The Time-Dependent Born-Oppenheimer
 Approximation
 and Non-Adiabatic Transitions

George A. Hagedorn
Department of Mathematics, and Center for Statistical Mechanics, Mathematical Physics, and Theoretical Chemistry
Virginia Tech
Blacksburg, Virginia 24061-0123

hagedorn@math.vt.edu

University of Illinois at Chicago. 26 March 2014.

Outline

1. Semiclassical Wave Packets.
2. Multiple Scales and the Time-Dependent Born-Oppenheimer Approximation.
3. Non-Adiabatic Transitions associated with Avoided Crossings with Shrinking Gaps.
4. Non-Adiabatic Transitions associated with Avoided Crossings with Fixed Gaps.

One Dimensional Gaussian Semiclassical Wave Packets

The notation may initially seem strange, but it is crucial.

Suppose $a \in \mathbb{R}, \eta \in \mathbb{R}$, and $\hbar>0$.
Suppose A and B are complex numbers that satisfy

$$
\operatorname{Re}\{\bar{A} B\}=1
$$

We define

$$
\begin{aligned}
& \varphi_{0}(A, B, \hbar, a, \eta, x)=\pi^{-1 / 4} \hbar^{-1 / 4} A^{-1 / 2} \\
& \times \quad \exp \left\{-B(x-a)^{2} /(2 A \hbar)+i \eta(x-a) / \hbar\right\}
\end{aligned}
$$

Remarks

- Any complex Gaussian with $\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1$ can be written this way.
- Define the scaled Fourier transform by

$$
\left(\mathcal{F}_{\hbar} f\right)(\xi)=(2 \pi \hbar)^{-1 / 2} \int_{-\infty}^{\infty} f(x) e^{-i \xi x / \hbar} d x
$$

This allows us to go from the position representation to the momentum representation.
(The variable ξ is the momentum variable here.)
Then, by explicit computation,

$$
\left(\mathcal{F}_{\hbar} \varphi_{0}(A, B, \hbar, a, \eta, \cdot)\right)(\xi)=e^{-i a \eta / \hbar} \varphi_{0}(B, A, \hbar, \eta,-a, \xi) .
$$

The position density $\left|\varphi_{0}(x)\right|^{2}$, and momentum density $\left|\hat{\varphi}_{0}(\xi)\right|^{2}$.

The real part of a typical $\varphi_{0}(x)$.

Contour Plot of the real part of a two-dimensional $\varphi_{0}(x, y)$.

Theorem 1 Suppose $V \in C^{3}(\mathbb{R})$ satisfies $-M_{1} \leq V(x) \leq M_{2} e^{M_{3}|x|^{2}}$. Suppose $a(t), \eta(t), S(t), A(t)$, and $B(t)$ satisfy

$$
\begin{aligned}
\dot{a}(t) & =\eta(t) \\
\dot{\eta}(t) & =-V^{\prime}(a(t)) \\
\dot{S}(t) & =\eta(t)^{2} / 2-V(a(t)) \\
\dot{A}(t) & =i B(t) \\
\dot{B}(t) & =i V^{\prime \prime}(a(t)) A(t)
\end{aligned}
$$

Let $\psi(x, t, \hbar)$ solve $i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2} \Delta \psi+V \psi$
with $\Psi(x, 0, \hbar)=e^{i S(0) / \hbar} \varphi_{0}(A(0), B(0), \hbar, a(0), \eta(0), x)$.
Then for $t \in[0, T]$, the approximate solution

$$
\psi(x, t, \hbar)=e^{i S(t) / \hbar} \varphi_{0}(A(t), B(t), \hbar, a(t), \eta(t), x)
$$

satisfies

$$
\|\psi(x, t, \hbar)-\Psi(x, t, \hbar)\|_{L^{2}(\mathbb{R})} \leq C \hbar^{1 / 2}
$$

More General One Dimensional Semiclassical Wave Packets

In analogy with the Harmonic Oscillator, we define raising and lowering operators:

$$
\left(\mathcal{A}(A, B, \hbar, a, \eta)^{*} \psi\right)(x)=\frac{1}{\sqrt{2 \hbar}}\left(\left[\bar{B}(x-a)-i \bar{A}\left(-i \hbar \frac{\partial}{\partial x}-\eta\right)\right] \psi\right)(x)
$$

and

$$
(\mathcal{A}(A, B, \hbar, a, \eta) \psi)(x)=\frac{1}{\sqrt{2 \hbar}}\left(\left[B(x-a)+i A\left(-i \hbar \frac{\partial}{\partial x}-\eta\right)\right] \psi\right)(x) .
$$

Then,

$$
\mathcal{A}(A, B, \hbar, a, \eta) \mathcal{A}(A, B, \hbar, a, \eta)^{*}-\mathcal{A}(A, B, \hbar, a, \eta)^{*} \mathcal{A}(A, B, \hbar, a, \eta)=1
$$

For any non-negative integer j, we define

$$
\varphi_{j}(A, B, \hbar, a, \eta, x)=\frac{1}{\sqrt{j!}}\left(\mathcal{A}(A, B, \hbar, a, \eta)^{*}\right)^{j} \varphi_{0}(A, B, \hbar, a, \eta, x)
$$

For fixed A, B, \hbar, a, and η,
$\left\{\varphi_{j}(A, B, \hbar, a, \eta, \cdot)\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R}, d x)$.

$$
\left(\mathcal{F}_{\hbar} \varphi_{j}(A, B, \hbar, a, \eta, \cdot)\right)(\xi)=(-i)^{|j|} e^{-i a \eta / \hbar} \varphi_{j}(B, A, \hbar, \eta,-a, \xi) .
$$

The position probability densities $\left|\varphi_{0}(x)\right|^{2}$ and $\left|\varphi_{12}(x)\right|^{2}$.

Theorem $1^{\prime} \quad$ Suppose $V \in C^{3}(\mathbb{R})$ satisfies $-M_{1} \leq V(x) \leq M_{2} e^{M_{3}|x|^{2}}$. Suppose $a(t), \eta(t), S(t), A(t)$, and $B(t)$ satisfy

$$
\begin{aligned}
\dot{a}(t) & =\eta(t) \\
\dot{\eta}(t) & =-V^{\prime}(a(t)) \\
\dot{S}(t) & =\eta(t)^{2} / 2-V(a(t)) \\
\dot{A}(t) & =i B(t) \\
\dot{B}(t) & =i V^{\prime \prime}(a(t)) A(t)
\end{aligned}
$$

Let $\psi(x, t, \hbar)$ solve $i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2} \Delta \psi+V \psi$
with $\Psi(x, 0, \hbar)=e^{i S(0) / \hbar} \varphi_{j}(A(0), B(0), \hbar, a(0), \eta(0), x)$.
Then for $t \in[0, T]$, the approximate solution

$$
\psi(x, t, \hbar)=e^{i S(t) / \hbar} \varphi_{j}(A(t), B(t), \hbar, a(t), \eta(t), x)
$$

satisfies

$$
\|\psi(x, t, \hbar)-\psi(x, t, \hbar)\|_{L^{2}(\mathbb{R})} \leq C_{j} \hbar^{1 / 2}
$$

The Time-Dependent Born-Oppenheimer Approximation

$$
i \epsilon^{2} \frac{\partial \psi}{\partial t}=-\frac{\epsilon^{4}}{2} \Delta_{X} \psi+h(X) \psi
$$

where the electron Hamiltonian $h(X)$ depends parametrically on the nuclear configuration X, but is an operator on the electron Hilbert space $\mathcal{H}_{e l}$.

We cannot solve this exactly, so we search for approximate solutions for small ϵ.

The physical value of ϵ is typically on the order of $\frac{1}{10}$.

We assume $h(X)$ has an isolated non-degenerate eigenvalue $E(X)$ that depends smoothly on X.
$E(\cdot)$ determines a "Potential Energy Surface."

We take $\Phi(X)$ to be the corresponding normalized eigenvector.

We choose the phase of $\Phi(X)$ according to the adiabatic connection.

For real operators $h(X)$, we can choose $\Phi(X)$ to be real, but there are situations where we can only do this locally.

The spectrum of $h(X)$.

The Multiple Scales Technique

The electronic eigenvector dependends on $x=X$.

Nuclear quantum fluctuations occur on a length scale of order ϵ in X.
For small $\epsilon, \quad x=X$ and $y=\frac{X-a(t)}{\epsilon}$ behave as independent variables.
To find approximate solutions $\Psi(X)$ to the Schrödinger equation, we search for approximate solutions $\psi(x, y)$, where

$$
\begin{aligned}
i \epsilon^{2} \frac{\partial \psi}{\partial t}= & -\frac{\epsilon^{2}}{2} \Delta_{y} \psi-\epsilon^{3} \nabla_{x} \cdot \nabla_{y} \psi-\frac{\epsilon^{4}}{2} \Delta_{x} \psi \\
& +[h(x)-E(x)] \psi+E(a(t)+\epsilon y) \psi
\end{aligned}
$$

We ultimately take $\Psi(X, t)=\psi\left(X, \frac{X-a(t)}{\epsilon}, t\right)$.

We anticipate the semiclassical motion of the nuclei will play a role, so we make the Ansatz that $\psi(x, y, t)$ equals
$e^{i S(t) / \epsilon^{2}} e^{i \eta(t) \cdot y / \epsilon}\left(\psi_{0}(x, y, t)+\epsilon \psi_{1}(x, y, t)+\epsilon^{2} \psi_{2}(x, y, t)+\cdots\right)$.
We substitute this into the multiple scales equation.
We also expand $E(a(t)+\epsilon y)$ in its power series in ϵ in the equation.

We then equate terms of the same orders on the two sides of the resulting equation.

Order $\epsilon^{0} \quad[h(x)-E(x)] \psi_{0}=0$.

Thus,

$$
\psi_{0}(x, y, t)=g_{0}(x, y, t) \Phi_{0}(x)
$$

At this point we have no information about g_{0}.

Order $\epsilon^{1} \quad[h(x)-E(x)] \psi_{1}=0$.

Thus,

$$
\psi_{1}(x, y, t)=g_{1}(x, y, t) \Phi_{0}(x)
$$

At this point we have no information about g_{1}.

Order ϵ^{2}

$$
i \frac{\partial \psi_{0}}{\partial t}=-\frac{1}{2} \Delta_{y} \psi_{0}+\frac{y \cdot E^{(2)}(a(t)) y}{2} \psi_{0}-i \eta(t) \nabla_{x} \psi_{0}+[h(x)-E(x)] \psi_{2}
$$

We separately examine the components of this equation that are in the direction of $\Phi(x)$ and those that are perpendicular to $\Phi(x)$ in $\mathcal{H}_{e l}$. This yields two equations that must be solved.

In the $\Phi(x)$ direction we require

$$
i \frac{\partial g_{0}}{\partial t}=-\frac{1}{2} \Delta_{y} g_{0}+\frac{y \cdot E^{(2)}(a(t)) y}{2} g_{0}
$$

This is solved exactly by the semiclassical wave packets.

$$
g_{0}(x, y, t)=\epsilon^{-n / 2} \varphi_{j}(A(t), B(t), 1,0,0, y)
$$

The perpendicular components require

$$
[h(x)-E(x)] \phi_{2}(x, y, t)=i g_{0}(x, y, t) \eta(t) \cdot\left(\nabla_{x} \Phi\right)(x)
$$

Thus,

$$
\psi_{2}(x, y, t)=i g_{0}(x, y, t)[h(x)-E(x)]_{r}^{-1} \eta(t) \cdot\left(\nabla_{x} \Phi\right)(x)+g_{2}(x, y, t) \Phi(x)
$$

At order ϵ^{k}, we simply mimic this process.

The equation that arises from multiples of $\Phi(x)$ is solved by using wavepackets techniques.

The equation for the perpendicular components is solved by applying the reduced resolvent of $h(x)$.

This way we obtain a formal approximate solution.
We then prove rigorous error estimates by using the "magic lemma."

Theorem 2 There exists an exact solution $\chi_{\epsilon}(X, t)$ to the Schrödinger equation that satisfies

$$
\begin{array}{r}
\| \chi_{\epsilon}(X, t)-\left\{\sum_{k=0}^{K} \epsilon^{k} \psi_{k}\left(X, \frac{X-a(t)}{\epsilon}, t\right)+\epsilon^{K+1} \psi_{K+1}^{\perp}\left(X, \frac{X-a(t)}{\epsilon}, t\right)\right. \\
\left.+\epsilon^{K+2} \psi_{K+2}^{\perp}\left(X, \frac{X-a(t)}{\epsilon}, t\right)\right\} \| \leq C_{K} \epsilon^{K+1} .
\end{array}
$$

Theorem 3 By optimal truncation of the asymptotic series, one can construct an approximate solution

$$
\tilde{\psi}_{\epsilon}(X, t)=\sum_{k=0}^{K(\epsilon)} \epsilon^{k} \psi_{k}\left(X, \frac{X-a(t)}{\epsilon}, t\right) .
$$

There exists an exact solution $\chi_{\epsilon}(X, t)$ to the Schrödinger equation that satisfies

$$
\left\|\chi_{\epsilon}(X, t)-\widetilde{\psi}_{\epsilon}(X, t)\right\| \leq C \exp \left(-\frac{\Gamma}{\epsilon^{2}}\right)
$$

Non-Adiabatic Transitions from Avoided Crossings

In the mid-1990's, Alain Joye and I studied propagation through generic avoided crossings with gaps proportional to ϵ.

There are numerous types of avoided crossings. Some examples have

$$
\begin{gathered}
h(X)=\left(\begin{array}{cc}
\tanh (X) & c \epsilon \\
c \epsilon & -\tanh (X)
\end{array}\right) \quad \text { with } X \in \mathbb{R}, \\
E(X)= \pm \sqrt{\tanh (X)^{2}+c^{2} \epsilon^{2}} .
\end{gathered}
$$

or

$$
\begin{gathered}
h\left(X_{1}, X_{2}\right)=\left(\begin{array}{cc}
\tanh \left(X_{1}\right) & \tanh \left(X_{2}\right)+i c \epsilon \\
\tanh \left(X_{2}\right)-i c \epsilon & -\tanh \left(X_{1}\right)
\end{array}\right) \text { with } X_{j} \in \mathbb{R} . \\
E\left(X_{1}, X_{2}\right)= \pm \sqrt{\tanh \left(X_{1}\right)^{2}+\tanh \left(X_{2}\right)^{2}+c^{2} \epsilon^{2}} .
\end{gathered}
$$

An Avoided Crossing with a Small Gap.

In this situation we proved the following:

1. For all of the various types of generic avoided crossings, a correctly interpreted Landau-Zener formula gives the correct transition amplitudes.
2. Classical energy conservation gives the momentum after the wave function has gone through the avoided crossings.
3. If one sends in a $\varphi_{k}\left(A_{\mathcal{A}}(t), B_{\mathcal{A}}(t), \epsilon^{2}, a_{\mathcal{A}}(t), \eta_{\mathcal{A}}(t), X\right) \Phi_{\mathcal{A}}(X)$, then the part of the wave function that makes a non-adiabatic transition is $\varphi_{k}\left(A_{\mathcal{B}}(t), B_{\mathcal{B}}(t), \epsilon^{2}, a_{\mathcal{B}}(t), \eta_{\mathcal{B}}(t), X\right) \Phi_{\mathcal{B}}(X)$, to leading order after the transition has occurred.
4. Because the gaps are so small, the transition probability is $O\left(\epsilon^{0}\right)$.

The only known rigorous results for fixed gaps have just one degree of freedom for the nuclei.

An Avoided Crossing with a Fixed Gap.

I shall present these results (obtained with Alain Joye)
for the following specific example

$$
h(x)=\frac{1}{2}\left(\begin{array}{cc}
1 & \tanh (x) \\
\tanh (x) & -1
\end{array}\right)
$$

Scattering with large negative t asymptotics

$$
e^{i S(t) / \epsilon^{2}} \phi_{k}\left(A(t), B, \epsilon^{2}, a(t), \eta, x\right) \Phi_{\mathrm{up}}(x)
$$

What should we expect?

- The nuclei behave like classical particles (at least for small k).
- The electrons should feel a time-dependent Hamiltonian

$$
\widetilde{h}(t)=\frac{1}{2}\left(\begin{array}{cc}
1 & \tanh (a(t)) \\
\tanh (a(t)) & -1
\end{array}\right)
$$

and we should simply use the Landau-Zener formula to get the exponentially small transition probability.

- For $\eta=1$, energy conservation predicts the momentum after the transition to be 1.9566 .

These predictions are wrong!

- The transition amplitude is larger than predicted.
- The momentum after the transition is larger than predicted.

Additional Surprises

- For incoming state ϕ_{k}, the nuclear wave function after the transition is not what one might naïvely expect.
- The nuclear wavepacket after transition is a ϕ_{0}.
- The transition amplitude is asymptotically of order

$$
\epsilon^{-k} \exp \left(-\alpha / \epsilon^{2}\right)
$$

Position space plot at time $t=-10$ of the probability density for being on the upper energy level.

Momentum space plot at time $t=-10$ of the probability density for being on the upper energy level.

Position space probability density at time $t=9$.
Lower level plot is multiplied by 3×10^{8}.

Momentum space probability density at time $t=9$.
Lower level plot is multiplied by 3×10^{8}.

Position space probability density at time $t=-10$.

Momentum space probability density at time $t=-10$.

Position space probability density at time $t=9$. Plot for the lower level has been multiplied by 10^{7}.

Momentum space probability density at time $t=9$. Plot for the lower level has been multiplied by 10^{7}.

What's going on, and how do we analyze it?

- We expand $\Psi(x, t)$ in generalized eigenfunctions of $H(\epsilon)$.
- We then do a WKB approximation of the generalized eigenfunctions that is valid for complex x.
- We find that the Landau-Zener formula gives the correct transition amplitude for each generalized eigenfunction. This amplitude behaves roughly like $\exp \left(-\frac{C}{|p| \epsilon^{2}}\right)$, where p is the incoming momentum.
- So, higher momentum components of the wave function are drastically more likely to experience a transition. We get the correct result by using Landau-Zener for each p and then averaging.

Why do we always get a Gaussian?

- In the formulas, the extra shift in momentum occurs in the exponent.
- In momentum space ϕ_{k} all have the same exponential factor. The extra shift does not appear in the polynomial that multiplies the exponential.
- For small ϵ, to leading order, the polynomial factor looks like its largest order term near where the Gaussian is concentrated in momentum.
- $\left(\frac{p}{\epsilon}\right)^{k} \exp \left(-\frac{(p-\eta)^{2}}{\epsilon^{2}}\right)$ is approximately ϵ^{-k} times a Gaussian for $\eta \neq 0$.

Thank you very much!

