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Vast body of literature dedicated to study of information flows
(through networks).

* “Information” = wealth, opinions, spins, disease, productivity, ...
* Finite Markov Information Exchange (FMIE) processes are

examples of interacting particle systems on graphs.

D.Aldous, “Interacting Particle Systems as Stochastic Social Dynamics,”
preprint (submitted to the Bernoulli).



Components of model are
* Agents: i € G
* Strength of relationship (i.e., rate of random matching): \;; >0

* Informational state of agenti: ¢; € ©



A mean-field game model of information aggregation

Joint work with M. Sirbu (UT Austin) and |. Gamba (UT Austin)



Background:

* Agents are not particles!

* Each agent chooses a strategy to maximize/minimize their
individual utility/cost, given present state.

Optimal control (or stopping)

* Solutions are Nash equilibria, which are typically not unique. Of
interest to determine which of these are stable and Pareto optimal.



Model setup:

* (Binary) information aggregation—prior types add to give posterior
types

Bayesian framework:

* Consider a good with value given by a binary random variable X
which is either H (high) or L (low)

* Assume prior probabilities of value are unbiased:

P(X = H) = P(X = L) = 1/2.

D. Duffie, G. Giroux, G. Manso, “Information percolation.” American
Economic Journal: Microeconomics, 201 0.



* X unknown, must be estimated by agents based on acquired signals
* Signals {si}rcx are conditionally iid r.v's given X

* Signals correlated to X (i.e., informative)
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* Types = log-likelihoods:

log —

P(X = Hls1,...,5,) ~—. dFH
1
P(X = L|s1,...,5n) D log

* Types are additive if signal sets are disjoint

* Law of large numbers implies X is known a.s. if (countably) infinite
number of signals are observed:

it X = H
lim 6(s1,...,8,) = {+OO 1 P-a.s.

N—00 —o0 X =1L



Dynamics:
* (Uncountably) infinite number of agents

* |nitial condition: Agents given disjoint subsets S; C S = {si}1ex
of total signal set

* Randomly matched with others according to Poisson process with
common rate A across agents.

Note: Matched agents have non-intersecting interaction trees up to time of
meeting (a.s.). Requires construction of random matching mechanism on

appropriate probability space.

* At meetings, agents share all of their acquired signals exactly



Type of agent i at time t:  0i(¢) = 6(Fi(?))
Proportion of agents with type in dw at time t: »* (¢, dw)

* Without further modeling, complete description given by simple
aggregation equation
O™ = A (™ > p™ — )

* More complicated interactions lead to interesting kinetic equations
(derived from Kac-type models), which we do not discuss here.

Information acquisition in an economic/financial context is costly.
What does this imply?



Costly information aggregation:
* Agents participate in information market, in which they have an
opportunity to acquire information from others. After leaving

market, agents purchase contract based on their estimate of X.

* Individuals must balance the cost of acquiring additional
information with the cost of having a wrong estimate of X.

Cost for agent i:

Glr) =E UOT e c(s)ds + e g (0:(7))]

Note: Cost function is given by expectation under total probability (i.e., not
conditional on X).



* Agents choose their individual stopping times 7 in order to
minimize their total expected cost C;(7).

* Given X, 6;* (t) is a pure-jump (compound Poisson) Markov process
with jump size distribution p* (¢, dw).

* Generator of process given X:

(£) (t,v) = A / (n(v + w) — n(v))e* (¢, dw)
R

* The unconditional process has generator

1 H 1 L
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Obstacle problem determines stopping region:
max{f)’tv — L0+ v — ¢, v —g} =0

where we are solving for the value function v(¢, w)

K& = ConTivUATION REGION = .Svny (V—a_) ‘

This allow us to find the continuation region R; = supp(v — g)
(the part of the state space in which agents remain active).



Forward Kolmogorov equation determines evolution of mean-field:

P (t, dw) = P(6 (t) € dw|X)

0PN = (£X)'PX iRy, supp (PY) CRy

(]

* Law of large numbers (in number of agents) implies

O™ = (/J,i()T pin Ry, supp (MX) C Ry

* This is an aggregation model on a bounded domain:

&g,LLX =) (,LLX * ,LLX — ,LLX (Rt) ,LLX) n Rt



In summary:
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* Nash/MFG equilibria are fixed points of this map!



Related literature:

Optimal control of agents’ matching rates
D. Duffie, S. Malamud, G. Manso, “Information percolation with equilibrium
search dynamics,” Econometrica, 201 0.

Role of network geometry
D.Aldous, "When Knowing Early Matters: Gossip, Percolation and Nash
Equilibria,” ArXiv:1005.4846 (2010).

S. Chatterjee, R. Durrett, "Asymptotic behavior of Aldous’ gossip process,"
The Annals of Applied Probability (2010).



Related literature:

Mean-field game theory
J.M. Lasry, PL. Lions, O. Guéant, and coauthors (2006-)
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Stationary problem:

* Agent i replaced with new agent drawn from entrance distribution
7. ~ Exp(3) after exponentially distributed time (we assume these
distributions are symmetric w.r.t. X)
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Nash/MFG equilibria: (R, )

max{—[luv—k (W—I—ﬁ)U— (c+ﬁg),v—g} =0 = R= SUPP(U—Q)

0=A(p" s p" = p" RW") +B(x" —pM) InR,  supp(p”) CR.



Stationary problem:

e (R,u'") =(0,0) is a trivial equilibrium (sometimes stable!)

* This means that to find nontrivial Nash/MFG equilibria (particularly
the Pareto optimal one) we need to establish more than well-
posedness. This is typically difficult, but becomes more tractable if

we have some monotonicity in the system.

* Nontrivial equilibria depend on rates, costs, and entrance measure

Can we numerically compute Nash/MFG equilibria:?



* One idea: Derive exit cost by putting quadratic cost for wrong
guess for X (in terms of posterior probabilities, not posterior types!)
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F ORWARD SCHEME -
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A MFG model of economic growth due to innovation diffusion

R. Lucas, B. Moll,“Knowledge growth and the allocation of time,” preprint.
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Main idea: Should agents devote their time to production or learning
(for improved future production)?

* State of the economy completely described by distribution of
productivity levels. More easily described in terms of cost level
distribution:

There is a constant population of infinitely-lived agents of measure one. We identify each person

at each date as a realization of a draw z from a cost distribution, described by its cdf
F(z,t) = Pr{z < z at date t},

or equivalently by its density function f(z,t). This function f(-,¢) fully describes the state of

0

the economy at ¢. A person with cost draw Z can produce a = z~% units of a single consumption

good, where 6 € (0,1).°

30



* Agent allocates fraction of time for goods production, and other
time for improving knowledge (by searching for more productive
agents):

Every person has one unit of labor per year. He allocates his time between a fraction
1 —s(z,t) devoted to goods production and s(z,t) devoted to improving his production-related

knowledge. His goods production is

[1—s(z,t)] 27", (1)

Individual preferences are

V(s t) =E, { /t T 0 11 s(3(r), 7)] 2(r)dr

5(t) = z} . (2)
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* Agent learns by meeting another who is more knowledgeable
(asymmetric interaction):

We model the evolution of the distribution f(z,t) as a process of individuals meeting others
from the same economy, comparing ideas, improving their own productivity. The details of
this meeting and learning process are as follows.” A person z allocating the fraction s(z,t) to
learning observes the cost 2’ of one other person with probability « [s(z,t)] A over an interval
(t,t+ A), where « is a given function. He compares his own cost level z with the cost 2’ of
the person he meets, and leaves the meeting with the best of the two costs, min(z, z’). (These
meetings are not assumed to be symmetric: z learns from and perhaps imitates 2z’ but 2z’ does

not learn from z and in fact he may not be searching himself at all.)

32



* Therefore, forward equation is

PIED atstetnt o) [y 560 [ oty )50, 0.

8f((;, : ot —a(s(2,1)) /O Zf(y,t)dyf(z,t).
afg? t) . = f(z,1) /ZOO a(s(y,t)) f(y,t)dy.

* HJB (backward) equation is

pV (z,t) = max {(1 —s8)z " + 8‘/({(;’?5) + a(s) /OZ[V(y,t) — V(z,t)]f(y,t)dy} .

s€[0,1]
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* Self-similar solutions are “balanced growth paths” (states of the
economy where total production grows at a constant rate):

f(z,t) = e"g(ze™),

V(z,t) = e”v(ze),

s(z,t) = o(ze)

34



* The “stationary” MFG:

e Restate (BE), (LM) for BGP only. Use x = ze"*

(0 — 09) v(x)—v/(x)7x = max {(1 ~ o) + a(o) / V) — V(16 () dy}

o€[0,1]
o+ (= 0x) [ alon)ely)dy — alob)ot) [ oy
e Growth rate?
o0y =9(0) [~ alotn)oly)dy
v= | aletoty)dy

* No analytical results (all numerical)! Can one prove existence of
Nash equilibria and classify Pareto optimal ones!?
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