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Bose gas: System of N bosons in GP scaling

N-body Schrédinger equation, Wy (xi, ..., xN) € Lgym (RHYY,

Uy = Hv Uy , Yn(0) = Unpo
N N 1
Hy = Z(_ij> + ZVext(xg) + N Z VN(ZUz _CUJ>7
7j=1 /=1 1<i<j<N

Vn(z) = N*PV(Nx)

V sufficiently regular, 0 < g < 1.



Marginal density matrices

e Define the N-particle density matrix

YNtz zy) = Un(t,zny) YN (t )

e and k-particle marginals for £ =1,..., N,

k
7§V)<t7£k§§;g> — /dQN_k'YN(tanaQN_kQQ;gaﬁN—k)a

where z, := (z1,...,2k), Ty_1 = (Tht1,-..,TN).

Key properties: Positive definite and admissible:

W = Tyt > 0

Key question: Mean field properties for N — oc.



1. Proof of Bose-Einstein condensation, ground states

[Lieb-Seiringer- Yngvason; Aizenman-L-S-Solovej-Y]

®n ground state of Hy = ’yc(pljzr — |¢) (]

where ¢ minimizes the GP functional.

2. Derivation of nonlinear Schrodinger or Hartree equation

Via Fock space: Hepp, Ginibre-Velo, Rodnianski-Schlein,
Grillakis-Machedon-Margetis, Grillakis-Machedon

Via BBGKY: Spohn, Erdos-Schlein-Yau, Elgart-E-S-Y,
Adami-Bardos-Golse-Teta

Via BBGKY & PDE-type approach: Klainerman-Machedon,
Kirkpatrick-Schlein-Staffilani, C-Pavlovi¢, X.Chen, X.C.-Holmer

Other approaches: Frohlich-Graffi-Schwarz, F-Knowles-Pizzo,
Anapolitanos-Sigal, Pickl



Convergence rate, approach via Fock space
Fock space F = C @ @n21(L2(Rd))®S”.

Bosonic creation-, annihilation operators a, a., satisfying CCR

0z, a5 =0z —y) , [al?,a7]1=0 |, a,Q=0Vz.

with Fock vacuum Q2 = (1,0,0,...). Second quantized Hamiltonian
* 1 *
Hy = /Va,wVaxda: + N /awayVN(aﬁ — y)ayazdxrdy

Coherent initial data,

1 o%e)
(I)¢0 — (E(_\/N¢O>®k )kzo = €A(¢O)Q
Convergence
6_itHN (I)¢0 — (I)¢t — 0 (N — OO)

¢+ solves Hartree (8 = 0) [Hepp|] or NLS (0 < 8 < 1):

0y = —Ad+ (V|6 or b = —Ad + |62



Hartree: (6 =0)

e /Rodnianski-Schlein/: Convergence rate

Tr(|y ey, — 16ON60]) < O

See also [L.Chen-Lee-Schlein].

e /Grillakis-Machedon-Margetis/, [Grillakis-Machedon)/:

_ vV1+t
He t%N(I)¢O _ GA(th)eB(t)QH}_ <C \/N

Second order terms via Bogoliubov rotation eZ().

NLS:
o [Grillakis-Machedon/: (0 < B < %)

. 1 log?(1
e HN by, — AP LWQ|| < oL +1)log™(1+1)

N(1=358)/2



Approach via BBGKY hierarchy

Steps of [Erdos-Schlein-Yau| approach:

. k k
1

k
+ N Z [V (x; — zj) — Vn(x; — )] 71(\7)(757@1@3@;{:)
1<i<j<k
k
N — k
+ N (Tl“k+1[VN(sz' — Tpt1) — VN(fE; — Thy1)] %(\I;H)) (taik@;@)

=1

Mean field limit N — oo:

o FError term: % — 0 for any fixed k.

o Main term: % — 1, for any fixed k. For 0 < 8 < 1,

Vn(x; —xj) — (/de(az)) o(xi —xj)

[ESY| Weak-* convergence 7](\’}“) — 4 along a subsequence, for fixed k.
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BBGKY — GP hierarchy

k k
. k
0% = =) (D = A) ) Biwrayke
j=1

J=1

Interaction term via “contraction operator”

(Bj;k+wg§+l)) (t,@1,. .., Tk; 27, ..., T) (0.1)
1= /d$k+1d513;<+1
[0(25 = 2p41)0(@h+1 — Thgr) — 0(25 — Do+ 1)0(Thg1 — Thyn) |
7(()]§+1)(t,a:1, ey Ty ey They Thot 1 Ty, ... ,a:;g,xﬁcﬂ) .



NLS

The GP hierarchy preserves factorization of solutions: If

k
(k) :[I

then

k
(k) H (t,x;) ;)

=1

i0p = —Dugp + pld|® ¢ = 0
Cubic NLS with ¢o € L*(R%).



Uniqueness of solutions to GP hierarchy

[ESY] Weak subsequential limit: Uniqueness of limit requires separate

proof. Via Feynman graph expansions.

Most difficult part of the program !

Solution spaces of [ESY]

Iy * g1 = Tr( | §(k1) (k) ) < ¢t

k

S(k,Oé) P H<V:UJ >Oé<vw; >a
71=1

” ['-type trace Sobolev norm”, and (z) := v/1 + 2.
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Klainerman-Machedon approach to uniqueness of GP

[Klainerman and Machedon, CMP’08] Different approach to uniqueness,

inspired by methods in dispersive nonlinear PDE’s.
Instead of L'-type, consider Hilbert-Schmidt L*-type Sobolev norm

1
Iy N e = (Te([S*D42))2, (0.2)

The method is based on Duhamel expansion, combined with:
e control of combinatorics via “board game argument”

e use of space-time norms and Strichartz estimates.
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Thm: /[K-M, CMP’08] Solutions to the cubic GP hierarchy in 3D are

unique conditional under assumption that the a priori space-time bound

1Bjsry "0 o1 g < C*, (KM condition)

te[0,T]

holds for all k € N, with C independent of k.

Subsequently:

o [Kirkpatrick-Schlein-Staffilani, AJM’11] proved the KM condition
for the derivation of the cubic GP in d = 2.

o [C-Pavlovié, JFA’11]: Proof of the KM condition for the quintic GP
in d = 1, 2, for the derivation of quintic defocusing NLS.

Key problem: Derivation of 3D cubic GP and proof of KM condition.
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The Cauchy problem for Gross-Pitaevskii hierarchies

Joint with N. Pavlovi¢: Study the Cauchy problem for GP hierarchies.

Compact notation for the GP hierarchy

I' = (7(k)(t,x1,...,xk;CL'/l,...,ZU;g))kEN7

i, = —A.T + uBT. (0.3)

with u = £1 (de)focusing.

L

k
— Ay, with Ag = > A,
j=1
AT = (Agf)W(k))keNa

BT := (Bri17" ™ Yien.
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Banach spaces of sequences of density matrices
Problem: The equations for 7(’“) don’t close & no fixed point argument.
Solution: [C-P| Endow the space of sequences I' with a suitable topology. Let

1

G =

k;:
be the space of sequences of density matrices

I' .= (v(k) )keN-
Introduce generalized Sobolev spaces H¢ based on Hilbert-Schmidt type Sobolev norms

H I HHg = ng H ’y(k) HHQ(dedek) : 0<ECT.
keN

Properties:
e Finiteness: || ||”H§‘ < C implies that || y* | o (rak xraky < ce k.

e Interpretation: £ ' upper bound on typical H®-energy per particle.
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Joint results with N. Pavlovic, N. Tzirakis, K. Taliaferro:

1.

Local in time existence and uniqueness of solutions to focusing
and defocusing GP hierarchies [C-P].

. Blow-up [C-P-Tz] for L?*-supercritical focusing GP hierarchies, via

conserved 1-particle energy functional & virial identity.

. Interaction Morawetz identities for the GP hierarchy, [C-P-T4z|.

Global well-posedness for GP via higher order conserved energy

functionals, assuming positive semi-definiteness [C-P].

. Existence of solutions for GP without KM condition, [C-P].

. Derivation of the 3D cubic GP hierarchy in [KM] spaces for

/H?F‘S initial data, [C-P].

. Global well-posedness for cubic defocusing GP [C-Ta] including

derivation of GP for H% initial data.
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Local in time existence and uniqueness

[C-P, DCDS’10] GP can be written as system of integral equations

~ t | I
L) = "2+ —z',u/ ds "' "9)2% BI'(s)
0

. t S
BL(t) = Be™* Dy — iu / ds B e'"9)2+ BT (s)
0

Prove local well-posedness via fixed point argument in the space

WE (1) = { (T, ©) € L HE x Lic /HE }, (0.4)

1T ©)llawe 1y = [Tllege,#g + 1©llL2_ 2o

tel ter’t¢

where I = [0,7] and © = BT
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Existence of solutions to GP without KM condition

[C-P, PAMS’13] Question: Is the Klainerman-Machedon condition

5 1 1
Bl € Lte[O,T]HS
necessary for both existence and uniqueness 7
e In fact, for the existence part, it is not required.

e However, the solution obtained in new approach satisfies the KM

condition as an a posteriori result.

17



Flavor of the proof: Fix K € N. We consider solutions I'** () of the

GP hierarchy,
io,I'* = AT + uBr¥,

for the truncated initial data T'*(0) = ('yél), e ,’yéK), 0,0,...), where

the m-th component of I'* () = 0 for all m > K, and establish:
Step 1 Existence of solutions to the truncated GP
Step 2 Existence of the strong limit:

© = lim BI® € Lic/HE .

K—oco

Step 3 Existence of the strong limit:

L . K ee) Y
[= lim I' e LEEHE,

that satisfies the GP hierarchy, given the initial data I'o € Hg.

Step 4 Comparing the equations satisfied by © and I', we prove that
BT = ©.
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Derivation of cubic GP hierarchy in 3D

Thm [C-P, AHP’13] Let 6 > 0 arbitrary. Let 0 < 8 <

Let ®n denote a solution of the N-body Schrodinger equation, for which

TN (0) = (752.(0), ..., 752 (0),0,0,..

has a strong limait

[o = lim I*V(0) € M.
N — 00

Denote by

TN (t) i= (g2 (1), 750 (),0,0,...,0,. ..

the solution to the associated BBGKY hierarchy.

Define the truncation operator P<k by

Pexl = (v, ..., 4% 0,0,...).

19
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Then, letting
K = K(N) = by log N,

for a sufficiently large constant bg > 0, we have
lim PcpnI™N =T
N—oco —
strongly in Lf&?—[%, and

lim B\NPSK(N)F(I)N = B\F

N — o0

strongly in Lfe[(),T]H%, for & > 0 sufficiently small.

In particular, I' solves the cubic, defocusing GP hierarchy with
['(0) =T, and (T, BT) is an element of the space We ([0, T]) with
I, ©)llawg ) = ITlzse

o ne 1102 e

telte
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Remarks:

e The result implies that the N-BBGKY hierarchy has a limit in the
space ¢ ([0, T') introduced in [CP], which is based on the space
considered by [KM]. For factorized solutions, this provides the

derivation of the cubic defocusing NLS in those spaces.

e We assume that the i.d. has a limit, [*~N (0) — Iy € 3’-[27”S as
N — oo, which does not need to be factorized. We note that in

[ESY], i.d. is assumed to be asymptotically factorized.

e In [ESY], the limit %(If;r — ~(®) of solutions to the BBGKY to
solutions to the GP holds in the weak, subsequential sense, for an
arbirary but fixed k. In our approach, we prove strong convergence
for a sequence of suitably truncated solutions to the BBGKY, in an

entirely different space.
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Key idea of the proof: Use of auxiliary truncations from our

recent proof of existence of solutions to the GP.

The proof contains four main steps:

1.

Prove existence of solution I'y to N-BBGKY hierarchy in
EZUEM([O, T]) with truncated initial data P<xI'n(0).

. Compare to solution I'® of GP with truncated initial data P< kT,

IO, BT ™) = (@ BEE ) gy oy = 0 (N = 00)

. Also compare to the truncated solution PSK(N)FCI’N of N-BBGKY,

K(N) B K (N 3] = >
IR, BT ™) = (Pexcn T, By P T antory — 0

Prove that (I'*™Y), BTy — (I, BT') in We ([0, T7]) where I solves
the cubic defocusing GP hierarchy. Already done in PAMS paper.
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Related works
[X.Chen-Holmer ’13]: Derivation of cubic GP in R® for 8 € (0, 2).

Via weak-* limit of 7](\];) , and proof that KM condition is satisfied,

uniformly in V.

Proof uses X3- and Koch-Tataru spaces.

23



GWP for cubic defocusing GP
Thm: [C-P| Define higher order energy functionals

(K™Vpy = Triss,.. 20me1y+1 (K ™2™ (1))

for £ € N, and

1 1
Ky := 5(1 — Ay, )Tres1 + ZBZEJrl

K" = KiK3 - Kom-1)41-
Let I' € 53% be symmetric, admissible solution of GP. Then,
(K™ )y = (K™)r,

are conserved Vm & N.
If v%)(t) positive semidefinite, (K™ )p, is upper bound on ||y (#)]|41

= Global well-posedness
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Thm: /C-Taliaferro] Let I'g € .6%/ be positive semidefinite, admissible,
Tr %()1) = 1. Then, for 0 < & < 1,3 & =E£(&") so that 3! global solution

[ € VIR) = {T€CRHY| BT, BT €L (RHL }
to cubic defocusing GP with initial data I'g. T'(t) is positive semidefinite,

IT®lls, < Moy, ¥

Proof idea: Given GP, truncate initial data above N-th term, I'y .

Solve N-BBGKY with initial data I'g, 5 (not a pure state !) with an
auxiliary N-body Schrodinger Hamiltonian H .

Then, 'y (t) is positive semidefinite for all N.
Prove I'y(t) — I'(¢) in Vi (R), as N — oo.

With 7—[% instead of 7—[%4“5 initial data, can use conservation of higher

energy functionals iteratively to enhance LWP to GWP.
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Thank you !!!
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