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Background

We consider the continuity equation{
∂tµ = div(µ∇φ),

φ = U ′m ◦ µ+ V +W ∗ µ,
on [0, T ]× Rd, (1)

where

• µ : [0, T ]→ P(Rd) is an unknown curve of probability measures,

• Um : [0,∞)→ R, m ≥ 1, is a density of internal energy (diffusion),

U0(s) = 0 (no diffusion),

U1(s) = s log s (diffusion of heat type),

Um(s) = sm

m−1
for all m > 1 (diffusion of porous-medium type),

• V : Rd → R is a confinement or external potential,

• W : Rd → R is an interaction or aggregation kernel.

For simplicity, V and W belong to C2(Rd) and are bounded from below.
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Background

Solutions to (1) are understood in the weak sense: we say µ : [0, T ] → P(Rd) is a
solution if, for all ψ ∈ C∞c ((0, T )× Rd),∫ T

0

∫
Rd

(∂tψ(t, x) + 〈∇ψ(t, x),∇φ(t, x)〉) dµt(x) dt = 0.

We are going to restrict to

P2(Rd) := {µ ∈ P(Rd) |
∫
Rd |x|2 dµ(x) <∞},

and equip it with the 2-Wasserstein distance

W2(µ, ν) = min
π∈Π(µ,ν)

(∫
Rd×Rd

|x− y|2 dπ(x, y)

)1/2

for all µ, ν ∈ P2(Rd),

where Π(µ, ν) is the set of probability measures on Rd × Rd with first marginal µ
and second marginal ν.
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Background
The metric space (P2(Rd),W2) has a “weak” Riemannian structure, on which we
can define the gradient of a functional E : P2(Rd)→ (−∞,∞] by

∇W2E(µ) = − div(µ∇E ′µ),

where E ′µ is the first variation density of E at µ.

Define

Em(µ) = Um(µ) +

∫
Rd

V (x) dµ(x) +
1

2

∫
Rd

W ∗ µ(x) dµ(x) for all µ ∈ P2(Rd),

where

U0 = 0, Um(µ) =

{∫
Rd Um(µ(x)) dµ(x) for all µ ∈ P2,ac(Rd),

+∞ otherwise.

Under suitable regularity conditions on V , W and µ, we can show that

(Em)′µ(x) = U ′m(µ(x)) + V (x) +W ∗ µ(x) for all x ∈ Rd.

Thus (1) becomes

µ′(t) = −∇W2E
m(µ(t)) for a.e. t ∈ [0, T ],

and so our continuity equation is a gradient flow for Em.
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Motivation
For a moment, ignore diffusion and only consider confinement and interaction:

µ′t = div(µt(∇V +∇W ∗ µt)), µ(0) = µ0 ∈ D(E0). (2)

Approximate µ0 (e.g. using quantisation) as

µ0 ' µ0
N =

∑N
i=1 miδx0i

, mi > 0, (x0
i )i∈{1,...,N} ⊂ Rd.

Then, under suitable conditions on V and W and if µ0
N ∈ D(E0), the solution µN

to (2) with initial datum µ0
N stays a combination of point masses, i.e.,

µN (t) =
∑N
i=1 miδxi(t), t > 0.

We may define a particle method simply by solving the ODE system

ẋi(t) = −∇V (xi(t)) +
∑N
j=1 mjW (xi(t)− xj(t)).

We can summarise this property as “particles remain particles”.

The convergence of this particle method and other properties of (2) have been widely
studied:

• Laurent (2007); Bertozzi–Laurent–Rosado (2011);
• Carrillo–Di Francesco–Figalli–Laurent–Slepčev (2011);
• Carrillo–Choi–Hauray (2014);
• Jabin (2014),...
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Motivation

For most of this talk we only focus on the diffusion part, i.e.,

µ′t = div(µt∇(U ′m ◦ µt)), µ0 ∈ D(Um). (3)

Then particles do not remain particles. (Think of the heat equation with initial datum
µ0 = δ0 for example.)

Several ways to cope with this issue have been developed.

• Stochastics. Cottet–Koumoutsakis (2000), Jabin–Wang (2017), Liu–Wang
(2017). Main disadvantage: one must usually average the results over a large
number of runs to compensate for inherent randomness.

• Velocity regularization. Russo (1990), Degond–Mustieles (1990), Mas-Gallic
(2001), Lions–Mas-Gallic (2002). Main disadvantage: one loses the gradient-
flow structure (except in the case m = 2).

• Gradient-flow approach. Osberger–Matthes (2014), Carrillo, P.–Sternberg–
Wolansky (2016), Carrillo–Huang–P.–Wolansky (2017). Main disadvantege:
only works in one dimension and extension to higher dimensions is hard.

Goal. Derive a deterministic particle method approximating (3) that respects
the underlying gradient-flow structure and which works naturally in higher di-
mensions.
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Motivation
Our approach. Analogous to Craig–Bertozzi and Craig–Topaloglu (2016).

• Choose a mollifier ϕ : Rd → R ∈ C∞(Rd) and define, for all ε > 0,

ϕε(x) = ε−dϕ
(x
ε

)
for all x ∈ Rd.

• Define Fm : (0,∞)→ R by

Fm(s) = Um(s)
s

for all s ∈ (0,∞),

and

Fmε (µ) = Umε (µ) =

∫
Rd

Fm(ϕε ∗ µ(x)) dµ(x) for all µ ∈ P2(Rd).

(Note that D(Fmε ) = P2(Rd).)

This energy is of a novel form and “mixes”
features from the classical internal and interaction energies.

• Solve the gradient flow for Fmε :

µ′t = −∇W2F
m
ε (µt).

We have
(Fmε )′µ = ϕε ∗ (µF ′m ◦ (ϕε ∗ µ)) + Fm ◦ (ϕε ∗ µ),

and so (4) becomes

µ′t = div
(
µt∇ϕε ∗ (µtF

′
m ◦ (ϕε ∗ µt)) + µt(∇ϕε ∗ µt)F ′m ◦ (ϕε ∗ µt)

)
.

10/25
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features from the classical internal and interaction energies.
• Solve the gradient flow for Fmε :

µ′t = −∇W2F
m
ε (µt).

We have
(Fmε )′µ = ϕε ∗ (µF ′m ◦ (ϕε ∗ µ)) + Fm ◦ (ϕε ∗ µ),

and so (4) becomes

µ′t = div
(
µt∇ϕε ∗ (µtF

′
m ◦ (ϕε ∗ µt)) + µt(∇ϕε ∗ µt)F ′m ◦ (ϕε ∗ µt)

)
.
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(
µt∇ϕε ∗(µtF

′
m ◦(ϕε ∗µt))+µt(∇ϕε ∗µt)F ′m ◦(ϕε ∗µt)

)
, µ0 ∈ P2(Rd).

We can show that particles do remain particles.

Thus our particle method is defined
as the ODE system

ẋi = −
N∑
j=1

mj∇ϕε(xi − xj)

(
F ′m

(
N∑
k=1

mkϕε(xj − xk)

)

+ F ′m

(
N∑
k=1

mkϕε(xi − xk)

))
.

The case m = 2 is very particular. Indeed,

F ′2(s) = 1, µ′t = 2 div(µt∇ϕε ∗ µt),

which is an interaction equation with kernel 2ϕε. This is the same equation as
Lions–Mas-Gallic studied; our method is therefore a generalisation of theirs to
any porous medium equation.
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Results

We have proved the following.

• Fmε : P2(Rd)→ R has good “basic properties” necessary for the use of gradient-
flow theory (Ambrosio–Gigli–Savaré, 2008):

− Fmε is narrowly lower semicontinuous for all m > 1; if ϕ is Gaussian, then
F1
ε is 2-Wasserstein lower semicontinuous;

− Fmε is differentiable on generalised geodesics;
− Fmε is semiconvex along generalised geodesics for every ε > 0 with constant

λm,ε = −4
∥∥D2ϕε

∥∥
L∞(Rd)

F ′m

(
‖ϕε‖L∞(Rd)

)
;

− the subdifferential of Fmε can be characterised: given µ ∈ P2(Rd),

v ∈ ∂Fmε (µ) ∩ TanµP2(Rd) ⇐⇒ v = ∇(Fmε )′µ.

• Fmε Γ-converges to Fm as ε→ 0.

• The gradient flow for Fmε is well-posed; i.e., there exists a unique solution (so
particles do remain particles).

• Convergence of gradient flows. When m = 2 and under suitable regularity
assumptions on the regularised gradient flows (µε)ε, the gradient flow for
Fmε converges to that for Fm in the Sandier–Serfaty sense.
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Results
Assumptions on the mollifier. Let ζ ∈ C2(Rd × [0,+∞)) be even, ‖ζ‖L1(Rd) = 1,
and assume there exist Cζ , C

′
ζ > 0, q > d+ 1, and q′ > d such that

ζ(x) ≤ Cζ |x|−q, |∇ζ(x)| ≤ C′ζ |x|−q
′

for all x ∈ Rd.

Choose ϕ = ζ ∗ ζ as mollifier.

Write ϕε = ε−dϕ(·/ε) and ζε := ε−dζ(·/ε).

Theorem (Serfaty, 2011). Let m ≥ 2. Suppose that, for all ε > 0, µε is a
gradient flow for Fmε with well-prepared initial data, i.e.,

µε(0) ⇀ µ0 narrowly, lim
ε→0
Fmε (µε(0)) = Fm(µ(0)), µ0 ∈ P2(Rd).

Suppose further that there exists a curve µ : [0, T ] → P2(Rd) such that, for
almost every t ∈ [0, T ], µε(t) ⇀ µ(t) narrowly and

(1) lim inf
ε→0

∫ t

0

|µ′ε|(s)2 ds ≥
∫ t

0

|µ′|(s)2 ds,

(2) lim inf
ε→0

Fmε (µε(t)) ≥ Fm(µ(t)),

(3) lim inf
ε→0

∫ t

0

∥∥∇(Fmε )′µε(s)

∥∥2

L2(µε(s);Rd)
ds ≥

∫ t

0

∥∥∇(Fm)′µ(s)

∥∥2

L2(µ(s);Rd)
ds.

Then µ is a gradient flow for Fm.
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Results

Things to prove.

• Existence of well-prepared initial data given µ0 ∈ P2(Rd).

Follows from the Γ-convergence of Fmε to Fm as ε→ 0.

• Existence of a limiting µ : [0, T ]→ P2(Rd).

Follows from a compactness argument on the (m − 1)th moments of the
regularised gradient flows (µε)ε.

• Prove (1) and (2) in Serfaty’s theorem.

Follow from the facts that W2 and Fmε are narrowly lower semicontinuous
on P2(Rd).

• Prove (3) in Serfaty’s theorem.

That is the tough one: we need some extra regularity assumptions on the
regularised gradient flows (µε)ε.
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Results

Write Mp(µ) :=
∫
Rd |x|p dµ(x) for all p ≥ 0, and

‖µ‖BVm
ε

:=∫
Rd

∫
Rd ζε(x− y) |(∇ζε ∗ pε)(x) + (∇ζε ∗ µ)(x)F ′m(ϕε ∗ µ(y))| dµ(y) dx

where pε := µF ′m ◦ (ϕε ∗ µ). Note

‖µ‖BVm
ε
≥
∥∥∇(Fmε )′µ

∥∥
L1(µ;Rd)

.

Theorem (Carrillo–Craig–P., 2017). Let m ≥ 2, and µε : [0, T ] → P2(Rd) be
a gradient flow for Fmε for all ε > 0 with well-prepared initial data with respect
to µ0 ∈ P2(Rd). Furthermore, suppose that the following hold:

(1) supε>0

∫ T
0
Mm−1(µε(t)) dt <∞,

(2) supε>0

∫ T
0
‖µε(t)‖BVm

ε
dt <∞,

(3)

{
ζε ∗ µε(t)→ µ(t) in L1([0, T ];Lmloc(Rd)) as ε→ 0,

supε>0

∫ T
0
‖ζε ∗ µε(t)‖mLm(Rd) dt <∞.

Then µε(t) ⇀ µ(t) narrowly for almost every t ∈ [0, T ] for some µ : [0, T ] →
P2(Rd), and µ is the gradient flow for Fm with initial datum µ0.
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Numerical simulations

We now reintroduce the potentials V and W . Recall that our particle method is
based on the ODE system

ẋi = −
N∑
j=1

mj∇ϕε(xi − xj)

(
F ′m

(
N∑
k=1

mkϕε(xj − xk)

)

+ F ′m

(
N∑
k=1

mkϕε(xi − xk)

))
−∇V (xi)−

N∑
j=1

mj∇W (xi − xj).

We have proved that if we initially place our N particles (x0
i )i on a grid with spacing

h = N−1/d and if the assumptions of our previous theorem hold, then our particle
methods converges to the continuity equation provided h = o(ε). For example, take
ε = h0.99.

To visualise numerically our particle solution µε(h), we convolve it with the mollifier
ζε; i.e., we plot µ̃ε(h) = ζε ∗ µε(h).
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Numerical simulations

One-dimensional heat and porous medium equations: fundamental solutions

Exact vs numerical solution, h = 0.02, varying m
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Exact vs numerical solution, varying h, m = 3
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Numerical simulations

Convergence analysis: one-dimensional diffusion
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Numerical simulations

Convergence analysis: two-dimensional diffusion

m = 1 m = 2 m = 3
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Numerical simulations

Modified one-dimensional Keller–Segel equation: blow-up with χ = 1.5,
h = 0.009
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Fm(s) = F1(s) = log s, W (x) = 2χ log |x|, V (x) = 0.

(DGF: see Carrillo–Huang–P.–Wolansky (2017).)
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Numerical simulations

Two-dimensional Keller–Segel equation: blow-up with supercritical mass 9π,
h = 0.03
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Fm(s) = F1(s) = log s, W (x) = 1/(2π) log |x|, V (x) = 0.
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Outlook

Extensions.

• Most of the basic properties of Fmε extend to general functions F : (0,∞)→ R.

• Our results extend to Em, i.e., to confinement and interaction for semiconvex,
smooth potentials V and W .

• When V and W are present, then minimisers of Emε converge to minimisers of
Em as ε→ 0.

Open questions.

• Can the semiconvexity estimate of Fmε be improved so that it does not degen-
erate as ε→ 0?

• Can we extend the convergence of the gradient flows to m ∈ [1, 2)?

• Can we remove the regularity conditions on (µε)ε in the convergence of the
gradient flows?

• Can we improve the method by using other mollifiers?

• Can we find rate estimates for the convergence of gradient flows? (Not via
Γ-convergence tools.)

THANK YOU!
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