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Introduction

Motivations

The computation of fluid-kinetic interfaces and asymptotic behaviors involves
multiple scales where most numerical methods lose their efficiency because
they are forced to operate on a very short time scale.

Asymptotic-preserving (AP) schemes represent a powerful tool for the
numerical treatment of such problems. A suitable combination of implicit and
explicit treatment of the stiff terms permits to achieve the desired asymptotic
properties at the cost of an explicit scheme.

Similar techniques can be adopted when dealing with kinetic equation of
Boltzmann-type. Here, however, the major challenge is represented by the
complicated nonlinear structure of the collisional operator which makes
prohibitively expensive the use of implicit solvers for the stiff collision term.

Additional difficulties are given by the need to preserve some relevant
physical properties like conservation of mass, momentum and energy,
nonnegativity of the solution, entropy inequality, steady states, . . ..
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Introduction

Bose-Einstein condensation: experimental evidence

2001 Nobel Prize in Physics (A.Cornell, W.Ketterle,C.Wiemann)

Momentum density of BEC in rubidium (Science 1995, Anderson, Ensher, Matthews,
Wiemann, Cornell).

A large fraction of Bosons occupies the lowest energy quantum state. Predicted by

S.Bose, A.Einstein ’24.
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Quantum kinetic theory The quantum Boltzmann equation (QBE)

The quantum Boltzmann equation (QBE)1

Gas of interacting particles, which are trapped by a confining potential V = V (x)
(with minV (x) = 0). Let F = F (p, x, t) ≥ 0 be the phase-space density of
particles with momentum p and position x.

The quantum Boltzmann equation (QBE)

∂F

∂t
+ p · ∇xF −∇xV (x) · ∇pF =

1

τ
Q(F, F ), t > 0,

where τ > 0 is the Knudsen number.

Q(F, F )(p, x, t) =

∫
R9

δ(p+ p∗ − p′ − p′∗) δ
(
|p|2

2
+
|p∗|2

2
− |p

′|2

2
− |p

′
∗|2

2

)
w(p, p∗, p

′, p′∗)C(F ) dp∗ dp
′ dp′∗,

with C(F ) = F ′F ′∗(1 + ϑF )(1 + ϑF∗)− FF∗(1 + ϑF ′)(1 + ϑF ′∗) and
F = F (p, x, t), F∗ = F (p∗, x, t), F ′ = F (p′, x, t), F ′∗ = F (p′∗, x, t).

1E.A.Uehling,G.E.Uhlembeck ’33
Lorenzo Pareschi (University of Ferrara) AP-schemes for quantum kinetic equations CSCAMM, may 13-16 2013 6 / 47



Quantum kinetic theory The quantum Boltzmann equation (QBE)

The quantum Boltzmann equation (QBE)1

Gas of interacting particles, which are trapped by a confining potential V = V (x)
(with minV (x) = 0). Let F = F (p, x, t) ≥ 0 be the phase-space density of
particles with momentum p and position x.

The quantum Boltzmann equation (QBE)

∂F

∂t
+ p · ∇xF −∇xV (x) · ∇pF =

1

τ
Q(F, F ), t > 0,

where τ > 0 is the Knudsen number.

Q(F, F )(p, x, t) =

∫
R9

δ(p+ p∗ − p′ − p′∗) δ
(
|p|2

2
+
|p∗|2

2
− |p

′|2

2
− |p

′
∗|2

2

)
w(p, p∗, p

′, p′∗)C(F ) dp∗ dp
′ dp′∗,

with C(F ) = F ′F ′∗(1 + ϑF )(1 + ϑF∗)− FF∗(1 + ϑF ′)(1 + ϑF ′∗) and
F = F (p, x, t), F∗ = F (p∗, x, t), F ′ = F (p′, x, t), F ′∗ = F (p′∗, x, t).

1E.A.Uehling,G.E.Uhlembeck ’33
Lorenzo Pareschi (University of Ferrara) AP-schemes for quantum kinetic equations CSCAMM, may 13-16 2013 6 / 47



Quantum kinetic theory The quantum Boltzmann equation (QBE)

The quantum collision operator

The function w ≥ 0 is related to the differential cross section.
The QBE includes (namely for ϑ = 0) the classical equation of the
Maxwell-Boltzmann statistics as a special case. It differs from the latter in the
case of Bose-Einstein statistics (ϑ = +1) and in the case of Fermi-Dirac statistics
(ϑ = −1).
The collision operator can be written in the conventional form as

Q(F, F )(p, x, t) = 2

∫
R3×S2

|p− p∗|w̃(p, p∗, |p− p∗|n, p+ p∗)C(F ) dp∗ dσ,

where

w̃(p, p∗, |p− p∗|σ, p+ p∗) = w(p, p∗, p
′, p′∗), σ = (p− p∗)/|p− p∗|

p′ =
1

2
(p+ p∗ + |p− p∗|σ), p′∗ =

1

2
(p+ p∗ − |p− p∗|σ).

Thus setting w̃ ≡ 1 corresponds to the hard sphere case.
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Quantum kinetic theory The quantum Boltzmann equation (QBE)

Physical properties

Let φ = φ(p) be a test function. From the symmetries of w we have∫
R3

Q(F, F )φdp =
1

4

∫
R12

δ(p+ p∗ − p′ − p′∗) δ
(
|p|2

2
+
|p∗|2

2
− |p

′|2

2
− |p

′
∗|2

2

)
w(p, p∗, p

′, p′∗)C(F )(φ+ φ∗ − φ′ − φ′∗) dp dp∗ dp′ dp′∗,

Taking φ = 1, φ = p and φ = |p|2 we obtain the particle number, momentum
and energy conservations

∫
R3

Q(F, F )

 1
p
|p|2

 dp = 0.

Taking φ = ln(1 + ϑF )− ln(F ) we have the entropy inequality∫
R3

Q(F, F )(ln(1 + ϑF )− ln(F )) dp ≥ 0.
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Quantum kinetic theory Equilibrium states

Equilibrium states

In the homogeneous case, V (x) = 0 and F independent of x conservations and
increasing of entropy imply that an equilibrium state, i.e. a function F∞ ≥ 0 such
that Q(F∞, F∞) = 0, realizes the maximum of the entropy under the moments
constraint ∫

R3

F∞(p)

 1
p
|p|2

 dp =

 M∞
P∞
E∞

 .

The equilibrium states have the form

F∞(p) =
1

exp(a|p|2/2− b · p− c)− ϑ
,

with a, c ∈ R and b ∈ R3. The function is called a Maxwellian when ϑ = 0, a
Bose-Einstein when ϑ > 0 and a Fermi-Dirac when ϑ < 0.
Note that, except for ϑ = 0, given M∞ > 0, P∞ ∈ R3 and E∞ > 0 it is not
always possible to compute a, b and c such that F∞ ≥ 0.
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Quantum kinetic theory Equilibrium states

Equilibrium states II

In the case ϑ > 0 it was first observed by Bose and Einstein2 that the set of
steady distributions has to include a Dirac mass. For any M∞ > 0, P∞ ∈ R3

and E∞ > 0 there exist a generalized Bose-Einstein distribution of the form3

F∞(p) =
1

exp(α|p− P |2 + β+)− ϑ
− β−δ(p),

with α, β ∈ R, β+ = max(β, 0) and β− = −max(−β, 0).

In the case ϑ < 0 we have the additional constraint 0 ≤ F∞(p) ≤ ϑ and we
have to introduce the saturated Fermi-Dirac state. Taking ϑ = −1, for any
M∞ > 0, P∞ ∈ R3 and E∞ > 0 satisfying 5E∞ ≥ (4π)2/3(3M∞)5/3 there
exist a Fermi-Dirac distribution (saturated or not) defined as3

F∞(p) =


1

exp(α|p− P |2 + β) + 1
, 5E∞ > (4π)2/3(3M∞)5/3,

χ(|p− P | ≤ C), 5E∞ = (4π)2/3(3M∞)5/3,

with α, β ∈ R, χ(I) the indicator function of the set I and C > 0.
2S.N.Bose ’24, A.Einstein ’25
3X.Lu ’00, M.Escobedo, S.Mischler, M.A.Valle ’03
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Quantum kinetic theory Equilibrium states

Numerical requirements

Our purpose is to derive efficient time integration methods for the QBE, which
maintain the basic analytical and physical features of the continuous problem,
namely

Asymptotic-preservation as τ → 0

Conservations

Entropy growth

Equilibrium distributions (even in the challenging concentration/saturation
cases)

In addition, from a numerical point of view it is also essential to deal with

Accuracy

Computational cost (high number of dimensions, stiff terms)
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Quantum kinetic theory Ergodic approximation

Ergodic approximation

The ergodic approximation assumes a particle distribution which only depends on

the total energy H(x, p) =
|p|2

2
+ V (x), thus F (x, p, t) = f(H(x, p), t), where

f( · , t) ≥ 0 is the particle density in energy space.
Mathematically we approximate the whole QBE using the projection operator4

P(g(x, p, t))(ε) =

∫
R6

g(x, p, t)δ (ε−H(x, p)) dp dx, ∀ g.

Ergodic QBE

ρ(ε)
∂f(ε)

∂t
=

1

τ

∫
R3
+

S(ε, ε∗, ε
′, ε′∗)[f

′
∗(1+ϑf)(1+ϑf∗)−ff∗(1+ϑf ′)(1+ϑf ′∗)]dε∗ dε

′ dε′∗

ρ(ε) =

∫
R6

δ (ε−H(x, p)) dp dx = 4π

∫
V (x)<ε

√
2(ε− V (x)) dx.

4C.W.Gardiner, P.Zoller, D.Jaksch 1996-2002; D.V.Semikov, I.I.Tkachev 1995,1997;
Luiten, Reynolds, Walraven 1996
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Quantum kinetic theory Ergodic approximation

Ergodic approximation II

Taking w ≡ 1 and setting εmin = min{ε, ε∗, ε′, ε′∗} we have

S(ε, ε∗, ε
′, ε′∗) = 4π2δ (ε+ ε∗ − ε′ − ε′∗) ρ(εmin).

In a space homogeneous setting, V (x) ≡ 0 and F independent of x we have

ρ(ε) =

∫
R3

δ

(
ε− |p|

2

2

)
dp = 4π

√
2ε.

Similarly for a harmonic potential V (x) = |x|2/2 we obtain ρ(ε) = ε2/2.
Density and energy (momentum vanishes) can be recovered

n(x, t) = 4π

∫ ∞
V (x)

f(ε, t)
√

2(ε− V (x))dε,

e(x, t) = 4π

∫ ∞
V (x)

f(ε, t)(2(ε− V (x)))3/2dε.

Moreover the total mass and energy are given by

M(t) =

∫
R+

f(ε, t)ρ(ε) dε, E(t) =

∫
R+

f(ε, t)ρ(ε)ε dε.
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Quantum kinetic theory Ergodic approximation

Ergodic approximation II

Taking w ≡ 1 and setting εmin = min{ε, ε∗, ε′, ε′∗} we have

S(ε, ε∗, ε
′, ε′∗) = 4π2δ (ε+ ε∗ − ε′ − ε′∗) ρ(εmin).

In a space homogeneous setting, V (x) ≡ 0 and F independent of x we have

ρ(ε) =

∫
R3

δ

(
ε− |p|

2

2

)
dp = 4π

√
2ε.

Similarly for a harmonic potential V (x) = |x|2/2 we obtain ρ(ε) = ε2/2.
Density and energy (momentum vanishes) can be recovered

n(x, t) = 4π

∫ ∞
V (x)

f(ε, t)
√
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Quantum kinetic theory Ergodic approximation

Physical properties

Let φ = φ(ε) be a test function. Then using the symmetries of S we have∫ ∞
0

Q(f)φdε =
1

4

∫
R4

+

δ(ε+ ε∗ − ε′ − ε′∗)S(ε, ε∗, ε
′, ε′∗)[f

′f ′∗(1 + ϑf)(1 + ϑf∗)

− ff∗(1 + ϑf ′)(1 + ϑf ′∗)][φ+ φ∗ − φ′ − φ′∗]dεdε∗dε′dε′∗.

As a consequence we have the following collision invariants

φ(ε) ≡ 1 ⇒
∫ ∞

0

Q(f)(ε) dε = 0,

φ(ε) ≡ ε ⇒
∫ ∞

0

Q(f)(ε)ε dε = 0.

Similarly the H-theorem is derived taking φ(ε) = ln(1 + ϑf(ε))− ln f(ε)

d

dt

∫ ∞
0

ρ(ε)(ϑ−1(1 + ϑf) ln(1 + ϑf)− f ln f)dε ≥ 0.
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Quantum kinetic theory Ergodic approximation

Equilibrium states I

Again in the case of bosons, ϑ > 0, the class of ’regular’ Bose-Einstein
distributions is not sufficient to assume all possible values of equilibrium mass and
energy M∞, E∞ such that Dirac distribution have to be added. More precisely,
for every pair (M∞, E∞) ∈ R2

+ there exist α ≥ 0, β ∈ R such that the generalized
Bose-Einstein distribution

f∞(ε) =
1

eαε+β+ − ϑ
− β−δ(ε),

is an equilibrium state of the QBE.
A similar analysis in the case of fermions lead to the saturated Fermi-Dirac
distributions. More precisely, taking ϑ = −1, for any pair (M∞, E∞) ∈ R2

+

satisfying 5E∞ ≥ (4π)2/3(3M∞)5/3 there exist a Fermi-Dirac distribution
(saturated or not) defined as

f∞(ε) =


1

eαε+β + 1
, 5E∞ > (4π)2/3(3M∞)5/3,

χ(ε ≤ C2/2), 5E∞ = (4π)2/3(3M∞)5/3,

with α, β ∈ R, χ(·) the indicator function and C > 0.
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Numerical methods The Implicit-Explicit (IMEX) paradigm

Outline
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2 Quantum kinetic theory
The quantum Boltzmann equation (QBE)
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Numerical methods The Implicit-Explicit (IMEX) paradigm

Numerical methods

Many practical application involves systems of differential equations of the form

The IMEX paradigm

U ′ = F(U)︸ ︷︷ ︸
non stiff term

+ G(U)︸ ︷︷ ︸
stiff term

,

where F and G, eventually obtained as suitable finite-difference or finite-element
approximations of spatial derivatives (method of lines), induce considerably
different time scales.

Although the problem is stiff as a whole, the use of fully implicit solvers
originates a nonlinear system of equations involving also the non stiff term F .

Thus it is highly desirable to have a combination of implicit and explicit
discretization terms to resolve stiff and non–stiff dynamics accordingly.

IMEX Runge-Kutta methods5 have been developed to deal with the
numerical integration of hyperbolic balance laws, kinetic equations,
convection–diffusion equations and singular perturbed problems.

5U.Asher, S.Ruth, R.Spiteri ’97, G.Russo, L.Pareschi ’00
Lorenzo Pareschi (University of Ferrara) AP-schemes for quantum kinetic equations CSCAMM, may 13-16 2013 19 / 47
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Numerical methods The Implicit-Explicit (IMEX) paradigm

IMEX Runge-Kutta methods

IMEX Runge-Kutta

Ui = Un + ∆t

i−1∑
j=1

ãijF(t0 + c̃j∆t, Uj) + ∆t

ν∑
j=1

aijG(t0 + cj∆t, Uj),

Un+1 = Un + ∆t

ν∑
i=1

w̃iF(t0 + c̃i∆t, Ui) + ∆t

ν∑
i=1

wiG(t0 + ci∆t, Ui).

Explicit scheme characterized by the ν × ν matrix Ã = (ãij), ãij = 0, j ≥ i and

the coefficient vectors are c̃ = (c̃1, . . . , c̃ν)T , c̃i =
∑i−1
j=1 ãij , w̃ = (w̃1, . . . , w̃ν)T .

Implicit scheme characterized by the ν × ν matrix A = (aij), and the coefficient
vectors are c = (c1, . . . , cν)T , ci =

∑ν
j=1 aij , w = (w1, . . . , wν)T .

I We restrict to diagonally implicit (DIRK) schemes, aij = 0, j > i since they
guarantee that F is evaluated explicitly.
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Numerical methods The Implicit-Explicit (IMEX) paradigm

Order conditions

If wi = w̃i and ci = c̃i mixed conditions are automatically satisfied. This is
not true for higher that third order accuracy

IMEX-RK schemes are a particular case of additive Runge-Kutta (ARK)
methods. Higher order conditions can be derived using a generalization of
Butcher 1-trees to 2-trees6.

In addition to the order conditions, other requirements (strong stability
preserving, AP, positivity, etc) may impose further conditions on the
coefficients.

The schemes can be schematically summarized using a double Butcher tableu
of the type

c̃ Ã

w̃T

c A

wT

6E. Hairer, G. Wanner ’87
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Numerical methods The Implicit-Explicit (IMEX) paradigm

Remarks

Following the above design principles it is possible to construct schemes up to
third-order that satisfy the AP-property for any set of initial data and up to
fourth-order for well-prepared initial data.

Such schemes have been successfully applied to singularly perturbed problems
and hyperbolic relaxation system in the zero-relaxation limit.

The same schemes can be applied also to other limiting asymptotic behavior,
like the case of diffusion limits, provided that the system is partitioned
correctly in to stiff and non stiff components 7.

For kinetic equations additional difficulties are present, due to the
nonnegativity requirement and the complicated structure of the collision term
whose inversion is prohibitively expensive.

Other related approaches are based on IMEX multistep methods 8 and
exponential methods 9.

7S.Boscarino, L.Pareschi, G.Russo ’11
8U.Asher, S.Ruuth, B.Wetton ’95
9G.Dimarco, L.Pareschi ’11, Q.Li, L.Pareschi ’12
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Numerical methods IMEX-RK for the Boltzmann equation
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Numerical methods IMEX-RK for the Boltzmann equation

Design principles for the Boltzmann case

The goal is to construct AP and asymptotically accurate schemes avoiding
the implicit solution of the collision term of the Boltzmann equation.

The main idea is to use the fact that when τ is small we do not really need
to resolve the whole collision operator since we know that f ≈ f∞.

On the other hand when f ≈ f∞ we know that the collision operator is well
approximated by its linear counterpart Q(f∞, f) or directly by a BGK or an
improved ES-BGK relaxation operator.

If we denote by L(f) the selected linear approximating operator we can write
10

Q(f, f) = L(f) +G(f), G(f) = Q(f, f)− L(f).

I The idea now is to be implicit (or exact) in the linear part L(f) and
explicit in the deviations from equilibrium G(f).

10F.Filbet, S.Jin ’11, F.Filbet, J. Hu, S.Jin ’12
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The main idea is to use the fact that when τ is small we do not really need
to resolve the whole collision operator since we know that f ≈ f∞.

On the other hand when f ≈ f∞ we know that the collision operator is well
approximated by its linear counterpart Q(f∞, f) or directly by a BGK or an
improved ES-BGK relaxation operator.

If we denote by L(f) the selected linear approximating operator we can write
10

Q(f, f) = L(f) +G(f), G(f) = Q(f, f)− L(f).

I The idea now is to be implicit (or exact) in the linear part L(f) and
explicit in the deviations from equilibrium G(f).

10F.Filbet, S.Jin ’11, F.Filbet, J. Hu, S.Jin ’12
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Numerical methods IMEX-RK for the Boltzmann equation

IMEX-RK for the Boltzmann equation

In the sequel we assume L(f) = µ(f∞ − f), µ > 0. The IMEX-RK scheme take the
form11

IMEX-RK for Bolztmann

F (i) = fn + ∆t

i−1∑
j=1

ãij
1

τ
G(F (j)) + ∆t

ν∑
j=1

aij
µ

τ
(F (j)
∞ − F (j))

fn+1 = fn + ∆t
ν∑
i=1

ω̃i
1

τ
G(F (i)) + ∆t

ν∑
j=1

ωi
µ

τ
(F (i)
∞ − F (i)).

Clearly the scheme being implicit only in the linear part, which can be easily
inverted and computed, can be implemented explicitly.

The hope is that applying the same design principles we used for standard IMEX
schemes we get an AP-scheme for the full Boltzmann model.
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Numerical methods IMEX-RK for the Boltzmann equation

AP-property

Consider now the stage i in the original IMEX scheme and solve it for (F
(i)
∞ −F (i))

∆t(F (i)
∞ − F (i)) =

τ

µ

i∑
j=1

bij

[
F (j) − fn − ∆t

τ

j−1∑
h=1

ãjhG(F (h))

]
.

As τ → 0, if det(A) 6= 0, we get

F (i) = F (i)
∞ , i = 1, . . . , ν.

In fact, Ã is lower triangular with ãii = 0 and we have a hierarchy of equations

such that F (h) = F
(h)
∞ , h = 1, .., j − 1.
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Numerical methods IMEX-RK for the Boltzmann equation

Stiffly accurate schemes

However, now the last level still depends on τ . After some manipulations it reads

fn+1 = fn

1−
∑
i,j

wibij

+
∆t

τ

ν∑
i=1

w̃iG(F (i))

− ∆t

τ

∑
i,j,h

wibij ãjhG(F (h)) +
∑
i,j

wibijF
(j).

Now for small values of τ the scheme turns out to be unstable since fn+1 is not
bounded. A remedy to this fact, is to consider stiffly accurate schemes for which
fn+1 = F (ν) and so fn+1 → fn+1

∞ as τ → 0.
I This is guaranteed if aνi = wi and ãνi = w̃i, i = 1, . . . , ν.
I On the contrary to standard IMEX schemes, for the penalized Boltzmann case
the stiffly accurate property is mandatory to have a stable AP scheme.
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Numerical methods IMEX-RK for the Boltzmann equation

Positive and entropic IMEX schemes

Theorem
A sufficient condition to guarantee the positivity of the IMEX method for the
Boltzmann equation is that it is stiffly accurate and the coefficients satisfy

(I + zA)−1e ≥ 0, (I + zA)−1(A− Ã)e ≥ 0, (I + zA)−1Ã ≥ 0,

where z = µ∆t/τ .

Since the above theorem is based on a convexity argument it follows that the
schemes are also entropic provided we have an estimate of the type 12

H(Q(f, f) + µf) ≤ H(f),

where H(·) is the entropy functional.

12C.Villani ’98, G.Toscani, C.Villani ’99
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Numerical methods Discretization of the collision operator

Outline

1 Introduction

2 Quantum kinetic theory
The quantum Boltzmann equation (QBE)
Equilibrium states
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Discretization of the collision operator
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4 Summary and future research
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Numerical methods Discretization of the collision operator

Discretization of the collision operator

Let us consider the case of bosons, ϑ = 1. We introduce a set of equally spaced
discrete energy grid points εi, i = 1, . . . N in the energy interval [0, R]. The
numerical method for QR(f) takes the form13

QR(f)(εi) ≈ Q̃R(f)(εi) = (∆ε)3
N∑

j,k,l=1

δklij ρ(εmin)[fkfl(1 + fi)(1 + fj)

− fifj(1 + fk)(1 + fl)]χ(εi ≤ R),

where fi ≈ f(εi) and εmin = min{εi, εj , εk, εl} and

δklij =

{
1/∆ε i+ j = k + l

0 otherwise.

The quantities δklij are a suitable discretization of the δ-function on the grid
(which reduce the points in the sum to a discrete index set which satisfies the
relation i+ j = k + l). Taking εi = (i− 1)∆ε we have a first order method,
whereas the choice εi = (i− 1/2)∆ε originates a second order scheme.

13P.Markowich, L.Pareschi, 2005 - W.Bao, P.Markowich, L.Pareschi, 2004
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Numerical methods Discretization of the collision operator

Properties

We consider the set of ODEs which originates from this discretization

ρ(εi)
dfi
dt

=
1

τ
Q̃R(f)(εi), t > 0, (1)

fi(t = 0) = f0,R(εi) ≥ 0. (2)

Proposition 1

The solutions of (1), (2) satisfy the following conservation properties and
H-theorem

∆ε

N∑
i=1

ρ(εi)
dfi
dt
φ(εi) = 0, φ(ε) = 1, φ(ε) = ε,

∆ε

N∑
i=1

ρ(εi)
dh(fi)

dt
≥ 0, h(fi) = (1 + fi) ln(1 + fi)− fi ln fi.
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Numerical methods Discretization of the collision operator

Discrete steady states

From the above theorem we can show that the scheme admits regular
Bose-Einstein equilibrium of the form

f∞(εi) =
1

eα̃εi+β̃ − 1
, α̃, β̃ > 0,

where the values α̃, β̃ are computed by solving, for a given mass-energy pair
(M∞, E∞), the nonlinear system

∆ε

N∑
i=1

ρ(εi)f∞(εi) = M∞,

∆ε

N∑
i=1

ρ(εi)εif∞(εi) = E∞.

If the above system cannot be solved for positive α̃ and β̃ then condensation
occurs. Note however that for the second order method, since the value ε = 0 is
not present in the scheme, we do not expect blow-up of the numerical solution but
the formation of a discrete Dirac delta at ε1 = ∆ε/2 of the form 1/∆ε.

Lorenzo Pareschi (University of Ferrara) AP-schemes for quantum kinetic equations CSCAMM, may 13-16 2013 32 / 47



Numerical methods Discretization of the collision operator

Discrete steady states

From the above theorem we can show that the scheme admits regular
Bose-Einstein equilibrium of the form

f∞(εi) =
1

eα̃εi+β̃ − 1
, α̃, β̃ > 0,

where the values α̃, β̃ are computed by solving, for a given mass-energy pair
(M∞, E∞), the nonlinear system

∆ε

N∑
i=1

ρ(εi)f∞(εi) = M∞,

∆ε

N∑
i=1

ρ(εi)εif∞(εi) = E∞.

If the above system cannot be solved for positive α̃ and β̃ then condensation
occurs. Note however that for the second order method, since the value ε = 0 is
not present in the scheme, we do not expect blow-up of the numerical solution but
the formation of a discrete Dirac delta at ε1 = ∆ε/2 of the form 1/∆ε.

Lorenzo Pareschi (University of Ferrara) AP-schemes for quantum kinetic equations CSCAMM, may 13-16 2013 32 / 47



Numerical methods Discretization of the collision operator

Fast algorithms

The evaluation of the double sum in Q̃R(f)(εi) at the point εi requires
(2(i− 1)(N − i+ 1) +N2)/2 operations. The overall cost for all N points is then
approximatively 2N3/3.

Using transform techniques based on FFT and a domain decomposition the
O(N3) cost can be reduced to O(N2 log2N) 14.

Recently using a more refined decomposition the overall cost has been
reduced to quasi optimal value O(N(log2N)2) 15.

In the general non ergodic case the fast spectral method developed by
Pareschi and Mouhot can be adapted to the QBE, fast algorithms have been
developed but due to the cubic nonlinearity they are less efficient compared
to the case θ = 0 16.

14P.Markowich, L.Pareschi ’05
15J.Hu, L.Ying. ’12
16F.Filbet, J. Hu, S.Jin ’12
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Numerical methods Numerical tests

Outline

1 Introduction

2 Quantum kinetic theory
The quantum Boltzmann equation (QBE)
Equilibrium states
Ergodic approximation

3 Numerical methods
The Implicit-Explicit (IMEX) paradigm
IMEX-RK for the Boltzmann equation
Discretization of the collision operator
Numerical tests

4 Summary and future research

Lorenzo Pareschi (University of Ferrara) AP-schemes for quantum kinetic equations CSCAMM, may 13-16 2013 34 / 47



Numerical methods Numerical tests

Numerical tests and applications

The time integration is performed with different IMEX Runge-Kutta schemes of
second and third order after dividing the semidiscrete schemes by ρ(εi) and thus
rewriting

∂fi
∂t

=
(∆ε)2

τ

N∑
j,l=1

1≤k=i+j−l≤N

ρ(εmin)

ρ(εi)
[fkfl(1 + fi)(1 + fj)

− fifj(1 + fk)(1 + fl)].

In all our numerical tests the density of states is given by ρ(ε) = ε2/2, which
corresponds to an harmonic potential.
Note that 0 ≤ ρ(εmin)/ρ(εi) ≤ 1 for εi 6= 0 and that as εi → 0 we have
ρ(εmin)/ρ(εi)→ 1.
Standard stability condition of an explicit scheme is ∆t ≤ τ/L(f) where

L(f) = (∆ε)2
N∑

j,l=1
1≤k=i+j−l≤N

fj(1 + fk)(1 + fl).
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Numerical methods Numerical tests

Accuracy analysis and steady states

The first test case has been used to check the numerical convergence of our
time discretization methods by neglecting the energy discretization error (this
is achieved using the second order method and very small mesh sizes).

The initial datum is a Gaussian profile centered at R/2

f = exp(−4(ε−R/2)2),

with R = 10. The final integration time is T = 4.0. We report the
convergence rates in the L1-norm obtained with the different schemes for
different τ = 1, 0.1, 0.01. In this case the mass-energy pair is subcritical.
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Numerical methods Numerical tests

Convergence rates: τ = 1
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Convergence rates for τ=1

First order DP−A(1,2,1)
Second order DP2−A(2,4,2)
Second order ARS(2,2,2)
Third order BPR(3,5,3)

Convergence rates for various first and second order IMEX schemes for τ = 1.
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Numerical methods Numerical tests

Convergence rates: τ = 0.1
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Convergence rates for various first and second order IMEX schemes for τ = 0.1.
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Numerical methods Numerical tests

Convergence rates: τ = 0.01

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

t

C
o
n
v
e
rg

e
n
c
e
 r

a
te

Convergence rates for τ=0.01

Second order DP1−A(2,4,2)
Second order DP2−A(2,4,2)
Second order ARS(2,2,2)
Third order BPR(3,5,3)

Convergence rates for various first and second order IMEX schemes for τ = 0.01.
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Numerical methods Numerical tests

Bose-einstein: Phase-space density

Phase-space density reconstructed at x = 0 and p = (p1, p2, 0) for scheme QBF2.
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Numerical methods Numerical tests

Bose-Einstein equilibrium
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Stationary discrete Bose-Einstein equilibrium and entropy growth for scheme QBF1 (◦)
and QBF2 (×) computed with N = 40 points.
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Numerical methods Numerical tests

Bose-Einstein: Trend to equilibrium
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Bose-Einstein: Trend to equilibrium in time for scheme QBF2 (left) with N = 40 points

and stationary phase-space density reconstructed at x = 0 and p = (p1, p2, 0) (right).
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Condensate mass fraction at equilibrium

We solve numerically for α the equation for E and then compute

E =

∫ ∞
0

ρ(ε)ε

exp(αε)− 1
dε ⇒ Iα =

∫ ∞
0

ρ(ε)

exp(αε)− 1
dε.

If I(α) < M the mass entropy pair is critical and condensation will take place.
The condensate mass fraction in equilibrium can then be computed
Mc/M = 1− Iα/M .

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M

E

M
/M

c

Lorenzo Pareschi (University of Ferrara) AP-schemes for quantum kinetic equations CSCAMM, may 13-16 2013 43 / 47



Numerical methods Numerical tests

Condensation

In this test we consider the process of condensation of bosons.
We choose the initial distribution in the energy interval [0, R] with R = 10 to be17

f(ε) =
2f0

π
arctan(eΓ(1−ε/ε0)),

with Γ = 5 and ε0 = R/8. The dimensionless time scale is

t̄ =
ε2

0f0(1 + f0)σm

π2~3
t

where σ = 8πa2 is the total cross section, a the scattering length, m the mass of
a particle and ~ the Planck constant.
We choose f0 = 1 and integrate the Boson Boltzmann equation up to T = 15. In
this case the mass energy pair is approximatively (0.42, 0.50) which corresponds to
a condensate mass fraction of ≈ 0.3 at the stationary state.

17Semikoz, Tkachev ’97
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Convergence rates: τ = 0.1
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Convergence rates for τ=0.1. Condensate case

Second order DP1−A(2,4,2)
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Convergence rates for various first and second order IMEX schemes in the condensate

case for τ = 0.1.
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Phase-space density (BEC)

Phase-space density reconstructed at x = 0 and p = (p1, p2, 0) for scheme QBF2.
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Summary and future research

Summary and future research

We have developed accurate and AP IMEX schemes for the QBE which
avoids the inversion of the implicit collision operator.

These schemes make the deterministic approach competitive with Monte
Carlo methods in terms of computational cost but with an accuracy which is
far superior.

The methods preserve all the relevant physical properties (conservation of
mass and energy, entropy inequality and steady states).

The numerical methods have shown the capability to describe well the
challenging phenomenon of condensation of bosons for the ergodic QBE.

Application to the full QBE to study the condensate formation

Coupling with Gross-Pitaewskii
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