A discontinuous-Galerkin implementation of the entropy-based moment closure
 Experiments with linear transport in slab geometry

Graham Alldredge and Florian Schneider

RWTH Aachen University \& TU Kaiserslautern

28 October 2014

A linear kinetic equation in slab geometry

$$
\begin{array}{lc}
\partial_{t} \psi+\mu \partial_{x} \psi+\sigma_{\mathrm{a}} \psi=\sigma_{\mathrm{s}} \mathcal{C}(\psi) & x \in\left(x_{\mathrm{L}}, x_{\mathrm{R}}\right) \\
& \mu \in[-1,1]
\end{array}
$$

where $\psi=\psi(t, x, \mu) \geq 0$ is a kinetic density and the collision operator \mathcal{C} is linear, for example isotropic scattering:
$\mathcal{C}(\psi)(t, x, \mu)=\frac{1}{2}\langle\psi(t, x, \cdot)\rangle-\psi(t, x, \mu) \quad$ where $\quad\langle\phi\rangle=\int_{-1}^{1} \phi(\mu) d \mu$.
H-Theorem: The entropy

$$
H(t)=\int_{x_{\mathrm{L}}}^{x_{\mathrm{R}}} \int_{-1}^{1} \eta(\psi(t, x, \mu)) d \mu d x
$$

satisfies $\frac{d}{d t} H(t) \leq 0$.

Moments

- One challenge of numerically simulating (general) kinetic equations is the large state space: typically space is three-dimensional and the velocity variable is two- or three-dimensional.
- In particular, the only velocity information an application usually requires are the moments: angular averages against basis functions $m_{0}(\mu), m_{1}(\mu), \ldots, m_{N}(\mu)$:
$u_{i}(t, x):=\left\langle m_{i} \psi(t, x, \cdot)\right\rangle, \quad$ or altogether $\quad \mathbf{u}(t, x)=\langle\mathbf{m} \psi(t, x, \cdot)\rangle$.
- The basis functions are typically polynomials, so the zero-th order moment gives a local mass density, the first-order moment gives a bulk velocity, and the second-order moment gives energy or temperature.

The "naïve" spectral method for angular discretization
The typical spectral ansatz is

$$
\psi(t, x, \mu) \simeq \sum_{i=0}^{N} \alpha_{i}(t, x) m_{i}(\mu)=\mathbf{m}(\mu)^{T} \boldsymbol{\alpha}(t, x)
$$

The "naïve" spectral method for angular discretization
The typical spectral ansatz is

$$
\psi(t, x, \mu) \simeq \sum_{i=0}^{N} \alpha_{i}(t, x) m_{i}(\mu)=\mathbf{m}(\mu)^{T} \boldsymbol{\alpha}(t, x)
$$

One "justification" for the form of this ansatz is that

$$
\mathbf{m}^{T} \boldsymbol{\alpha}=\operatorname{argmin}\left\{\left\langle\phi^{2}\right\rangle:\langle\mathbf{m} \phi\rangle=\mathbf{u}\right\} ;
$$

and it's also nice that the map from the coefficients $\boldsymbol{\alpha}$ to the moments \mathbf{u} is simply linear:

$$
\boldsymbol{\alpha} \mapsto\left\langle\mathbf{m m}^{T} \boldsymbol{\alpha}\right\rangle=\left\langle\mathbf{m m}^{T}\right\rangle \boldsymbol{\alpha}=\mathbf{u}
$$

The "naïve" spectral method for angular discretization
The typical spectral ansatz is

$$
\psi(t, x, \mu) \simeq \sum_{i=0}^{N} \alpha_{i}(t, x) m_{i}(\mu)=\mathbf{m}(\mu)^{T} \boldsymbol{\alpha}(t, x)
$$

One "justification" for the form of this ansatz is that

$$
\mathbf{m}^{T} \boldsymbol{\alpha}=\operatorname{argmin}\left\{\left\langle\phi^{2}\right\rangle:\langle\mathbf{m} \phi\rangle=\mathbf{u}\right\} ;
$$

and it's also nice that the map from the coefficients $\boldsymbol{\alpha}$ to the moments \mathbf{u} is simply linear:

$$
\boldsymbol{\alpha} \mapsto\left\langle\mathbf{m m}^{T} \boldsymbol{\alpha}\right\rangle=\left\langle\mathbf{m m}^{T}\right\rangle \boldsymbol{\alpha}=\mathbf{u}
$$

Problems (in the context of kinetic equations):

- Not necessarily positive.
- This discretization may not satisfy the H-Theorem

Instead, let's choose an ansatz of the form

$$
\psi(t, x, \mu) \simeq \operatorname{argmin}\{\langle\eta(\phi)\rangle:\langle\mathbf{m} \phi\rangle=\mathbf{u}(t, x)\}
$$

The solution to this problem is $\hat{\psi}_{\mathbf{u}}=\eta_{*}^{\prime}\left(\mathbf{m}^{T} \hat{\boldsymbol{\alpha}}(\mathbf{u})\right)$, where the coefficients $\hat{\boldsymbol{\alpha}}(\mathbf{u})$ are the Legendre multipliers which solve the dual problem

$$
\hat{\boldsymbol{\alpha}}(\mathbf{u}):=\operatorname{argmin}\left\{\left\langle\eta_{*}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right\rangle-\mathbf{u}^{T} \boldsymbol{\alpha}\right\} .
$$

Instead, let's choose an ansatz of the form

$$
\psi(t, x, \mu) \simeq \operatorname{argmin}\{\langle\eta(\phi)\rangle:\langle\mathbf{m} \phi\rangle=\mathbf{u}(t, x)\}
$$

The solution to this problem is $\hat{\psi}_{\mathbf{u}}=\eta_{*}^{\prime}\left(\mathbf{m}^{T} \hat{\boldsymbol{\alpha}}(\mathbf{u})\right)$, where the coefficients $\hat{\boldsymbol{\alpha}}(\mathbf{u})$ are the Legendre multipliers which solve the dual problem

$$
\hat{\boldsymbol{\alpha}}(\mathbf{u}):=\operatorname{argmin}\left\{\left\langle\eta_{*}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right\rangle-\mathbf{u}^{T} \boldsymbol{\alpha}\right\} .
$$

This defines a (now nonlinear) diffeomorphism

$$
\boldsymbol{\alpha} \mapsto\left\langle\mathbf{m} \eta_{*}^{\prime}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right\rangle \equiv \mathbf{u}
$$

between the expansion coefficients (in \mathbb{R}^{N+1}) and the moments (in the map's range (more later)).

Now perform the Galerkin projection step, requiring that the PDE holds on the subspace spanned by $\left\{m_{0}(\mu), m_{1}(\mu), \ldots, m_{N}(\mu)\right\}$:

$$
\begin{gathered}
\partial_{t} \psi+\mu \partial_{x} \psi+\sigma_{\mathrm{a}} \psi=\sigma_{\mathrm{s}} \mathcal{C}(\psi) \\
\downarrow \psi \simeq \eta_{*}^{\prime}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right) \downarrow \\
\partial_{t}\left\langle\mathbf{m} \eta_{*}^{\prime}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right\rangle+\partial_{x}\left\langle\mu \mathbf{m} \eta_{*}^{\prime}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right\rangle+\sigma_{\mathrm{a}}\left\langle\mathbf{m} \eta_{*}^{\prime}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right\rangle \\
=\sigma_{\mathrm{s}}\left\langle\mathbf{m} \mathcal{C}\left(\eta_{*}^{\prime}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right)\right\rangle
\end{gathered}
$$

Now perform the Galerkin projection step, requiring that the PDE holds on the subspace spanned by $\left\{m_{0}(\mu), m_{1}(\mu), \ldots, m_{N}(\mu)\right\}$:

$$
\begin{gathered}
\partial_{t} \psi+\mu \partial_{x} \psi+\sigma_{\mathrm{a}} \psi=\sigma_{\mathrm{s}} \mathcal{C}(\psi) \\
\downarrow \psi \simeq \eta_{*}^{\prime}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right) \downarrow \\
\partial_{t}\left\langle\mathbf{m} \eta_{*}^{\prime}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right\rangle+\partial_{x}\left\langle\mu \mathbf{m} \eta_{*}^{\prime}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right\rangle+\sigma_{\mathrm{a}}\left\langle\mathbf{m} \eta_{*}^{\prime}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right\rangle \\
=\sigma_{\mathrm{s}}\left\langle\mathbf{m} \mathcal{C}\left(\eta_{*}^{\prime}\left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right)\right\rangle
\end{gathered}
$$

or equivalently in moment variables

$$
\begin{equation*}
\partial_{t} \mathbf{u}+\partial_{x} \mathbf{f}(\mathbf{u})+\sigma_{\mathrm{a}} \mathbf{u}=\sigma_{\mathrm{s}} \mathbf{r}(\mathbf{u}) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{f}(\mathbf{u}):=\left\langle\mu \mathbf{m} \eta_{*}^{\prime}\left(\mathbf{m}^{T} \hat{\boldsymbol{\alpha}}(\mathbf{u})\right)\right\rangle \text { and } \\
& \mathbf{r}(\mathbf{u}):=\left\langle\mathbf{m} \mathcal{C}\left(\eta_{*}^{\prime}\left(\mathbf{m}^{T} \hat{\boldsymbol{\alpha}}(\mathbf{u})\right)\right)\right\rangle .
\end{aligned}
$$

This is a hyperbolic PDE in conservative form!

Back to those two problems with the spectral method

- Using the Maxwell-Boltzmann entropy

$$
\eta(z)=z \log z-z
$$

whose Legendre transform is $\eta_{*}(y)=\exp (y)$, gives the ansatz

$$
\hat{\psi}_{\mathbf{u}}=\eta_{*}^{\prime}\left(\mathbf{m}^{T} \hat{\boldsymbol{\alpha}}(\mathbf{u})\right)=\exp \left(\mathbf{m}^{T} \hat{\boldsymbol{\alpha}}(\mathbf{u})\right)
$$

Positive!

Back to those two problems with the spectral method

- Using the Maxwell-Boltzmann entropy

$$
\eta(z)=z \log z-z
$$

whose Legendre transform is $\eta_{*}(y)=\exp (y)$, gives the ansatz

$$
\hat{\psi}_{\mathbf{u}}=\eta_{*}^{\prime}\left(\mathbf{m}^{T} \hat{\boldsymbol{\alpha}}(\mathbf{u})\right)=\exp \left(\mathbf{m}^{T} \hat{\boldsymbol{\alpha}}(\mathbf{u})\right)
$$

Positive!

- The relevant local entropy for this discretization is $h(\mathbf{u}(t, x)):=\left\langle\eta\left(\hat{\psi}_{\mathbf{u}(t, x)}\right)\right\rangle$. For \mathbf{u} satisfying the moment PDE (1), one can show that

$$
\frac{d}{d t} \int_{x_{\mathrm{L}}}^{x_{\mathrm{R}}} h(\mathbf{u}(t, x)) d x \leq 0
$$

Starting to think about numerics

- To simulate this system numerically, we need to choose the moment equations (1) because they are in conservative form.
- However, since the flux $\mathbf{f}(\mathbf{u})$ and collision term $\mathbf{r}(\mathbf{u})$ are written in terms of the multipliers
$\mathbf{f}(\mathbf{u}):=\left\langle\mu \mathbf{m} \eta_{*}^{\prime}\left(\mathbf{m}^{T} \hat{\boldsymbol{\alpha}}(\mathbf{u})\right)\right\rangle$ and $\mathbf{r}(\mathbf{u}):=\left\langle\mathbf{m C}\left(\eta_{*}^{\prime}\left(\mathbf{m}^{T} \hat{\boldsymbol{\alpha}}(\mathbf{u})\right)\right)\right\rangle$
so whenever we need to evaluate \mathbf{f} or \mathbf{r}, we need to compute $\hat{\boldsymbol{\alpha}}(\mathbf{u})$. This is typically done by numerically solving the dual problem.
- But before we try to solve the dual problem we better make sure a solution exists . . .

Since our ansatz has the form $\exp \left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)$, the map $\mathbf{u} \mapsto \hat{\boldsymbol{\alpha}}(\mathbf{u})$ can only be defined for

$$
\mathbf{u} \in\left\{\left\langle\mathbf{m} \exp \left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right\rangle: \boldsymbol{\alpha} \in \mathbb{R}^{N+1}\right\} \subsetneq \mathbb{R}^{N+1}
$$

Since our ansatz has the form $\exp \left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)$, the map $\mathbf{u} \mapsto \hat{\boldsymbol{\alpha}}(\mathbf{u})$ can only be defined for

$$
\mathbf{u} \in\left\{\left\langle\mathbf{m} \exp \left(\mathbf{m}^{T} \boldsymbol{\alpha}\right)\right\rangle: \boldsymbol{\alpha} \in \mathbb{R}^{N+1}\right\} \subsetneq \mathbb{R}^{N+1}
$$

In our case, this is equal to the realizable set

$$
\mathcal{R}:=\left\{\mathbf{u} \in \mathbb{R}^{N+1}: \exists \phi>0 \text { such that } \mathbf{u}=\langle\mathbf{m} \phi\rangle\right\}
$$

Example: let $\mathbf{m}(\mu)=(1, \mu)^{T}$, then since $|\mu| \leq 1$,

$$
|\langle\mu \phi\rangle| \leq\langle | \mu|\phi\rangle \leq\langle\phi\rangle \quad \Longleftrightarrow \quad\left|u_{1}\right| \leq u_{0}
$$

Problem: errors from the space-time discretization may produce nonrealizable numerical solution!

A high-order spatial method: RKDG

$$
\partial_{t} \mathbf{u}+\partial_{x} \mathbf{f}(\mathbf{u})=\mathbf{s}(\mathbf{u})
$$

In cell I_{j}, project a numerical solution $\mathbf{u}_{h}(t, x)$ onto the test space $\operatorname{span}\left\{\varphi_{k}\right\}$:

$$
\begin{aligned}
\partial_{t} \int_{I_{j}} \mathbf{u}_{h}(t, x) \varphi_{k}(x) d x & +\mathbf{f}\left(\mathbf{u}_{h}\left(t, x_{j+1 / 2}^{-}\right)\right) \varphi_{k}\left(x_{j+1 / 2}^{-}\right) \\
& -\mathbf{f}\left(\mathbf{u}_{h}\left(t, x_{j-1 / 2}^{+}\right)\right) \varphi_{k}\left(x_{j-1 / 2}^{+}\right) \\
& -\int_{I_{j}} \mathbf{f}\left(\mathbf{u}_{h}(t, x)\right) \partial_{x} \varphi_{k}(x) d x \\
& =\int_{I_{j}} \mathbf{s}\left(\mathbf{u}_{h}(t, x)\right) \varphi_{k}(x) d x
\end{aligned}
$$

DG Ansatz

The DG ansatz in spatial cell $I_{j}=\left(x_{j-1 / 2}, x_{j+1 / 2}\right)$ is

$$
\begin{aligned}
\mathbf{u}(t, x) \simeq \mathbf{u}_{h}(t, x) & :=\sum_{k=0}^{n} \hat{\mathbf{u}}_{j}^{(k)}(t) \varphi_{k}(x) \text { for } x \in I_{j} \\
& =\overline{\mathbf{u}}_{j}(t)+\sum_{k=1}^{n} \hat{\mathbf{u}}_{j}^{(k)}(t) \varphi_{k}(x)
\end{aligned}
$$

DG Ansatz

The DG ansatz in spatial cell $I_{j}=\left(x_{j-1 / 2}, x_{j+1 / 2}\right)$ is

$$
\begin{aligned}
\mathbf{u}(t, x) \simeq \mathbf{u}_{h}(t, x) & :=\sum_{k=0}^{n} \hat{\mathbf{u}}_{j}^{(k)}(t) \varphi_{k}(x) \text { for } x \in I_{j} \\
& =\overline{\mathbf{u}}_{j}(t)+\sum_{k=1}^{n} \hat{\mathbf{u}}_{j}^{(k)}(t) \varphi_{k}(x)
\end{aligned}
$$

You need a numerical flux,

$$
\mathbf{f}\left(\mathbf{u}_{h}\left(\left(x_{j+1 / 2}^{ \pm}\right)\right) \simeq \hat{\mathbf{f}}\left(\mathbf{u}_{h}\left(t, x_{j+1 / 2}^{-}\right), \mathbf{u}_{h}\left(t, x_{j+1 / 2}^{+}\right)\right)\right.
$$

and we use Lax-Friedrich:

$$
\hat{\mathbf{f}}(\mathbf{v}, \mathbf{w})=\frac{1}{2}(\mathbf{f}(\mathbf{v})+\mathbf{f}(\mathbf{w})-(\mathbf{w}-\mathbf{v})) .
$$

Realizability of the cell-means

- Assuming
- the moments at each spatial quadrature point are realizable and that
- we use an SSP-RK time integrator one can show that the cell means $\overline{\mathbf{u}}_{j}(t)$ remain realizable under the CFL condition

$$
\frac{\Delta t}{\Delta x}<w_{Q}\left(1-\left(\sigma_{\mathrm{a}}+\sigma_{\mathrm{s}}\right) \Delta t\right)
$$

- But previous work (e.g. with Euler equations) has shown that we should expect the moments at the spatial quadrature points of high-order solutions to leave the realizable set.

Linear scaling limiter

- Previous work with Euler equations has used a linear scaling limiter to ensure positivity: Here one replaces the moments at the quadrature points $\mathbf{u}_{q}=\mathbf{u}\left(t, x_{q}\right)$ with

$$
\mathbf{u}_{q}^{\theta}=(1-\theta) \mathbf{u}_{q}+\theta \overline{\mathbf{u}}=\overline{\mathbf{u}}+(1-\theta) \sum_{k=1}^{n} \hat{\mathbf{u}}^{(k)} \varphi_{k}\left(x_{q}\right)
$$

where θ is the smallest number in $[0,1]$ such that $\mathbf{u}_{q} \in \mathcal{R}$.

Linear scaling limiter

- Previous work with Euler equations has used a linear scaling limiter to ensure positivity: Here one replaces the moments at the quadrature points $\mathbf{u}_{q}=\mathbf{u}\left(t, x_{q}\right)$ with

$$
\mathbf{u}_{q}^{\theta}=(1-\theta) \mathbf{u}_{q}+\theta \overline{\mathbf{u}}=\overline{\mathbf{u}}+(1-\theta) \sum_{k=1}^{n} \hat{\mathbf{u}}^{(k)} \varphi_{k}\left(x_{q}\right)
$$

where θ is the smallest number in $[0,1]$ such that $\mathbf{u}_{q} \in \mathcal{R}$.

- But how to find θ ? The boundary of \mathcal{R} is in general complicated enough in 1D and not even well understood in higher dimensions

Quadrature realizability

Realizability with respect to a quadrature \mathcal{Q} introduces a smaller set:
$\mathcal{R}_{\mathcal{Q}}:=\left\{\mathbf{u}: \mathbf{u}=\sum_{\mu_{i} \in \mathcal{Q}} w_{i} \mathbf{m}\left(\mu_{i}\right) f_{i}, f_{i}>0\right\}$

Quadrature realizability

Realizability with respect to a quadrature \mathcal{Q} introduces a smaller set:
$\mathcal{R}_{\mathcal{Q}}:=\left\{\mathbf{u}: \mathbf{u}=\sum_{\mu_{i} \in \mathcal{Q}} w_{i} \mathbf{m}\left(\mu_{i}\right) f_{i}, f_{i}>0\right\}$

This set is characterized by

$$
\begin{aligned}
\left.\mathcal{R}_{\mathcal{Q}}\right|_{u_{0}<1} & =\operatorname{int} \operatorname{co}\left\{\left\{\mathbf{m}\left(\mu_{\mathrm{i}}\right)\right\}_{\mu_{\mathrm{i}} \in \mathcal{Q}}, \mathbf{0}\right\} \\
& =\left\{\mathbf{u} \in \mathbb{R}^{N+1}: \mathbf{a}_{i}^{T} \mathbf{u}<b_{i}, i \in\{1, \ldots, d\}\right\}
\end{aligned}
$$

Linear scaling limiter

Thus we can compute θ for each facet

$$
\mathbf{a}_{i}^{T}\left(\theta_{q i} \overline{\mathbf{u}}+\left(1-\theta_{q i}\right) \mathbf{u}_{q}\right)=b_{i} \quad \Longleftrightarrow \quad \theta_{q i}=\frac{b_{i}-\mathbf{a}_{i}^{T} \mathbf{u}_{q}}{\mathbf{a}_{i}^{T}\left(\overline{\mathbf{u}}-\mathbf{u}_{q}\right)}
$$

For the q-th quadrature point take
$\theta_{q}:= \begin{cases}0 & \nexists \theta_{q i} \in[0,1], \\ \max \left\{\theta_{q i}: \theta_{q i} \in[0,1]\right\} & \text { else; }\end{cases}$
then for the j-th cell take

$$
\theta:=\max \left\{\theta_{q}: x_{q} \in I_{j}\right\}
$$

Thus $\mathbf{u}_{q} \in \mathcal{R}_{\mathcal{Q}}$ at each quadrature point
 without changing the cell mean.

The rest of the scheme

Off-the-shelf stuff:

- Gauss-Lobatto spatial quadrature
- Standard TVBM slope limiter applied to the characteristic fields
- SSP $(3,3)$ RK time integration: a convex combination of Euler steps

Convergence tests

(a) L^{1}

(b) L^{∞}

Numerical Results: Plane Source

Infinite domain: $x \in(-\infty, \infty)$
Initial condition: $\psi(t=0, x, \mu)=0.5 \delta(x)$
Purely scattering medium: $\sigma_{\mathrm{a}}=0, \sigma_{\mathrm{s}}=1$

Realizability limiter action in the plane source problem

Time slices of the solution

Value of θ from the limiter

Numerical Results: Two-Beam Instability

Bounded domain: $x \in\left(x_{\mathrm{L}}, x_{\mathrm{R}}\right)=(-0.5,0.5)$

Boundary conditions:

$$
\begin{aligned}
& \psi\left(t, x_{\mathrm{L}}, \mu\right)=\exp \left(-10(\mu-1)^{2}\right) \\
& \psi\left(t, x_{\mathrm{R}}, \mu\right)=\exp \left(-10(\mu+1)^{2}\right)
\end{aligned}
$$

Initially empty:

$$
\psi(t=0, x, \mu)=0
$$

Purely absorbing medium:

$$
\sigma_{\mathrm{a}}=2, \sigma_{\mathrm{s}}=0
$$

Realizability limiter action in the two-beam instability

Time slices of the solution

Value of θ from the limiter

Parting thoughts

- Entropy-based moment models are an interesting twist on spectral methods which take advantage of structure in kinetic equations at the cost of introducing nonlinearity into the numerical scheme.
- To use a high-order DG method in space, we introduce a linear scaling limiter for the realizable set which is simple to implement and extends to arbitrary dimensions.
- We confirmed expected results on benchmark problems.
- Future work: implementation for 2D and 3D problems (in space). The main challenge here is that the number of facets of $\mathcal{R}_{\mathcal{Q}}$ grows exponentially with the number of moments and the number of quadrature points.

