

Driving and Response in Insect Swarms

N.T. Ouellette R. Ni, J.G. Puckett, D.H. Kelley E.R. Dufresne

Modeling of Aggregations

Modeling Ingredients

Empirical Measurements

Individual, isolated behavior

Interaction range

Interaction form

Rule variability

??

Observe real animals

Solve inverse problem to determine rules

Characterize behavior of

individuals and groups

Primarily qualitative information

Laboratory Experiments

Control of ambient conditions

Repeatable experiments

Simple, accurate imaging

IR lights

Swarm Marker

HOOWSZ

ener

Development tanks

1 megapixel, 100 fps

T

Tracking

Extract trajectories via 3D particle tracking

Multiframe, predictive algorithm

Measure position, velocity, acceleration, etc.

y (mm) NTO, H. Xu, & E. Bodenschatz, *Exp. Fluids* (2006) D.H. Kelley & NTO, *Sci. Rep.* (2013)

Kinematics

D.H. Kelley & NTO, *Sci. Rep.* (2013)

Self-Propelled Particles

I.D. Couzin et al., J. Theor. Biol. (2002)

Solving the Inverse Problem?

Ingredients:

- 1. Self-propulsion
- 2. Short-range repulsion
- 3. Long-range attraction
- 4. Intermediate-range alignment

Effective Forces?

Model reproduces pattern but not statistics: Overall pattern is not sufficient

Swarm Structure

D.H. Kelley & NTO, Sci. Rep. (2013)

Relative Positions

Effective Harmonic Trap

D.H. Kelley & NTO, *Sci. Rep.* (2013)

Speed Statistics

Swarm Properties

Swarm Properties

Swarms are dilute

Swarms are disordered

Interactions are rare

Insects are weakly coupled

Insects are tightly bound Swarms are compact

What kind of object is a swarm?

Moving Past Observations...

Drive swarms acoustically with amplitude-modulated wingbeat sounds; measure response -

Male sound 75 dB max amplitude 1 Hz modulation

Effect of Driving

CM Response

Characterizing Response

U: phase-averaged response amplitude

Fluctuation-Response?

Summary

Empirical measurements of collective behavior allow quantitative model testing

Controlled perturbation/response experiments are key!

Challenge for experiments: Provide precise, nontrivial results

Challenge for theory: Explain more than pattern

http://leviathan.eng.yale.edu

