Hydrodynamic Limit with Geometric Correction in Kinetic Equations

Lei Wu and Yan Guo

KI-Net Workshop, CSCAMM
University of Maryland, College Park

$$
2015-11-10
$$

Simple Model - Neutron Transport Equation

We consider the steady homogeneous isotropic one-speed neutron transport equation in a two-dimensional unit plate. We denote the space variables as $\vec{x}=\left(x_{1}, x_{2}\right)$ and the velocity variables as $\vec{v}=\left(v_{1}, v_{2}\right)$. In the space domain $\Omega=\{\vec{x}:|\vec{x}| \leq 1\}$ and the velocity domain $\Sigma=\left\{\vec{v}: \vec{v} \in \mathcal{S}^{1}\right\}$, the neutron density $u^{\epsilon}(\vec{x}, \vec{v})$ satisfies

$$
\left\{\begin{align*}
\epsilon \vec{v} \cdot \nabla_{x} u^{\epsilon}+u^{\epsilon}-\bar{u}^{\epsilon} & =0 \text { for } \vec{x} \in \Omega, \tag{1}\\
u^{\epsilon}\left(\vec{x}_{0}, \vec{v}\right) & =g\left(\vec{x}_{0}, \vec{v}\right) \text { for } \vec{v} \cdot \vec{n}<0 \text { and } \vec{x}_{0} \in \partial \Omega,
\end{align*}\right.
$$

where

$$
\bar{u}^{\epsilon}(\vec{x})=\frac{1}{2 \pi} \int_{\mathcal{S}^{1}} u^{\epsilon}(\vec{x}, \vec{v}) \mathrm{d} \vec{v},
$$

with the Knudsen number $0<\epsilon \ll 1$ as a parameter. We want to study the behavior of u^{ϵ} as $\epsilon \rightarrow 0$.

Features of the Equation

- Half boundary condition:

$$
\left\{\begin{aligned}
v \cdot \partial_{x} u & =h(x, v) \text { for } x \in[0,1] \\
u(0, v) & =g_{1}(v) \text { for } v \in(0,1] \\
u(1, v) & =g_{2}(v) \text { for } v \in[-1,0)
\end{aligned}\right.
$$

- Non-local operator:

$$
K[u](\vec{v})=\int_{\mathcal{S}^{1}} u\left(\vec{v}^{*}\right) k\left(\vec{v}, \vec{v}^{*}\right) \mathrm{d} \vec{v}^{*},
$$

with

$$
\int_{\mathcal{S}^{1}} k\left(\vec{v}, \vec{v}^{*}\right) \mathrm{d} \vec{v}^{*}=1
$$

Complex Model - Boltzmann Equation near Maxwellian

We consider stationary Boltzmann equation for probability density $F^{\epsilon}(\vec{x}, \vec{v})$ in a two-dimensional unit plate $\Omega=\left\{\vec{x}=\left(x_{1}, x_{2}\right):|\vec{x}| \leq 1\right\}$ with velocity
$\Sigma=\left\{\vec{v}=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}\right\}$ as

$$
\left\{\begin{aligned}
\epsilon \vec{v} \cdot \nabla_{x} F^{\epsilon} & =Q\left[F^{\epsilon}, F^{\epsilon}\right] \text { in } \Omega \times \mathbb{R}^{2}, \\
F^{\epsilon}\left(\vec{x}_{0}, \vec{v}\right) & =B^{\epsilon}\left(\vec{x}_{0}, \vec{v}\right) \text { for } \vec{x}_{0} \in \partial \Omega \text { and } \vec{n}\left(\vec{x}_{0}\right) \cdot \vec{v}<0,
\end{aligned}\right.
$$

where $\vec{n}\left(\vec{x}_{0}\right)$ is the outward normal vector at \vec{x}_{0} and the Knudsen number ϵ satisfies $0<\epsilon \ll 1$. Here we have

$$
Q[F, G]=\int_{\mathbb{R}^{2}} \int_{\mathcal{S}^{1}} q(\vec{\omega},|\overrightarrow{\mathfrak{u}}-\vec{v}|)\left(F\left(\overrightarrow{\mathfrak{u}}_{*}\right) G\left(\vec{v}_{*}\right)-F(\overrightarrow{\mathfrak{u}}) G(\vec{v})\right) \mathrm{d} \vec{\omega} \mathrm{~d} \overrightarrow{\mathfrak{u}},
$$

with $\overrightarrow{\mathfrak{u}}_{*}=\overrightarrow{\mathfrak{u}}+\vec{\omega}((\vec{v}-\overrightarrow{\mathfrak{u}}) \cdot \vec{\omega}), \vec{v}_{*}=\vec{v}-\vec{\omega}((\vec{v}-\overrightarrow{\mathfrak{u}}) \cdot \vec{\omega})$, and the hard-sphere collision kernel $q(\vec{\omega},|\overrightarrow{\mathfrak{u}}-\vec{v}|)=q_{0}|\overrightarrow{\mathfrak{u}}-\vec{v}||\cos \phi|$, for positive constant q_{0} related to the size of ball, $\vec{\omega} \cdot(\vec{v}-\overrightarrow{\mathfrak{u}})=|\vec{v}-\overrightarrow{\mathfrak{u}}| \cos \phi$ and $0 \leq \phi \leq \pi / 2$. We intend to study the behavior of F^{ϵ} as $\epsilon \rightarrow 0$.

Complex Model - Boltzmann Equation (Cont.)

We assume that the boundary data is as $B^{\epsilon}\left(\vec{x}_{0}, \vec{v}\right)=\mu+\epsilon \mu^{\frac{1}{2}} b\left(\vec{x}_{0}, \vec{v}\right)$, where $\mu(\vec{v})$ is the standard Maxwellian $\mu(\vec{v})=\frac{1}{2 \pi} \exp \left(-\frac{|\vec{v}|^{2}}{2}\right)$. Then we have $F^{\epsilon}(\vec{x}, \vec{v})=\mu+\epsilon \mu^{\frac{1}{2}} f^{\epsilon}(\vec{x}, \vec{v})$, where f^{ϵ} satisfies the equation

$$
\left\{\begin{aligned}
\epsilon \vec{v} \cdot \nabla_{x} f^{\epsilon}+\mathcal{L}\left[f^{\epsilon}\right] & =\Gamma\left[f^{\epsilon}, f^{\epsilon}\right], \\
f^{\epsilon}\left(\vec{x}_{0}, \vec{v}\right) & =b\left(\vec{x}_{0}, \vec{v}\right) \text { for } \vec{n} \cdot \vec{v}<0 \text { and } \vec{x}_{0} \in \partial \Omega,
\end{aligned}\right.
$$

for

$$
\begin{aligned}
\Gamma\left[f^{\epsilon}, f^{\epsilon}\right] & =\mu^{-\frac{1}{2}} Q\left[\mu^{\frac{1}{2}} f^{\epsilon}, \mu^{\frac{1}{2}} f^{\epsilon}\right], \\
\mathcal{L}\left[f^{\epsilon}\right] & =-2 \mu^{-\frac{1}{2}} Q\left[\mu, \mu^{\frac{1}{2}} f^{\epsilon}\right]=v(\vec{v}) f^{\epsilon}-K\left[f^{\epsilon}\right] \\
v(\vec{v}) & =\int_{\mathbb{R}^{2}} \int_{\mathcal{S}^{1}} q(\vec{v}-\overrightarrow{\mathfrak{u}}, \vec{\omega}) \mu(\overrightarrow{\mathfrak{u}}) \mathrm{d} \vec{\omega} \mathrm{~d} \overrightarrow{\mathfrak{u}} \\
K\left[f^{\epsilon}\right](\vec{v}) & =\int_{\mathbb{R}^{2}} k(\overrightarrow{\mathfrak{u}}, \vec{v}) f^{\epsilon}(\overrightarrow{\mathfrak{u}}) \mathrm{d} \overrightarrow{\mathfrak{u}}
\end{aligned}
$$

Background

- Spacial Domain: \mathbb{R}^{n} or periodic, bounded;
- Temporal Domain: steady, unsteady
- Solution: strong(smooth), weak(renormalized), weighted.
- 1950s - 1970s: Case K. M., Zweifel P. F. and Larsen, E; 1D explicit solution; spectral analysis of kinetic operators; formal asymptotic expansion;
- 1979: Bensoussan, Alain, Lions, Jacques-L. and Papanicolaou, George C.; Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15 (1979), no. 1, 53-157.
- 1984: Bardos, C., Santos, R. and Sentis, R.; Diffusion approximation and computation of the critical size. Trans. Amer. Math. Soc. 284 (1984), no. 2, 617-649.
- 2002: Sone, Y; Kinetic theory and fluid dynamics. Birkhäuser Boston, Inc., Boston, MA.

Asymptotic Analysis - Perturbation Theory

The main goal is to study the behavior of parameterized problems as the parameter goes to a limit.

- Algebraic Equations:
- Regular: $\left(x^{\epsilon}\right)^{2}+\epsilon x^{\epsilon}-1=0$.
- Singular: $\epsilon\left(x^{\epsilon}\right)^{2}+x^{\epsilon}-1=0$.
- Differential Equations:
- Regular: $\left(y^{\epsilon}\right)^{\prime \prime}+\epsilon\left(y^{\epsilon}\right)^{\prime}+y^{\epsilon}=1$ with $y^{\epsilon}(0)=0$ and $y^{\epsilon}(1)=1$.
- Singular: $\epsilon\left(y^{\epsilon}\right)^{\prime \prime}+\left(y^{\epsilon}\right)^{\prime}+y^{\epsilon}=1$ with $y^{\epsilon}(0)=0$ and $y^{\epsilon}(1)=1$.

Ingredients: interior solution; boundary layer; decay; cut-off function in 1D and 2 D .

Hilbert Expansion

The classical method is to introduce a power series in ϵ :
(1) Define the formal expansion

$$
x^{\epsilon} \sim \sum_{k=0}^{\infty} \epsilon^{k} x_{k}, \quad y^{\epsilon}(t) \sim \sum_{k=0}^{\infty} \epsilon^{k} y_{k}(t),
$$

where x_{k} and $y_{k}(t)$ are independent of ϵ.
(2) Then plugging this expansion into the original equations, we obtain a series of relations for x_{k} and $y_{k}(t)$, which can be solved or estimated directly.

- Finally, we can estimate the remainder

$$
R_{N}[x]=x^{\epsilon}-\sum_{k=0}^{N} \epsilon^{k} x_{k}, \quad R_{N}[y]=y^{\epsilon}(t)-\sum_{k=0}^{N} \epsilon^{k} y_{k}(t) .
$$

Hilbert Expansion(Cont.)

- This method can be used to analyzed both the interior solution and boundary(initial) layer.
- The convergence here is different from that of power series.
- Not all asymptotic relations can be expressed in power series with respect to the parameter.
- Hilbert expansion is not the only expansion to analyze asymptotic behaviors.
- This procedure is ideal. We may encounter difficulties in each step. Sometimes a trade-off is inevitable.

Interior Solution

We define the interior expansion as follows:

$$
U(\vec{x}, \vec{v}) \sim \sum_{k=0}^{\infty} \epsilon^{k} U_{k}(\vec{x}, \vec{v})
$$

where U_{k} can be defined by comparing the order of ϵ via plugging this expansion into the neutron transport equation. Thus, we have

$$
\begin{aligned}
U_{0}-\bar{U}_{0} & =0 \\
U_{1}-\bar{U}_{1} & =-\vec{v} \cdot \nabla_{x} U_{0} \\
U_{2}-\bar{U}_{2} & =-\vec{v} \cdot \nabla_{x} U_{1}, \\
\ldots & \\
U_{k}-\bar{U}_{k} & =-\vec{v} \cdot \nabla_{x} U_{k-1} .
\end{aligned}
$$

Interior Solution (Cont.)

We can show $U_{0}(\vec{x}, \vec{v})$ satisfies the equation

$$
\left\{\begin{aligned}
U_{0}(\vec{x}, \vec{v}) & =\bar{U}_{0}(\vec{x}) \\
\Delta_{x} \bar{U}_{0} & =0
\end{aligned}\right.
$$

Similarly, we can derive $U_{k}(\vec{x}, \vec{v})$ for $k \geq 1$ satisfies

$$
\left\{\begin{aligned}
U_{k} & =\bar{U}_{k}-\vec{v} \cdot \nabla_{x} U_{k-1} \\
\Delta_{x} \bar{U}_{k} & =0
\end{aligned}\right.
$$

We need to determine the boundary data of U_{k}.

Boundary Layer

The boundary layer can be constructed as follows:

- Polar coordinates: $\left(x_{1}, x_{2}\right) \rightarrow(r, \theta)$.
- Boundary layer scaling: $\eta=(1-r) / \epsilon$.
- We define the boundary layer expansion as follows:

$$
\mathscr{U}(\eta, \theta, \vec{v}) \sim \sum_{k=0}^{\infty} \epsilon^{k} \mathscr{U}_{k}(\eta, \theta, \vec{v})
$$

which satisfies

$$
(\vec{v} \cdot \vec{n}) \frac{\partial \mathscr{U}}{\partial \eta}+(\vec{v} \cdot \vec{\tau}) \frac{\epsilon}{1-\epsilon \eta} \frac{\partial \mathscr{U}}{\partial \theta}+\mathscr{U}-\overline{\mathscr{U}}=0
$$

where \vec{n} is the outer normal vector and $\vec{\tau}$ is the tangential vector.

Boundary Layer(cont.)

By comparing the order of ϵ, we have the relation

$$
\begin{aligned}
(\vec{v} \cdot \vec{n}) \frac{\partial \mathscr{U}_{0}}{\partial \eta}+\mathscr{U}_{0}-\overline{\mathscr{U}}_{0} & =0 \\
(\vec{v} \cdot \vec{n}) \frac{\partial \mathscr{U}_{1}}{\partial \eta}+\mathscr{U}_{1}-\overline{\mathscr{U}}_{1} & =-(\vec{v} \cdot \vec{\tau}) \frac{1}{1-\epsilon \eta} \frac{\partial \mathscr{U}_{0}}{\partial \theta} \\
\cdots & \\
(\vec{v} \cdot \vec{n}) \frac{\partial \mathscr{U}_{k}}{\partial \eta}+\mathscr{U}_{k}-\overline{\mathscr{U}}_{k} & =-(\vec{v} \cdot \vec{\tau}) \frac{1}{1-\epsilon \eta} \frac{\partial \mathscr{U}_{k-1}}{\partial \theta},
\end{aligned}
$$

in a neighborhood of the boundary.

Matching of Interior Solution and Boundary Layer

We define the boundary layer \mathscr{U}_{0} as

$$
\left\{\begin{aligned}
\mathscr{U}_{0} & =f_{0}(\eta, \theta, \vec{v})-f_{0}(\infty, \theta) \\
(\vec{v} \cdot \vec{n}) \frac{\partial f_{0}}{\partial \eta}+f_{0}-\bar{f}_{0} & =0 \\
f_{0}(0, \theta, \vec{v}) & =g(\theta, \vec{v}) \text { for } \vec{n} \cdot \vec{v}<0 \\
\lim _{\eta \rightarrow \infty} f_{0}(\eta, \theta, \vec{v}) & =f_{0}(\infty, \theta)
\end{aligned}\right.
$$

and the interior solution U_{0} as

$$
\left\{\begin{aligned}
U_{0}(\vec{x}, \vec{v}) & =\bar{U}_{0}(\vec{x}) \\
\Delta_{x} \bar{U}_{0} & =0 \\
\bar{U}_{0}\left(\vec{x}_{0}\right) & =f_{0}(\infty, \theta)
\end{aligned}\right.
$$

Good Results

In 1979's and 1984's papers, the author showed that both the interior and boundary layer expansion can be constructed to higher order and then proved the following theorem:

Theorem

Assume $g\left(\vec{x}_{0}, \vec{v}\right)$ is sufficiently smooth. Then for the steady neutron transport equation, the unique solution $u^{\epsilon}(\vec{x}, \vec{v}) \in L^{\infty}\left(\Omega \times \mathcal{S}^{1}\right)$ satisfies

$$
\left\|u^{\epsilon}-U_{0}-\mathscr{U}_{0}\right\|_{L^{\infty}}=O(\epsilon)
$$

This is a remarkable result!

Think about it

The proof is based on the following key theorem:

Theorem

Consider the Milne problem

$$
\left\{\begin{aligned}
(\vec{v} \cdot \vec{n}) \frac{\partial f}{\partial \eta}+f-\bar{f} & =S(\eta, \theta, \vec{v}), \\
f(0, \theta, \vec{v}) & =h(\theta, \vec{v}) \text { for } \vec{n} \cdot \vec{v}<0, \\
\lim _{\eta \rightarrow \infty} f(\eta, \theta, \vec{v}) & =f_{\infty}(\theta),
\end{aligned}\right.
$$

with

$$
\left\|e^{\beta_{0} \eta} S\right\|_{L^{\infty} L^{\infty}} \leq C, \quad\|h\|_{L^{\infty}} \leq C .
$$

Then for $\beta>0$ sufficiently small, there exists a unique solution $f(\eta, \theta, \vec{v}) \in L^{\infty}$ satisfying

$$
\left\|e^{\beta \eta}\left(f-f_{\infty}\right)\right\|_{L^{\infty} L^{\infty}} \leq C .
$$

Think about it(Cont.)

In the proof of 1979's and 1984's papers, we have to go to U_{1} and \mathscr{U}_{1} at least. In all the known results, in order to show the L^{∞} well-posedness of Milne problem, we need the source term is in L^{∞} and exponentially decays. Thus in order to show the well-posedness of \mathscr{U}_{1}, we need

$$
(\vec{v} \cdot \vec{\tau}) \frac{1}{1-\epsilon \eta} \frac{\partial \mathscr{U}_{0}}{\partial \theta} \in L^{\infty}\left([0, \infty) \times[-\pi, \pi) \times \mathcal{S}^{1}\right)
$$

which further needs

$$
\left(\vec{v} \cdot \frac{\partial \vec{\tau}}{\partial \theta}\right) \frac{\partial \mathscr{U}_{0}}{\partial \eta} \in L^{\infty}\left([0, \infty) \times[-\pi, \pi) \times \mathcal{S}^{1}\right)
$$

This is not always true. We have counterexamples to illustrate this fact.

Counterexample

Lemma

For the Milne problem

$$
\left\{\begin{aligned}
\sin (\theta+\xi) \frac{\partial f}{\partial \eta}+f-\bar{f} & =0 \\
f(0, \theta, \xi) & =g(\theta, \xi) \text { for } \sin (\theta+\xi)>0 \\
\lim _{\eta \rightarrow \infty} f(\eta, \theta, \xi) & =f(\infty, \theta)
\end{aligned}\right.
$$

if $g(\theta, \xi)=\cos (3(\theta+\xi))$, then we have

$$
\frac{\partial f}{\partial \eta} \notin L^{\infty}([0, \infty) \times[-\pi, \pi) \times[-\pi, \pi)) .
$$

Counterexample (Cont.)

The central idea of the proof is by contradiction:
(1) By maximum principle, we have $f(0, \theta, \xi) \leq 1$ for $\sin (\theta+\xi)<0$. Then this implies

$$
\bar{f}(0, \theta) \leq \frac{1}{2}
$$

(2) We can obtain $\partial_{\eta} f(0, \theta, \xi) \in L^{\infty}[-\pi, \pi) \times[-\pi, \pi)$ is a.e. well-defined and satisfies the formula

$$
\partial_{\eta} f(0, \theta, \xi)=\frac{\bar{f}(0, \theta)-f(0, \theta, \xi)}{\sin (\theta+\xi)}
$$

(3) Finally, we can directly estimate

$$
\lim _{\xi \rightarrow-\theta^{+}} \frac{\partial f}{\partial \eta}(0, \theta, \xi)=-\infty
$$

which is a contradiction.

Boundary Layer with Geometric Correction

- Polar coordinates: $\left(x_{1}, x_{2}\right) \rightarrow(r, \theta)$.
- Boundary layer scaling: $\eta=(1-r) / \epsilon$.
- Change of Variables: $v_{n}=\vec{v} \cdot \vec{n}$ and $v_{\tau}=\vec{v} \cdot \vec{\tau}$.
- We define the boundary layer expansion as follows:

$$
\mathscr{U}^{\epsilon}\left(\eta, \theta, v_{n}, v_{\tau}\right) \sim \sum_{k=0}^{\infty} \epsilon^{k} \mathscr{U}_{k}^{\epsilon}\left(\eta, \theta, v_{n}, v_{\tau}\right)
$$

which satisfies
$v_{n} \frac{\partial \mathscr{U}^{\epsilon}}{\partial \eta}+\frac{\epsilon}{1-\epsilon \eta}\left(-v_{\tau} \frac{\partial \mathscr{U}^{\epsilon}}{\partial \theta}+v_{\tau}^{2} \frac{\partial \mathscr{U}^{\epsilon}}{\partial v_{n}}-v_{n} v_{\tau} \frac{\partial \mathscr{U}^{\epsilon}}{\partial v_{\tau}}\right)+\mathscr{U}^{\epsilon}-\overline{\mathscr{U}}^{\epsilon}=0$

Where is the Singularity?

The singular term is decomposed into three terms

$$
v_{\tau} \frac{\partial \mathscr{U}_{0}^{\epsilon}}{\partial \theta}-v_{\tau}^{2} \frac{\partial \mathscr{U}_{0}^{\epsilon}}{\partial v_{n}}+v_{n} v_{\tau} \frac{\partial \mathscr{U}_{0}^{\epsilon}}{\partial v_{\tau}} .
$$

By comparing the order of ϵ, we have the relation

$$
\begin{aligned}
v_{n} \frac{\partial \mathscr{U}_{0}^{\epsilon}}{\partial \eta}+\mathscr{U}_{0}^{\epsilon}-\overline{\mathscr{U}}_{0}^{\epsilon} & =0 \\
v_{n} \frac{\partial \mathscr{U}_{1}^{\epsilon}}{\partial \eta}+\mathscr{U}_{1}^{\epsilon}-\overline{\mathscr{U}}_{1}^{\epsilon} & =\frac{1}{1-\epsilon \eta}\left(v_{\tau} \frac{\partial \mathscr{U}_{0}^{\epsilon}}{\partial \theta}-v_{\tau}^{2} \frac{\partial \mathscr{U}_{0}^{\epsilon}}{\partial v_{n}}+v_{n} v_{\tau} \frac{\partial \mathscr{U}_{0}^{\epsilon}}{\partial v_{\tau}}\right) \\
\cdots & \\
v_{n} \frac{\partial \mathscr{U}_{k}^{\epsilon}}{\partial \eta}+\mathscr{U}_{k}^{\epsilon}-\overline{\mathscr{U}}_{k}^{\epsilon} & =\frac{1}{1-\epsilon \eta}\left(v_{\tau} \frac{\partial \mathscr{U}_{k-1}^{\epsilon}}{\partial \theta}-v_{\tau}^{2} \frac{\partial \mathscr{U}_{k-1}^{\epsilon}}{\partial v_{n}}+v_{n} v_{\tau} \frac{\partial \mathscr{U}_{k-1}^{\epsilon}}{\partial v_{\tau}}\right),
\end{aligned}
$$

in a neighborhood of the boundary.

Boundary Layer with Geometric Correction(cont.)

Putting the singular terms together, we have the relation
$v_{n} \frac{\partial \mathscr{U}_{0}^{\epsilon}}{\partial \eta}+\frac{\epsilon}{1-\epsilon \eta}\left(v_{\tau}^{2} \frac{\partial \mathscr{U}_{0}^{\epsilon}}{\partial v_{n}}-v_{n} v_{\tau} \frac{\partial \mathscr{U}_{0}^{\epsilon}}{\partial v_{\tau}}\right)+\mathscr{U}_{0}^{\epsilon}-\overline{\mathscr{U}}_{0}^{\epsilon}=0$,
$v_{n} \frac{\partial \mathscr{U}_{1}^{\epsilon}}{\partial \eta}+\frac{\epsilon}{1-\epsilon \eta}\left(v_{\tau}^{2} \frac{\partial \mathscr{U}_{1}^{\epsilon}}{\partial v_{n}}-v_{n} v_{\tau} \frac{\partial \mathscr{U}_{1}^{\epsilon}}{\partial v_{\tau}}\right)+\mathscr{U}_{1}^{\epsilon}-\overline{\mathscr{U}}_{1}^{\epsilon}=\frac{1}{1-\epsilon \eta} v_{\tau} \frac{\partial \mathscr{U}_{0}^{\epsilon}}{\partial \theta}$,
$v_{n} \frac{\partial \mathscr{U}_{k}^{\epsilon}}{\partial \eta}+\frac{\epsilon}{1-\epsilon \eta}\left(v_{\tau}^{2} \frac{\partial \mathscr{U}_{k}^{\epsilon}}{\partial v_{n}}-v_{n} v_{\tau} \frac{\partial \mathscr{U}_{k}^{\epsilon}}{\partial v_{\tau}}\right)+\mathscr{U}_{k}^{\epsilon}-\overline{\mathscr{U}}_{k}^{\epsilon}=\frac{1}{1-\epsilon \eta} v_{\tau} \frac{\partial \mathscr{U}_{k-1}^{\epsilon}}{\partial \theta}$,
in a neighborhood of the boundary.

ϵ-Milne Problem with Geometric Correction

Consider the substitution $v_{n}=\sin \phi$ and $v_{\tau}=\cos \phi$. The construction of the boundary layer depends on the properties of the Milne problem for $f^{\epsilon}(\eta, \theta, \phi)$ in the domain $(\eta, \theta, \phi) \in[0, \infty) \times[-\pi, \pi) \times[-\pi, \pi)$

$$
\left\{\begin{aligned}
\sin \phi \frac{\partial f^{\epsilon}}{\partial \eta}+F(\epsilon ; \eta) \cos \phi \frac{\partial f^{\epsilon}}{\partial \phi}+f^{\epsilon}-\bar{f}^{\epsilon} & =S^{\epsilon}(\eta, \theta, \phi) \\
f^{\epsilon}(0, \theta, \phi) & =h^{\epsilon}(\theta, \phi) \text { for } \sin \phi>0 \\
\lim _{\eta \rightarrow \infty} f^{\epsilon}(\eta, \theta, \phi) & =f_{\infty}^{\epsilon}(\theta)
\end{aligned}\right.
$$

where

$$
F(\epsilon ; \eta)=-\frac{\epsilon \psi(\epsilon \eta)}{1-\epsilon \eta}, \quad \psi(\mu)= \begin{cases}1 & 0 \leq \mu \leq 1 / 2 \\ 0 & 3 / 4 \leq \mu \leq \infty\end{cases}
$$

and

$$
\left|h^{\epsilon}(\theta, \phi)\right| \leq C, \quad\left|S^{\epsilon}(\eta, \theta, \phi)\right| \leq C e^{-\beta_{0} \eta}
$$

for C and β_{0} uniform in ϵ and θ.

ϵ-Milne Problem with Geometric Correction (Cont.)

Theorem

For $\beta>0$ sufficiently small, there exists a unique solution $f^{\epsilon}(\eta, \theta, \phi) \in L^{\infty}$ to the ϵ-Milne problem satisfying

$$
\left\|e^{\beta \eta}\left(f^{\epsilon}-f_{\infty}^{\epsilon}\right)\right\|_{L^{\infty} L^{\infty}} \leq C,
$$

where C depends on the data h^{ϵ} and S^{ϵ}.

Theorem

The solution $f^{\epsilon}(\eta, \theta, \phi)$ to the ϵ-Milne problem with $S^{\epsilon}=0$ satisfies the maximum principle, i.e.

$$
\min _{\sin \phi>0} h^{\epsilon}(\theta, \phi) \leq f^{\epsilon}(\eta, \theta, \phi) \leq \max _{\sin \phi>0} h^{\epsilon}(\theta, \phi)
$$

ϵ-Milne Problem with Geometric Correction (Cont.)

Basic ideas: penalized finite slab \rightarrow finite slab \rightarrow infinite slab; homogeneous \rightarrow inhomogeneous.
(1) Using energy estimate to define f_{∞}^{ϵ} and show

$$
\left.\| f^{\epsilon}-f_{\infty}^{\epsilon}\right) \|_{L^{2} L^{2}} \leq C
$$

(2) Using the characteristics to get

$$
\left.\left.\| f^{\epsilon}-f_{\infty}^{\epsilon}\right)\left\|_{L^{\infty} L^{\infty}} \leq C+C\right\| f^{\epsilon}-f_{\infty}^{\epsilon}\right) \|_{L^{2} L^{2}} .
$$

(3) Applying the similar techniques to the equation satisfied by $F^{\epsilon}=e^{\beta \eta f^{\epsilon}}$.

Remainder Estimate

Theorem

Assume $f(\vec{x}, \vec{v}) \in L^{\infty}\left(\Omega \times \mathcal{S}^{1}\right)$ and $g\left(x_{0}, \vec{v}\right) \in L^{\infty}\left(\Gamma^{-}\right)$. Then for the remainder equation

$$
\left\{\begin{aligned}
\epsilon \vec{w} \cdot \nabla_{x} R+R-\bar{R} & =f(\vec{x}, \vec{v}) \text { in } \Omega, \\
R\left(\vec{x}_{0}, \vec{w}\right) & =g\left(\vec{x}_{0}, \vec{w}\right) \text { for } \vec{x}_{0} \in \partial \Omega \text { and } \vec{v} \cdot \vec{n}<0,
\end{aligned}\right.
$$

there exists a unique solution $R(\vec{x}, \vec{v}) \in L^{\infty}\left(\Omega \times \mathcal{S}^{1}\right)$ satisfying

$$
\|R\|_{L^{\infty}\left(\Omega \times \mathcal{S}^{1}\right)} \leq C(\Omega)\left(\frac{1}{\epsilon^{5 / 2}}\|f\|_{L^{\infty}\left(\Omega \times \mathcal{S}^{1}\right)}+\|g\|_{L^{\infty}\left(\Gamma^{-}\right)}\right) .
$$

Main Theorem

Theorem

Assume $g\left(\vec{x}_{0}, \vec{v}\right) \in C^{2}\left(\Gamma^{-}\right)$. Then for the steady neutron transport equation (1), the unique solution $u^{\epsilon}(\vec{x}, \vec{v}) \in L^{\infty}\left(\Omega \times \mathcal{S}^{1}\right)$ satisfies

$$
\left\|u^{\epsilon}-U_{0}^{\epsilon}-\mathscr{U}_{0}^{\epsilon}\right\|_{L^{\infty}}=O(\epsilon)
$$

Moreover, if $g\left(\theta, v_{n}, v_{\tau}\right)=v_{\tau}$, then there exists a $C>0$ such that

$$
\left\|u^{\epsilon}-U_{0}-\mathscr{U}_{0}\right\|_{L^{\infty}} \geq C>0
$$

when ϵ is sufficiently small.

Remark

The comparison of L^{p} and L^{∞} result.

Main Theorem (Cont.)

Proof of $\left\|u^{\epsilon}-U_{0}-\mathscr{U}_{0}\right\|_{L^{\infty}} \geq C>0$ is as follows:
(1) The problem can be simplified into the estimate of solutions u in Milne problem and U in ϵ-Milne problems with exactly the same boundary data $v_{\tau}+2$.
(2) Rewriting the solution along the characteristics, we can obtain the estimate at point $(\eta, \phi)=(n \epsilon, \epsilon)$ as

$$
\begin{aligned}
u(n \epsilon, \epsilon) & =\bar{u}(0)+e^{-n}(-\bar{u}(0)+3)+o(\epsilon) \\
U(n \epsilon, \epsilon) & =\bar{U}(0)+e^{1-\sqrt{1+2 n}}(-\bar{U}(0)+3)+o(\epsilon)
\end{aligned}
$$

(3) We can derive $\lim _{\epsilon \rightarrow 0}\|(-\bar{u}(0)+3)-(-\bar{U}(0)+3)\|_{L^{\infty}}=0$. and $-\bar{u}(0)+3=O(1)$ with $-\bar{U}(0)+3=O(1)$. Due to the smallness of ϵ, we can obtain

$$
|U(n \epsilon, \epsilon)-u(n \epsilon, \epsilon)|=O(1)
$$

Unsteady Neutron Transport Equation

We consider a homogeneous isotropic unsteady neutron transport equation in a two-dimensional unit disk $\Omega=\left\{\vec{x}=\left(x_{1}, x_{2}\right):|\vec{x}| \leq 1\right\}$ with one-speed velocity $\Sigma=\left\{\vec{v}=\left(v_{1}, v_{2}\right): \vec{v} \in \mathcal{S}^{1}\right\}$ as

$$
\left\{\begin{align*}
\epsilon^{2} \partial_{t} u^{\epsilon}+\epsilon \vec{v} \cdot \nabla_{x} u^{\epsilon}+u^{\epsilon}-\bar{u}^{\epsilon} & =0 \text { in }[0, \infty) \times \Omega, \tag{2}\\
u^{\epsilon}(0, \vec{x}, \vec{v}) & =h(\vec{x}, \vec{v}) \text { in } \Omega \\
u^{\epsilon}\left(t, \vec{x}_{0}, \vec{v}\right) & =g\left(t, \vec{x}_{0}, \vec{v}\right) \text { for } \vec{v} \cdot \vec{n}<0 \text { and } \vec{x}_{0} \in \partial \Omega,
\end{align*}\right.
$$

where

$$
\bar{u}^{\epsilon}(t, \vec{x})=\frac{1}{2 \pi} \int_{\mathcal{S}^{1}} u^{\epsilon}(t, \vec{x}, \vec{v}) \mathrm{d} \vec{v}
$$

and \vec{n} is the outward normal vector on $\partial \Omega$, with the Knudsen number $0<\epsilon \ll 1$. The initial and boundary data satisfy the compatibility condition

$$
h\left(\vec{x}_{0}, \vec{v}\right)=g\left(0, \vec{x}_{0}, \vec{v}\right) \text { for } \vec{v} \cdot \vec{n}<0 \text { and } \vec{x}_{0} \in \partial \Omega
$$

Remainder Estimate

Theorem

Assume $f(t, \vec{x}, \vec{v}) \in L^{\infty}\left([0, \infty) \times \Omega \times \mathcal{S}^{1}\right), h(\vec{x}, \vec{v}) \in L^{\infty}\left(\Omega \times \mathcal{S}^{1}\right)$ and $g\left(t, x_{0}, \vec{v}\right) \in L^{\infty}\left([0, \infty) \times \Gamma^{-}\right)$. Then for the remainder equation
$\left(\epsilon^{2} \partial_{t} R+\epsilon \vec{V} \cdot \nabla_{x} R+R-\bar{R}=f(t, \vec{x}, \vec{v})\right.$ in $[0, \infty) \times \Omega$,

$$
R(0, \vec{x}, \vec{v})=h(\vec{x}, \vec{v}) \text { in } \Omega
$$

$$
R\left(t, \vec{x}_{0}, \vec{v}\right)=g\left(t, \vec{x}_{0}, \vec{v}\right) \text { for } \vec{v} \cdot \vec{n}<0 \text { and } \vec{x}_{0} \in \partial \Omega
$$

there exists a unique solution $R(t, \vec{x}, \vec{v}) \in L^{\infty}\left([0, \infty) \times \Omega \times \mathcal{S}^{1}\right)$ satisfying

$$
\begin{aligned}
& \|R\|_{L^{\infty}\left([0, \infty) \times \Omega \times \mathcal{S}^{1}\right)} \\
\leq & C(\Omega)\left(\frac{1}{\epsilon^{5 / 2}}\|f\|_{L^{\infty}\left([0, \infty) \times \Omega \times \mathcal{S}^{1}\right)}+\|h\|_{L^{\infty}\left(\Omega \times \mathcal{S}^{1}\right)}+\|g\|_{L^{\infty}\left([0, \infty) \times \Gamma^{-}\right)}\right) .
\end{aligned}
$$

Diffusive Limit

Theorem

Assume $g\left(t, \vec{x}_{0}, \vec{v}\right) \in C^{2}\left([0, \infty) \times \Gamma^{-}\right)$and $h(\vec{x}, \vec{v}) \in C^{2}\left(\Omega \times \mathcal{S}^{1}\right)$. Then for the unsteady neutron transport equation (2), the unique solution $u^{\epsilon}(t, \vec{x}, \vec{v}) \in L^{\infty}\left([0, \infty) \times \Omega \times \mathcal{S}^{1}\right)$ satisfies

$$
\left\|u^{\epsilon}-U_{0}^{\epsilon}-\mathscr{U}_{1,0}^{\epsilon}-\mathscr{U}_{B, 0}^{\epsilon}\right\|_{L^{\infty}}=O(\epsilon),
$$

for the interior solution U_{0}^{ϵ}, the initial layer $\mathscr{U}_{1,0}^{\epsilon}$, and the boundary layer $\mathscr{U}_{B, 0}^{\epsilon}$.

Boltzmann Equation near Maxwellian

We turn back to the stationary Boltzmann equation

$$
\left\{\begin{aligned}
\epsilon \vec{v} \cdot \nabla_{x} F^{\epsilon} & =Q\left[F^{\epsilon}, F^{\epsilon}\right] \text { in } \Omega \times \mathbb{R}^{2}, \\
F^{\epsilon}\left(\vec{x}_{0}, \vec{v}\right) & =B^{\epsilon}\left(\vec{x}_{0}, \vec{v}\right) \text { for } \vec{x}_{0} \in \partial \Omega \text { and } \vec{n}\left(\vec{x}_{0}\right) \cdot \vec{v}<0,
\end{aligned}\right.
$$

and

$$
F^{\epsilon}(\vec{x}, \vec{v})=\mu+\epsilon \mu^{\frac{1}{2}} f^{\epsilon}(\vec{x}, \vec{v})
$$

where f^{ϵ} satisfies the equation

$$
\left\{\begin{aligned}
\epsilon \vec{v} \cdot \nabla_{x} f^{\epsilon}+\mathcal{L}\left[f^{\epsilon}\right] & =\Gamma\left[f^{\epsilon}, f^{\epsilon}\right], \\
f^{\epsilon}\left(\vec{x}_{0}, \vec{v}\right) & =b\left(\vec{x}_{0}, \vec{v}\right) \text { for } \vec{n} \cdot \vec{v}<0 \text { and } \vec{x}_{0} \in \partial \Omega,
\end{aligned}\right.
$$

Hydrodynamic Limit of Stationary Boltzmann Equation

Theorem

For given $b\left(\vec{x}_{0}, \vec{v}\right)$ sufficiently small and $0<\epsilon \ll 1$, there exists a unique positive solution $F^{\epsilon}=\mu+\epsilon \mu^{\frac{1}{2}} f^{\epsilon}$ to the stationary Boltzmann equation, where

$$
f^{\epsilon}=\epsilon^{3} R_{N}+\left(\sum_{k=1}^{N} \epsilon^{k} \mathcal{F}_{k}^{\epsilon}\right)+\left(\sum_{k=1}^{N} \epsilon^{k} \mathscr{F}_{k}^{\epsilon}\right),
$$

for $N \geq 3, R_{N}$ satisfies the remainder equation, $\mathcal{F}_{k}^{\epsilon}$ and $\mathscr{F}_{k}^{\epsilon}$ are interior solution and boundary layer. Also, there exists a $C>0$ such that f^{ϵ} satisfies

$$
\left\|\langle\vec{v}\rangle^{\vartheta} \mathrm{e}^{\zeta \mid \overrightarrow{v^{2}} f^{\epsilon}}\right\|_{L^{\infty}} \leq C,
$$

for any $\vartheta>2,0 \leq \zeta \leq 1 / 4$.

Steady Navier-Stokes-Fourier System

In particular, the leading order interior solution satisfies

$$
\mathcal{F}_{1}^{\epsilon}=\sqrt{\mu}\left(\rho_{1}^{\epsilon}+u_{1,1}^{\epsilon} v_{1}+u_{1,2}^{\epsilon} v_{2}+\theta_{1}^{\epsilon}\left(\frac{|\vec{v}|^{2}-2}{2}\right)\right)
$$

with

$$
\left\{\begin{aligned}
\nabla_{x}\left(\rho_{1}^{\epsilon}+\theta_{1}^{\epsilon}\right) & =0, \\
\vec{u}_{1}^{\epsilon} \cdot \nabla_{x} \vec{u}_{1}^{\epsilon}-\gamma_{1} \Delta_{x} \vec{u}_{1}^{\epsilon}+\nabla_{x} P_{2}^{\epsilon} & =0 \\
\nabla_{x} \cdot \vec{u}_{1}^{\epsilon} & =0, \\
\vec{u}_{1}^{\epsilon} \cdot \nabla_{x} \theta_{1}^{\epsilon}-\gamma_{2} \Delta_{x} \theta_{1}^{\epsilon} & =0,
\end{aligned}\right.
$$

and suitable Dirichlet-type boundary conditions.

Ongoing and Future Work

- Steady problem in smooth domain(general smooth convex domain, annulus).
- Detailed structure of boundary layer(How does \mathscr{U}^{ϵ} depend on ϵ ?).
- Higher dimensional problems.
- Boltzmann equation with time.

Thank you for your attention!

