[ρ]) = 0, (1b)

ξ
′+ ξ d = k(R12[ρ] + R21[ρ]), (1c)

ρ
′+ ρd = 0. (1d)

From (1b) and (1d), we derive

ω

ω0
=

ρ

ρ0
.

This allows us to rewrite the system,

d ′ =−1

2
d2−1

2
η
2 +

1

2

(
ω0

ρ0

)2

ρ
2−1

2
ξ
2 + kρ,

ρ
′ =−ρd
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Chae-Tadmor(’08): Finite time blow-up; with no vorticity,
attractive forcing

d and ρ-dynamics equations of Euler-Poisson system

d ′ =−1

2
d2−1

2
η
2 +

1

2

(
ω0

ρ0

)2

ρ
2−1

2
ξ
2 + kρ,

ρ
′ =−ρd

Chae-Tadmor(2008) : Assuming vanishing initial vorticity(i.e., ω0 ≡ 0),
and dropping −η2, −ξ 2 terms, the equation is reduced to simple
Ricatti-type inequality

d ′ ≤−1

2
d2 + kρ.

Using this argument, Chae and Tadmor proved the finite time blow-up for
solutions of k < 0 case in arbitrary space dimension.
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The restricted Euler-Poission system(REP) and a
modified Euler-Poission system(MEP)
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The restricted Euler-Poission system(REP)

Motivation in REP:
ut + (u ·∇x )u = k∇∆−1ρ

⇒ ∂t M + u ·∇M + M2 = k∇⊗∇∆−1[ρ].

⇒M ′+ M2 = kR[ρ]

There is no clear idea on how strong kR[ρ] is compare to M2. What we know is

tr(kR[ρ]) = kρ.

REP is obtained from the full EP by restricting attention to the local isotropic
trace k

2 ρ · I2×2 of the global coupling term kR[ρ].

The 2D restricted Euler-Poisson system(REP)[Liu-Tadmor (2002)]

M ′+ M2 =
k

2
ρ ·
(

1 0
0 1

)
,

ρ
′+ ρtrM = 0.
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The restricted Euler-Poission system(REP) (cont’d)

The 2D restricted Euler-Poisson system(REP)[Liu-Tadmor (2002)]

M ′+ M2 =
k

2
ρ ·
(

1 0
0 1

)
,

ρ
′+ ρtrM = 0.

d-dynamics equation of 2D restricted Euler-Poisson system(REP)

d ′ =−d2

2
−β · ρ

2

2
+ kρ.

Liu-Tadmor(2003) studied the dynamics of (ρ,d) parametrized by β , and it
was shown that in the repulsive case, the restricted two-dimensional REP
system admits two-sided critical threshold.
For arbitrary n ≥ 3 dimensional REP system, Lee-Liu(2014) identified both
upper-thresholds for finite time blow-up of solutions and sub-thresholds for
global existence of solutions.
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The weakly restricted Euler-Poission system(WREP)

The 2D weakly restricted Euler-Poisson system(WREP)[Lee (’17)]

M ′+ M2 =

(
kρ/2 kR12[ρ]

kR21[ρ] kρ/2

)
,

ρ
′+ ρtrM = 0.

Comparison between WREP and REP

WREP blow-up REP global-existence Their union
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The modified Euler-Poisson equations(MEP)
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The modified Euler-Poisson equations(MEP)

(the original)Euler-Poisson system

D

Dt
M +

(
M2

11 + M12M21 dM12

dM21 M12M21 + M2
22

)
= k

(
R11[ρ] R12[ρ]
R21[ρ] R22[ρ]

)
,

ρ
′+ ρtrM = 0.

Here,

R[ρ] := ∇⊗∇∆−1[ρ] = F−1
{

ξi ξj

|ξ |2
ρ̂(ξ )

}
i ,j=1,2

(Rij [ρ])(~x) := p.v .
∫
R2

∂ 2

∂ yi ∂ yj
G(~y)ρ(~x−~y)d~y +

ρ(~x)

2π

∫
|~z |=1

zi zj d~z ,

where G(~x) = 1
2π

log |~x | is the Green’s function for the Poisson equation
in two-dimensions.
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The modified Euler-Poisson equations(cont’d)

Modified Euler-Poisson system(MEP), Lee, ’16

D

Dt
M +

(
M2

11 + M12M21 dM12

dM21 M12M21 + M2
22

)
= k

(
Rν
11[ρ] Rν

12[ρ]
Rν
21[ρ] Rν

22[ρ]

)
,

ρ
′+ ρtrM = 0.

Here,

(Rν
ij [ρ])(~x) :=

∫
R2\B(0,ν)

∂ 2

∂ yi ∂ yj
G(~y)ρ(~x−~y)d~y︸ ︷︷ ︸

truncated transform

+
ρ(~x)

2π

∫
|~z |=1

zi zj d~z ,

where G(~x) = 1
2π

log |~x | is the Green’s function for the Poisson equation
in two-dimensions.
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The modified Riesz transform in the MEP system is intended to take into
account the global forcing in the full Euler-Poisson equations, as opposed to
the REP systems in [Liu-Tadmor] are localized Euler-Poisson equations.

Euler-Poisson

M ′+ M2 = kR[ρ],

ρ
′+ ρtrM = 0.

• (Rij [ρ])(~x) := pv
∫
R2 · · ·

Modified Euler-Poisson

M ′+ M2 = kRν [ρ],

ρ
′+ ρtrM = 0.

• (Rν
ij [ρ])(~x) :=

∫
R2\B(0,ν) · · ·

• R11[ρ] + R22[ρ] = ρ • Rν
11[ρ] + Rν

22[ρ] = ρ

• Lack of an accurate description for
the propagation of R[ρ]

• We will later estimate Rν
ij [ρ] using

the L1 norm of ρ
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Statement of main theorems

Modified Euler-Poisson system(MEP)

D

Dt
M +

(
M2

11 + M12M21 dM12

dM21 M12M21 + M2
22

)
= k

(
Rν
11[ρ] Rν

12[ρ]
Rν
21[ρ] Rν

22[ρ]

)
,

ρ
′+ ρtrM = 0.

Theorem 1(Lee, ’16) : Blow-up for 2D MEP with attractive forcing (k < 0)

Consider the 2D attractive MEP system with k < 0. Suppose that
ρ(0, ·) ∈ L1(R2), d0 < 0 and ρ0 > 0. If there exist a constant µ such that

|ω0|
ρ0

< µ <

√
η2
0 + ξ 2

0

ρ0
,

and
F (µ,d0,ω0,ρ0,η0,ξ0,‖ρ(0, ·)‖L1(R2))≥ 0,

then d(t) and ρ(t) must blow-up at some finite time.
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Statement of main theorems(cont’d)

Theorem 2(Lee, 16’) : Blow-up for 2D MEP with repulsive forcing (k > 0)

Suppose that ρ(0, ·) ∈ L1(R2), d0 < 0 and ρ0 > 0. If there exist a constant µ

such that √(
ω0

ρ0

)2

+
2k

ρ0
< µ <

√
η2
0 + ξ 2

0

ρ0
,

and
F (µ,d0,ω0,ρ0,η0,ξ0,‖ρ(0, ·)‖L1(R2))≥ 0,

then d(t) and ρ(t) must blow-up at some finite time.

Here,

F (µ,d ,ω,ρ,η ,ξ ,‖ρ(0, ·)‖L1(R2)) :=
πν2

√
2|k|‖ρ(0, ·)‖L1(R2)

(√
η2 + ξ 2−ρµ

)
− π + 2arctan(d/

√
µ2ρ2−ω2−2kρ)√

µ2ρ2−ω2−2kρ
.
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Remarks on Theorems

The critical threshold in 1D Euler-Poisson equations depends only on the
relative size of the initial velocity gradient and initial density. In contrast
to the one-dimensional Euler-Poisson equations, the threshold conditions
in 2D MEP equations depend on several initial quantities: density ρ0,
divergence d0, vorticity ω0, gaps η0, ξ0 and even total mass
‖ρ(0, ·)‖L1(R2)

One can easily check that how F depends on those initial configurations:

∂ F

∂ d
< 0,

∂ F

∂ (ω2)
< 0,

∂ F

∂ρ
> 0,

∂ F

∂‖ρ(0, ·)‖L1(R2)
> 0,

∂ F

∂η
> 0, and

∂ F

∂ξ
> 0.

For example, F is increasing in ρ, ‖ρ(0, ·)‖L1(R2) and −d . This is

interpreted as if there is a point ~x ∈ R2 with highly accumulated mass
with low divergence, then there may be a finite time blow-up of the
density.
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Sketch of the proofs
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Sketch of the proofs

d-dynamics equation: d ′ =− 1
2d2− 1

2η2 + 1
2

(
ω0
ρ0

)2
ρ2− 1

2ξ 2 + kρ ⇒

d ′=−1

2
d2− 1

2

[
−
(

ω0

ρ0

)2

+

(
η0

ρ0
+
∫ t

0

f (τ)

ρ(τ)
dτ

)2

+

(
ξ0

ρ0
+
∫ t

0

g(τ)

ρ(τ)
dτ

)2]
ρ
2+kρ

Here, f (t) := k(Rν
11[ρ]−Rν

22[ρ]), g(t) := k(Rν
12[ρ]−Rν

21[ρ]).

For t > 0, it holds∣∣∣∣∫ t

0

f (τ)

ρ(τ)
dτ

∣∣∣∣≤ |k|‖ρ(0, ·)‖L1(R2)

πν2
·
∫ t

0

1

ρ(τ)
dτ.
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Sketch of the proofs

d-dynamics equation: d ′ =− 1
2d2− 1

2η2 + 1
2

(
ω0
ρ0

)2
ρ2− 1

2ξ 2 + kρ ⇒

d ′=−1

2
d2− 1

2

[
−
(

ω0

ρ0

)2

+

(
η0

ρ0
+
∫ t

0

f (τ)

ρ(τ)
dτ

)2

+

(
ξ0

ρ0
+
∫ t

0

g(τ)

ρ(τ)
dτ

)2]
ρ
2+kρ

Here, f (t) := k(Rν
11[ρ]−Rν

22[ρ]), g(t) := k(Rν
12[ρ]−Rν

21[ρ]).

For t > 0, it holds∣∣∣∣∫ t

0

f (τ)

ρ(τ)
dτ

∣∣∣∣≤ |k|‖ρ(0, ·)‖L1(R2)

πν2
·
∫ t

0

1

ρ(τ)
dτ.
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Sketch of the proofs

d ′=−1

2
d2− 1

2

[
−
(

ω0

ρ0

)2

+

(
η0

ρ0
+
∫ t

0

f (τ)

ρ(τ)
dτ

)2

+

(
ξ0

ρ0
+
∫ t

0

g(τ)

ρ(τ)
dτ

)2

︸ ︷︷ ︸
greater than µ2 for short initial period of time

]
ρ
2+kρ

For any µ ∈
(
0, 1

ρ0

√
η2
0 + ξ 2

0

]
, there exists T > 0 such that

d ′ ≤−1

2
d2 +

1

2

{(
ω0

ρ0

)2

−µ
2

}
ρ
2 + kρ,

ρ
′ =−dρ,

(4)

for all t ∈ [0,T ]. Furthermore, the lower bound T ∗ > 0 of T is obtained
from √(

η0

ρ0

)2

+

(
ξ0

ρ0

)2

−µ =

√
2|k|‖ρ(0, ·)‖L1(R2)

πν2

∫ t∗

0

1

ρ(τ)
dτ.

Find initial data such that d →−∞ at some time before T ∗.
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Thank you for your attention!
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