Landau damping of inhomogeneous states in the Kuramoto model

Helge Dietert

Joint work with Bastien Fernandez and David Gérard-Varet

Duke, 29 November 2016

	۲ 🗖		$\mathcal{O}\mathcal{Q}$
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	1 / 21

Aim: Model synchronisation behaviour of oscillators

• Describe each oscillator by a phase angle θ_i and intrinsic frequency ω_i

	< ۵	□▶ ◀@▶ ◀ె₽ ◀ె₽	500
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	2 / 21

Aim: Model synchronisation behaviour of oscillators

- Describe each oscillator by a phase angle θ_i and intrinsic frequency ω_i
- Note that we can take out a global rotation (drift) by setting $\omega_i \bar{\omega}$

	< ⊑	그 에 세례에 에 걸 에 여름에 가 걸 가 있다.	1
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	2 / 21

Aim: Model synchronisation behaviour of oscillators

- Describe each oscillator by a phase angle θ_i and intrinsic frequency ω_i
- Note that we can take out a global rotation (drift) by setting $\omega_i \bar{\omega}$
- Add a simple global coupling (strength K)

$$\partial_t \theta_i = \omega_i + \frac{\kappa}{N} \sum_{j=1}^N \sin(\theta_j - \theta_i)$$

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

Duke, 29 November 2016

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

SQA

2 / 21

Э

Aim: Model synchronisation behaviour of oscillators

- Describe each oscillator by a phase angle θ_i and intrinsic frequency ω_i
- Note that we can take out a global rotation (drift) by setting $\omega_i \bar{\omega}$
- Add a simple global coupling (strength K)

$$\partial_t \theta_i = \omega_i + \frac{\kappa}{N} \sum_{j=1}^N \sin(\theta_j - \theta_i)$$

• When does this coupling synchronise the system?

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

Duke, 29 November 2016 2 / 21

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

SQA

Э

Mean-field limit

We study the mean-field (continuum) limit as $N \to \infty$:

• Describe the state by the probability density $\rho(t, \cdot, \cdot)$, i.e.

$$\rho(t,\omega,\theta) \mathrm{d}\omega \mathrm{d}\theta$$

is the proportion of oscillators at time t with natural frequency within $[\omega, \omega + d\omega]$ and phase angle within $[\theta, \theta + d\theta]$.

• Evolution is given by the PDE

$$\begin{cases} \partial_t \rho(t,\theta,\omega) + \partial_\theta \left[\left(\omega + \frac{\kappa}{2i} (\eta(t) e^{-i\theta} - \overline{\eta(t)} e^{i\theta}) \right) \rho(t,\theta,\omega) \right] = 0, \\ \eta(t) = \int_{\theta=0}^{2\pi} e^{i\theta} \int_{\mathbb{R}} \rho(t,\theta,\omega) d\omega d\theta, \end{cases}$$

where $\eta(t)$ is the order parameter.

• As kinetic equation θ is the position and ω is the velocity.

(Paris 7 – Diderot) Helge Dietert

Mixing in the Kuramoto model

-∢ ⊒ ▶ Duke, 29 November 2016 3 / 21

◀┌┛▶ ◀ ≧ ▶

ъ

590

Homogeneous state

A spatial homogeneous state $\rho(\theta, \omega) = (2\pi)^{-1}g(\omega)$ is a stationary solution with order parameter $\eta = 0$.

Questions

- Is it stable?
- How is the phase transition as the order parameter increases?

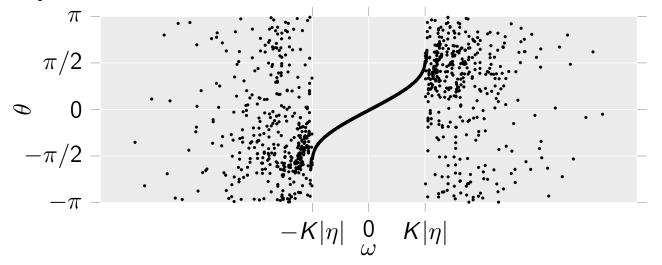
	< ۵	□▶ ◀圖▶ ◀필▶ ◀필▶ _ 필	うへで
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	4 / 21

Inhomogeneous state

If we look at a stationary solution with order parameter $\eta \neq 0$:

• Oscillators with $|\omega| \leq K |\eta|$ are trapped

• Oscillators with $|\omega| > K |\eta|$ are moving around with varying velocity These states are called *partially locked states* and we ask again whether they are stable.



Question

When are these states stable?

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

Duke, 29 November 2016

Intuitive picture

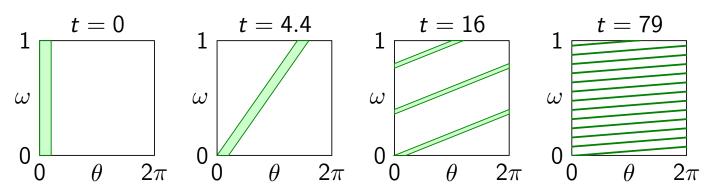
Two competing mechanisms

	< □	▋▶ ◀⋳₽▶ ◀ ≝ ▶ ◀ ≝ ▶ ─ ≝	4) Q (4
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	6 / 21

Intuitive picture

Two competing mechanisms

• Averaging through the free transport $\partial_t \rho + \partial_\theta [\omega \rho] = 0$: The heterogeneity of the natural frequencies ω mixes the distribution in phase space



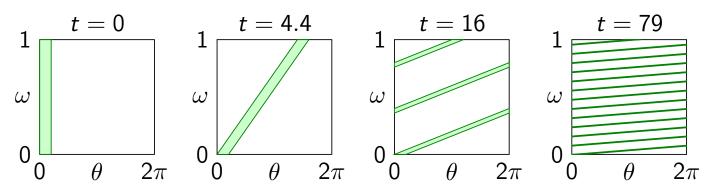
After integrating over ω the system spreads out: $\eta \rightarrow 0$ • Coupling term concentrates the phase angles.

	< 🗆	D → ∢⊡ → ∢ ≣ → ∢ ≣ → ⊂ ≣	~ ~ ~
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	6 / 21

Intuitive picture

Two competing mechanisms

• Averaging through the free transport $\partial_t \rho + \partial_\theta [\omega \rho] = 0$: The heterogeneity of the natural frequencies ω mixes the distribution in phase space



After integrating over ω the system spreads out: $\eta \rightarrow \mathbf{0}$

• Coupling term concentrates the phase angles.

Challenge

Find norms that capture the spreading of the free transport

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

Duke, 29 November 2016

Capturing Landau damping

Idea

Capture Landau damping by focusing on macroscopic quantities η .

Here η is just the order paramter. For the Vlasov–Poisson equation take the modes of the electric field.

Linearised behaviour

A perturbation u of a stationary state has the linear evolution operator $L = L_1 + L_2$ with

- L_1 is the transport operator under the stationary state.
- L_2 is a bounded operator depending only on $\eta[u]$ and models the interaction of the perturbation on the background state.

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

□ → < □ → < □ → < □ → < □ → < □ →
Duke, 29 November 2016

500

Volterra equation

By Duhamel's principle we find

$$u(t) = \mathrm{e}^{tL_1} u_{\mathrm{in}} + \int_0^t \mathrm{e}^{(t-s)L_1} L_2 u(s) \mathrm{d}s.$$

	< 🗆		$\mathcal{O}\mathcal{Q}\mathcal{O}$
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	8 / 21

Volterra equation

By Duhamel's principle we find

$$u(t) = \mathrm{e}^{tL_1} u_{\mathrm{in}} + \int_0^t \mathrm{e}^{(t-s)L_1} L_2 u(s) \mathrm{d}s.$$

Computing η from u gives that $\eta(t) = \eta[u(t)]$ satisfies the Volterra equation

$$\eta(t) + \int_0^t k(t-s)\eta(s)\mathrm{d}s = F(t),$$

where

- k is the interaction kernel,
- *F* is the forcing.

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

Duke, 29 November 2016 8 / 21

∢∄▶ ∢≧▶

< □ ▶

-∢ ≣ ▶

Đ.

5900

Resolvent

The solution to the Volterra equation

$$\eta(t) + \int_0^t k(t-s)\eta(s)\mathrm{d}s = F(t),$$

can be expressed with the resolvent r as

$$\eta(t) = F(t) - (r * F)(t).$$

	< ۵	1 > 《쿱 > 《로 > 《로 > _ 로	うくで
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	9 / 21

Resolvent

The solution to the Volterra equation

$$\eta(t) + \int_0^t k(t-s)\eta(s)\mathrm{d}s = F(t),$$

can be expressed with the resolvent r as

$$\eta(t) = F(t) - (r * F)(t).$$

The resolvent is the unique solution to

$$r = k - k * r = k - r * k.$$

Stability (Paley-Wiener, Gel'fand)

The resolvent r has the same weighted integrability as k apart from eigenmodes with eigenvalue z solving

$$(\mathcal{L}k)(z) = \int_0^\infty k(t) e^{-tz} \mathrm{d}t = -\frac{K}{2} \int_0^\infty \hat{g}(t) e^{-tz} \mathrm{d}t = -1.$$

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

Duke, 29 November 2016

Localise energy in Fourier

Observations

- The spatial mode I = 0 is the distribution of the natural frequencies and constant
- The positive modes $l \geq 1$ decouple from the negative modes $l \leq -1$

Take the Fourier transformation $\theta \to I$ and $\omega \to \xi$. The transform $\rho \to u$ evolves by

$$\partial_t u(t,1,\xi) = \partial_\xi u(t,1,\xi) + \frac{K}{2} \left[\eta(t) \, \hat{g}(\xi) - \overline{\eta(t)} \, u(t,2,\xi) \right]$$

and for $l \geq 2$

$$\partial_t u(t,l,\xi) = l \partial_\xi u(t,l,\xi) + \frac{Kl}{2} \left[\eta(t) u(t,l-1,\xi) - \overline{\eta(t)} u(t,l+1,\xi) \right]$$

and the coupling is modulated by the order parameter $\eta(t) = u(t, 1, 0)$

Helge Dietert (Paris 7 – Diderot) Mixing in the Kuramoto model

Duke, 29 November 2016

つへ

Localise energy in Fourier

Observations

- The spatial mode I = 0 is the distribution of the natural frequencies and constant
- The positive modes $l \geq 1$ decouple from the negative modes $l \leq -1$

Take the Fourier transformation $\theta \to I$ and $\omega \to \xi$. The transform $\rho \to u$ evolves by

$$\partial_t u(t,1,\xi) = \partial_\xi u(t,1,\xi) + \frac{K}{2} \left[\eta(t) \, \hat{g}(\xi) - \overline{\eta(t)} \, u(t,2,\xi) \right]$$

and for $l \geq 2$

$$\partial_t u(t,l,\xi) = l \partial_\xi u(t,l,\xi) + \frac{Kl}{2} \left[\eta(t) u(t,l-1,\xi) - \overline{\eta(t)} u(t,l+1,\xi) \right]$$

and the coupling is modulated by the order parameter $\eta(t) = u(t, 1, 0)$

Helge Dietert (Paris 7 – Diderot) Mixing in the Kuramoto model

Duke, 29 November 2016

つへ

Global stability result of the homogeneous state

Theorem (Global stability)

Let

$$\mathcal{K}_{ec} = rac{2}{\int_{\xi=0}^{\infty} |\hat{g}(\xi)| \mathrm{d}\xi}.$$

Then if $K < K_{ec}$, the evolution is stable in the sense that $\int_0^\infty |\eta(s)|^2 ds < \infty$.

	< □		$\exists \mathcal{O} \land \mathcal{O}$
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	11 / 21

Global stability result of the homogeneous state

Theorem (Global stability)

Let

$$\mathcal{K}_{ec} = rac{2}{\int_{\xi=0}^{\infty} |\hat{g}(\xi)| \mathrm{d}\xi}.$$

Then if $K < K_{ec}$, the evolution is stable in the sense that $\int_0^\infty |\eta(s)|^2 ds < \infty$.

Remark: For a Gaussian distribution $K_{ec} = K_c$ Proof: Use energy functional

$$I(t) = \int_{\xi=0}^{\infty} \sum_{l\geq 1} \frac{1}{l} |u(t,l,\xi)|^2 \phi(\xi) \mathrm{d}\xi,$$

where ϕ is increasing. Under this most coupling terms vanish due to the skew-symmetry.

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

Duke, 29 November 2016 11 / 21

《曰》《卽》《臣》《臣》

590

Ð.

Linearised system of the homogeneous state

In the linear setting only the first mode is interesting:

$$\partial_t u(t,1,\xi) = \partial_\xi u(t,1,\xi) + \frac{K}{2} \eta(t) \hat{g}(\xi)$$

Here $\hat{g}(\xi)$ is the constant $u(0,\xi)$ function. For $\eta(t) = u(t,1,0)$, find the Volterra equation (Duhamel's principle)

$$\eta(t) + (k * \eta)(t) = u_{in}(1, t)$$

with the convolution kernel

$$k(t)=-\frac{K}{2}\hat{g}(t)$$

Stability (Paley-Wiener)

If k is sufficiently decaying, the Volterra equation is stable iff

$$(\mathcal{L}k)(z) = \int_0^\infty k(t)e^{-tz}\mathrm{d}t = -\frac{K}{2}\int_0^\infty \hat{g}(t)e^{-tz}\mathrm{d}t \neq -1 \quad \forall \Re z \ge 0.$$

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

Duke, 29 November 2016

lovember 2016 12 / 21

Stability of incoherent state

Linear stability

If the linear stability condition is satisfied, then we have decay as expected from the linear transport:

- If $|u(1,\xi)| \leq \mathrm{e}^{-ax}$, then η decays as e^{-at}
- If $|u(1,\xi)| \leq (1+t)^{-k}$, then η decays as $(1+t)^{-k}$

Nonlinear stability

Can propagate control in

$$\sup_{l\geq 1}\sup_{\xi\in\mathbb{R}}|u(t,l,\xi)|\mathrm{e}^{a(\xi+tl/2)}|$$

and

$$\sup_{I\geq 1} \sup_{\xi\in \mathbb{R}^+} |u(t,I,\xi)| rac{(1+\xi+t)^b}{(1+t)^{lpha(I-1)}}.$$

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

Duke, 29 November 2016

Center-manifold reduction

Eigenmodes

In the case the linear stability condition is violated, we have discrete eigenmodes, while the remainder decays as the free transport. Aim: Reduce the dynamics to these eigenmodes for

- understanding the bifurcation behaviour
- (later) handle the rotation invariance of the partially locked states

Center manifold reduction

Can reduce the dynamics to the amplitude along the eigenvector with nonlinear correction around the bifurcation.

Helge Dietert (Paris 7 – Diderot) Mixing in the Kuramoto model

Duke, 29 November 2016

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

500

Stability of the partially inhomogeneous states

We now study the stability of partially locked states.

• Partially locked states have a rotation symmetry and thus we cannot expect decay to the same state.

Theorem (Stability)

If a partially locked states is linearly stable, then perturbed initial data will converge to the initial data up to a possible small rotation.

	< □	□▶ ◀륨▶ ◀륨▶ ◀륨▶	■
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	15 / 21

Duhamel reduction

Recall the evolution equation

$$\begin{cases} \partial_t \rho(t,\theta,\omega) + \partial_\theta \left[\left(\omega + \frac{\kappa}{2i} (\eta(t) e^{-i\theta} - \overline{\eta(t)} e^{i\theta}) \right) \rho(t,\theta,\omega) \right] = 0, \\ \eta(t) = \int_{\theta=0}^{2\pi} e^{i\theta} \int_{\mathbb{R}} \rho(t,\theta,\omega) d\omega d\theta \end{cases}$$

or in Fourier

$$\partial_t u(t,l,\xi) = l \partial_\xi u(t,l,\xi) + \frac{Kl}{2} \left[\eta(t) u(t,l-1,\xi) - \overline{\eta(t)} u(t,l+1,\xi) \right].$$

Helge Dietert (Paris 7 – Diderot)Mixing in the Kuramoto modelDuke, 29 November 201616 / 21

Duhamel reduction

Recall the evolution equation

$$\begin{cases} \partial_t \rho(t,\theta,\omega) + \partial_\theta \left[\left(\omega + \frac{\kappa}{2i} (\eta(t) e^{-i\theta} - \overline{\eta(t)} e^{i\theta}) \right) \rho(t,\theta,\omega) \right] = 0, \\ \eta(t) = \int_{\theta=0}^{2\pi} e^{i\theta} \int_{\mathbb{R}} \rho(t,\theta,\omega) d\omega d\theta \end{cases}$$

or in Fourier

$$\partial_t u(t,l,\xi) = I \partial_\xi u(t,l,\xi) + \frac{KI}{2} \left[\eta(t) u(t,l-1,\xi) - \overline{\eta(t)} u(t,l+1,\xi) \right].$$

The modes are not decoupled anymore, however, the reduction to a Volterra equation still works!

	•	□▶ ∢@▶ ∢≣▶ ∢≣▶	$\exists \mathcal{O} \land \mathcal{O}$
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	16 / 21

Duhamel reduction

Recall the evolution equation

$$\begin{cases} \partial_t \rho(t,\theta,\omega) + \partial_\theta \left[\left(\omega + \frac{\kappa}{2i} (\eta(t) e^{-i\theta} - \overline{\eta(t)} e^{i\theta}) \right) \rho(t,\theta,\omega) \right] = 0, \\ \eta(t) = \int_{\theta=0}^{2\pi} e^{i\theta} \int_{\mathbb{R}} \rho(t,\theta,\omega) d\omega d\theta \end{cases}$$

or in Fourier

$$\partial_t u(t,l,\xi) = l \partial_\xi u(t,l,\xi) + \frac{Kl}{2} \left[\eta(t) u(t,l-1,\xi) - \overline{\eta(t)} u(t,l+1,\xi) \right].$$

The modes are not decoupled anymore, however, the reduction to a Volterra equation still works!

In order to find a *complex* linear equation, consider η and $\overline{\eta}$ as independent. We then find a *matrix* Volterra equation

$$\begin{pmatrix} \eta \\ \overline{\eta} \end{pmatrix} + \mathbf{k} * \begin{pmatrix} \eta \\ \overline{\eta} \end{pmatrix} = \mathbf{F}.$$

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

 Đ.

590

Linear stability

The kernel k(t) consists of entries like

$$\int_{0}^{2\pi} \int_{\mathbb{R}} \Big[\mathrm{e}^{tL_{1}} \partial_{\theta}(f_{\mathrm{st}} \mathrm{e}^{\pm \mathrm{i}\theta}) \Big](\theta, \omega) \mathrm{e}^{\pm \mathrm{i}\theta} \mathrm{d}\theta \mathrm{d}\omega.$$

Can be explicitly expressed using integrals!

	٩	□▶ ◀⊡▶ ◀ ≞▶ ◀ ≞▶	≣ ≁) Q (≯
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	17 / 21

Linear stability

The kernel k(t) consists of entries like

$$\int_{0}^{2\pi} \int_{\mathbb{R}} \Big[\mathrm{e}^{tL_{1}} \partial_{\theta}(f_{\mathrm{st}} \mathrm{e}^{\pm \mathrm{i}\theta}) \Big](\theta, \omega) \mathrm{e}^{\pm \mathrm{i}\theta} \mathrm{d}\theta \mathrm{d}\omega.$$

Can be explicitly expressed using integrals! Eigenmodes z at

$$\det\left[1+(\mathcal{L}k)(z)\right]=0.$$

] ▶	□▶ ◀륨▶ ◀불▶ ◀불▶	E nac
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	17 / 21

Linear analysis (analytic regularity)

For the perturbation u in Fourier space show decay in norms like

$$\|u\|_{a,k} = \left(\sum_{I\in\mathbb{N}}\int_{\mathbb{R}} e^{2a\xi} I^{2k} \left(|u_I(\xi)|^2 + |\partial_{\xi}u_I(\xi)|^2\right) \mathrm{d}\xi\right)^{1/2}$$

Strategy

• Split the linear evolution operator $L = L_1 + L_2$ where

- L_1 is the transport term under a fixed external forcing (matching the free transport operator)
- L₂ is the finite-rank operator corresponding to the coupling

(Paris 7 – Diderot) Helge Dietert

Mixing in the Kuramoto model

Duke, 29 November 2016

∢ □ ▶ ∢ ⊇ ▶

E 18 / 21

500

Linear analysis (analytic regularity)

For the perturbation u in Fourier space show decay in norms like

$$\|u\|_{a,k} = \left(\sum_{I\in\mathbb{N}}\int_{\mathbb{R}} e^{2a\xi} I^{2k} \left(|u_I(\xi)|^2 + |\partial_{\xi}u_I(\xi)|^2\right) \mathrm{d}\xi\right)^{1/2}$$

Strategy

- Split the linear evolution operator $L = L_1 + L_2$ where
 - L₁ is the transport term under a fixed external forcing (matching the free transport operator)
 - L_2 is the finite-rank operator corresponding to the coupling
- For L₁ replace the explicit solution formula with resolvent estimates in suitable Hilbert spaces
- For L_2 add a complexification by treating $\overline{\eta}$ as independent variable.

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

Duke, 29 November 2016

| 4 回 🕨 🔺 臣 🕨 🔺 臣 🕨

<u>ember</u> 2016 18 / 21

590

Nonlinear stability

Remove eigenmode from rotation symmetry

Express the solution as

$$f = R_{\Theta}(f_{\rm st} + u)$$

where R is the rotation and the angle Θ is continuously chosen such that u is in the stable subspace. Then

$$\partial_t u = Lu + P_s Q' u$$
 where $Q' u = Qu - \frac{2 \Re \langle Qu, u^* \rangle_{a,0}}{1 + 2 \Re \langle D \hat{R} u, u^* \rangle_{a,0}} D \hat{R} u.$

Close the estimate

Using the regularisation effect of the linear evolution between $\|\cdot\|_{a,-1}$ and $\|\cdot\|_{a,0}$, we can close the estimates.

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

< □ ▶

Duke, 29 November 2016 19 / 21

JQ C

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Sobolev regularity

Want to extend the stability result to Sobolev regularity.

Problem

The Fourier weight is $(1 + \xi)^k$ and a derivative looses one power in k. Hence the regularisation in k looses regularity in I.

	< ⊑	□▶ ◀륨▶ ◀륨▶ ◀륨▶	
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	20 / 21

Sobolev regularity

Want to extend the stability result to Sobolev regularity.

Problem

The Fourier weight is $(1 + \xi)^k$ and a derivative looses one power in k. Hence the regularisation in k looses regularity in l. Cannot control the nonlinearity as before.

	< ⊑	□▶ ◀륨▶ ◀들▶ ◀들▶	
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	20 / 21

Sobolev regularity

Want to extend the stability result to Sobolev regularity.

Problem

The Fourier weight is $(1 + \xi)^k$ and a derivative looses one power in k. Hence the regularisation in k looses regularity in I. Cannot control the nonlinearity as before.

Solution

Adapt the splitting and perturb the Volterra equation.

	< 1	그 사람 사람 사람 사람	E 996
Helge Dietert (Paris 7 – Diderot)	Mixing in the Kuramoto model	Duke, 29 November 2016	20 / 21

Thank you for listening!

Helge Dietert (Paris 7 – Diderot)

Mixing in the Kuramoto model

Duke, 29 November 2016

 $\bullet \square \bullet$

▲母▶ ▲臣▶ ▲臣▶ 臣 めへぐ 21 / 21