Emergence of flocking and consensus

Sébastien Motsch

Arizona State University

In collaboration with:

- Pierre-Emmanuel Jabin, Eitan Tadmor (CSCAMM, univ. Maryland)
- Alexander Reamy, Ryan Theisen (ASU), GuanLin Li (Georgia Tech)

Partially supported by NSF grant (DMS-1515592).

Transport phenomena in collective dynamics, ETH Zürich

Sébastien Motsch (ASU)

Emergence of flocking and consensus

Outline

Introduction

2 Flocking

- Cucker-Smale model
- Non-symmetric model

3 Consensus

- Cluster formation
- Heterophilious dynamics

4 Conclusion

Outline

Introduction

2 Flocking

- Cucker-Smale model
- Non-symmetric model

3 Consensus

- Cluster formation
- Heterophilious dynamics

4 Conclusion

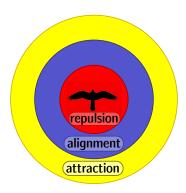
Flocking & Consensus

Flocking and consensus are typical collective behaviors. They result from **long-term social-interactions**.

Open questions:

- What are the social-interactions? (inverse problem)
- Given the rules of interactions, will a flock/consensus emerge? (*direct problem*)

Introduction



Ref.: Aoki, Huth & Wessel, Reynolds, Couzin...

Comparison experimental data

pattern formation (e.g. vortex)
 Bayesian statistics

Ref.: Deneubourg, Theraulaz, Giardina....

Convergence to equilibrium/stability

○ analytic study
 ○ energy estimate
 Ref.: Bertozzi, Carrillo, Raoul, Fetecau...

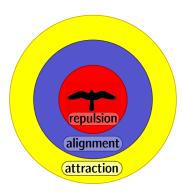
Macroscopic models

• statistical physics

kinetic equation

Ref.: Degond, Peurichard, Klar, Haskovec...

Introduction



Ref.: Aoki, Huth & Wessel, Reynolds, Couzin...

Comparison experimental data

- \circ pattern formation (e.g. vortex)
- Bayesian statistics

Ref.: Deneubourg, Theraulaz, Giardina....

Convergence to equilibrium/stability

- \circ analytic study
- energy estimate

Ref.: Bertozzi, Carrillo, Raoul, Fetecau...

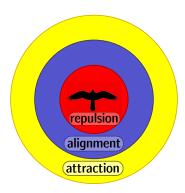
Macroscopic models

- o statistical physics
- kinetic equation

Ref.: Degond, Peurichard, Klar, Haskovec...

Sébastien Motsch (ASU)

Introduction



Ref.: Aoki, Huth & Wessel, Reynolds, Couzin...

Comparison experimental data

 \circ pattern formation (e.g. vortex)

• Bayesian statistics

Ref.: Deneubourg, Theraulaz, Giardina....

Convergence to equilibrium/stability

o analytic study
 o energy estimate
 Ref.: Bertozzi, Carrillo, Raoul, Fetecau...

Macroscopic models

• statistical physics

kinetic equation

Ref.: Degond, Peurichard, Klar, Haskovec...

Sébastien Motsch (ASU)

Emergence of flocking and consensus

Outline

Introduction

2 Flocking

- Cucker-Smale model
- Non-symmetric model

Consensus

- Cluster formation
- Heterophilious dynamics

4 Conclusion

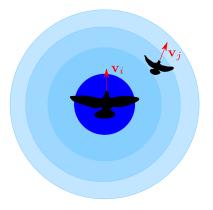
Consensus

Cucker-Smale model

N agents (x_i, v_i) :

$$egin{array}{rcl} \dot{x}_i &=& v_i, \ \dot{v}_i &=& rac{1}{N}\sum_{j=1}^N \phi_{ij}(v_j-v_i) \end{array}$$

where $\phi_{ij} = \phi(|x_j - x_i|)$ is the influence function (ϕ decays).

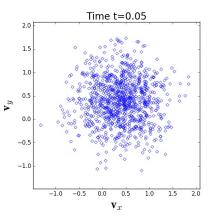


Introduction	Flocking o●oooooo	Consensus 0000000	Conclusion
Numerical e	xample		

Evolution of the positions x_i

Time: 0.00

Evolution of the velocities v_i



minoduction	0000000	0000000	Conclusion
Energy estin	nate:		
21	$-1 \sum y_{1} y_{2} ^{2}$	(kinatia anarry)	1

$$\mathcal{H} = \frac{1}{2N^2} \sum_{i,j} |v_j - v_i|^2$$
 (kinetic energy)

Using the symmetry $\phi_{ij} = \phi_{ji}$ (e.g. conservation of mean velocity):

$$rac{d\mathcal{H}}{dt} = -rac{1}{2N^2}\sum_{i,j}\phi_{ij}|v_j-v_i|^2 \leq -\phi(\max_{ij}|x_i-x_j|)\cdot\mathcal{H}.$$

10.1

	Flocking oo●ooooo	Consensus 0000000	Conclusion
Energy esti	mate:		
H	$=\frac{1}{2N^2}\sum_{i,j} v_j-v_i ^2$	(kinetic energy)	
Using the sy	mmetry $\phi_{ij}=\phi_{ji}$ (e.g.	conservation of mean v	/elocity):
$\frac{d\mathcal{H}}{dt} =$	$= -\frac{1}{2N^2} \sum_{i,j} \phi_{ij} \mathbf{v}_j - \mathbf{v}_i ^2$	$\frac{1}{2} \leq -\phi(\max_{ij} x_i - x_j) \cdot \gamma$	Н.
Theorem			
	ice function ϕ decays s = $+\infty$, then the dynam	lowly enough, nics converges to a floc	k.

Proof. Gronwall lemma + linearly growth of $|x_i - x_j|$: $\Rightarrow v_i(t) \xrightarrow{t \to \infty} v_*$ for all *i*

Ref. Cucker-Smale ('07), Ha-Tadmor ('08), Carrillo-Fornasier-Rosado-Toscani ('09), Ha-Liu ('09)...

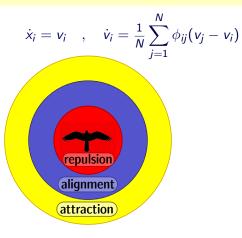
Sébastien Motsch (ASU)

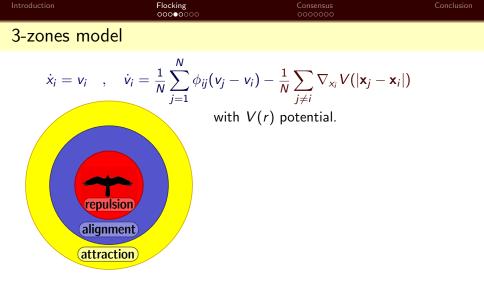
Emergence of flocking and consensus

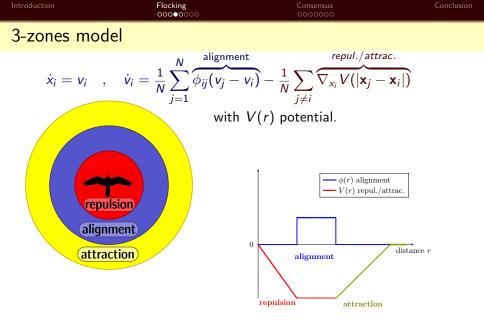
Flocking 000●0000

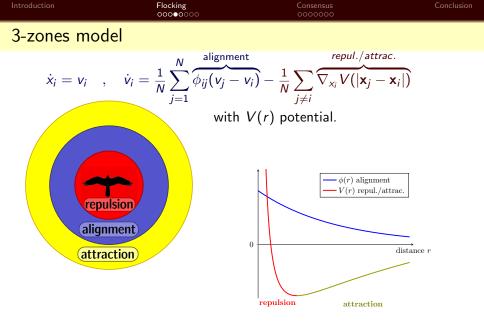
Consensus

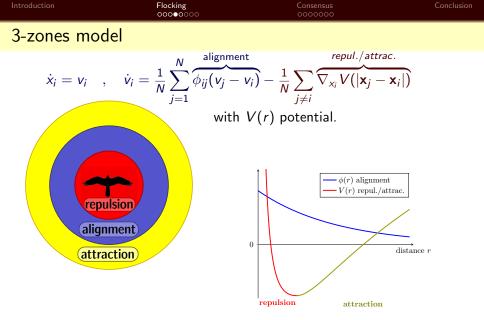
3-zones model

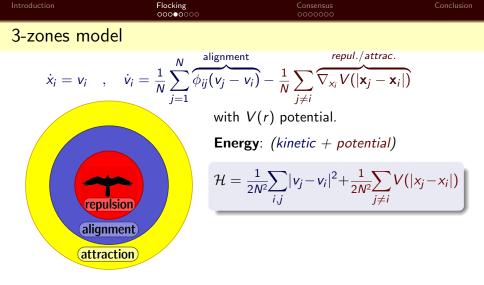


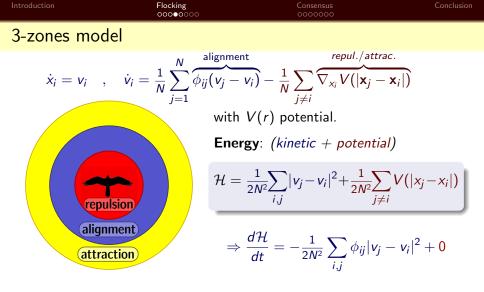


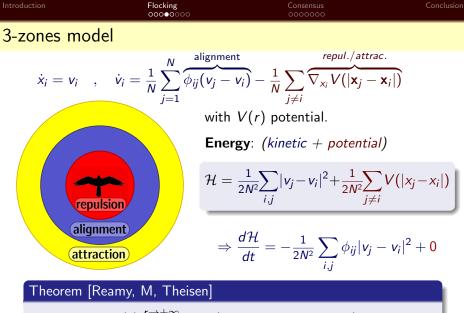






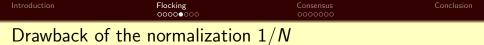






If $\phi > 0$ and $V(r) \xrightarrow{r \to +\infty} +\infty$ (confinement potential), then the dynamics converges to a **flock**.

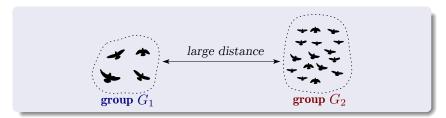
Sébastien Motsch (ASU)



In the "small" group G_1 alone:

$$\dot{\mathbf{v}}_i = -rac{1}{N_1} - \sum_{j=1}^{N_1} \phi_{ij}(\mathbf{v}_j - \mathbf{v}_i)$$

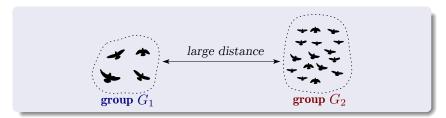
Drawback of the normalization 1/N



In the "small" group G_1 with the "large" group G_2 :

$$\dot{v}_i = rac{1}{N_1 + N_2} \sum_{j=1}^{N_1 + N_2} \phi_{ij}(v_j - v_i)$$

Drawback of the normalization 1/N



In the "small" group G_1 with the "large" group G_2 :

$$\dot{v}_{i} = \frac{1}{N_{1} + N_{2}} \sum_{j=1}^{N_{1} + N_{2}} \phi_{ij}(v_{j} - v_{i}) \approx \frac{1}{N_{1} + N_{2}} \sum_{j=1}^{N_{1}} \phi_{ij}(v_{j} - v_{i}) \approx 0!$$

Introduction	Flocking	Consensus	Conclusion
	00000000		

We propose the following dynamical system:

$$\dot{x}_i = v_i, \qquad \dot{v}_i = \frac{1}{\sum_{k=1}^N \phi_{ik}} \sum_{j=1}^N \phi_{ij} (v_j - v_i),$$

We weight by the total influence $\sum_{k=1}^{N} \phi_{ik}$ rather than N.

Introduction	Flocking	Consensus	Conclusion
	00000000		

We propose the following dynamical system:

$$\dot{x}_i = v_i, \qquad \dot{v}_i = \sum_{j=1}^N \frac{a_{ij}(v_j - v_i)}{v_j},$$

with
$$a_{ij} = \frac{\phi_{ij}}{\sum_{k=1}^{N} \phi_{ik}}$$
, $A = [a_{ij}]$ stochastic matrix $(\sum_{j} a_{ij} = 1)$.

We weight by the total influence $\sum_{k=1}^{N} \phi_{ik}$ rather than N.

Introduction	Flocking	Consensus	Conclusion
	00000000		

We propose the following dynamical system:

$$\dot{x}_i = v_i, \qquad \dot{v}_i = \sum_{j=1}^N a_{ij}(v_j - v_i),$$

with
$$a_{ij} = \frac{\phi_{ij}}{\sum_{k=1}^{N} \phi_{ik}}$$
, $A = [a_{ij}]$ stochastic matrix $(\sum_{j} a_{ij} = 1)$.

We weight by **the total influence** $\sum_{k=1}^{N} \phi_{ik}$ rather than N.

Consequences: \circ non-symmetric interaction: $a_{ij} \neq a_{ji}$ \circ momentum \overline{v} not preserved: $\frac{d}{dt}\overline{v} \neq 0$.

Question: Can we prove flocking for this dynamics?

Sébastien Motsch (ASU)

Introduction	Flocking ○○○○○○●○	Consensus 0000000	Conclusion
Flocking: ℓ	$^{\infty}$ approach		

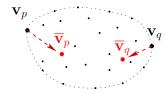
• **Trick**:
$$\dot{v}_i = \sum_j a_{ij}(v_j - v_i)$$

Introduction	Flocking ○○○○○○●○	Consensus 0000000	Conclusion
Flocking: <i>l</i>	$^{\infty}$ approach		

• Trick:
$$\dot{v}_i = ($$
 $\overline{v}_i - v_i)$ with $\overline{v}_i = \sum_j a_{ij} v_j$

Introduction	Flocking ○○○○○●○	Consensus 0000000	Conclusion
Flocking: ℓ	$^{\infty}$ approach		

• Trick:
$$\dot{v}_i = (\overline{v}_i - v_i)$$
 with $\overline{v}_i = \sum_i a_{ij} v_j$

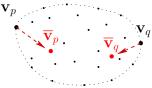


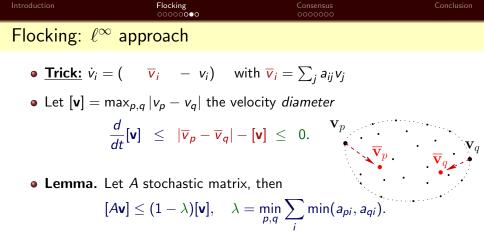
Introduction		Flocking ○○○○○○●○	Consensus 0000000	Conclusion
FI 1 ·	$n\infty$	1		

Flocking: ℓ^{∞} approach

• **Trick**:
$$\dot{v}_i = ($$
 $\overline{v}_i - v_i)$ with $\overline{v}_i = \sum_j a_{ij} v_j$

• Let $[\mathbf{v}] = \max_{p,q} |v_p - v_q|$ the velocity diameter $\frac{d}{dt} [\mathbf{v}] \leq |\overline{v}_p - \overline{v}_q| - [\mathbf{v}] \leq 0.$





 λ is a measure of the **connectivity** of *A*.

IntroductionFlocking
concoseConclusionFlocking: ℓ^{∞} approach• Trick: $\dot{v}_i = (\overline{v}_i - v_i)$ with $\overline{v}_i = \sum_j a_{ij} v_j$ • Let $[\mathbf{v}] = \max_{p,q} |v_p - v_q|$ the velocity diameter

$$\frac{d}{dt}[\mathbf{v}] \leq |\overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q| - [\mathbf{v}] \leq 0.$$

• Lemma. Let A stochastic matrix, then $[A\mathbf{v}] \leq (1-\lambda)[\mathbf{v}], \quad \lambda = \min_{p,q} \sum_{i} \min(a_{pi}, a_{qi}).$

 λ is a measure of the **connectivity** of *A*.

• Here, $\lambda \ge \phi([\mathbf{x}])$, where $[\mathbf{x}]$ is the diameter of positions. Thus, $\frac{d}{dt}[\mathbf{x}] \le [\mathbf{v}]$, $\frac{d}{dt}[\mathbf{v}] \le -\phi([\mathbf{x}])[\mathbf{v}]$.

Electring	on compositio inter	ationa	
	0000000	0000000	
Introduction	Flocking	Consensus	Conclusion

Flocking: non-symmetric interactions

Using a Lyapunov functional (Ha-Liu), we deduce:

Theorem [M,Tadmor]

If the influence function ϕ decays slowly enough, $\int_0^{\infty} \phi(r) dr = +\infty$, then the dynamics converges to a **flock**.

Remarks.

• Extensions for various non-symmetric model

 \Rightarrow add leaders

- The asymptotic velocity v_{*} is unknown:
 - \Rightarrow emergent quantity

		+:	
	0000000	0000000	
Introduction	Flocking	Consensus	Conclusion

Flocking: non-symmetric interactions

Using a Lyapunov functional (Ha-Liu), we deduce:

Theorem [M, Tadmor]

If the influence function ϕ decays slowly enough, $\int_0^{\infty} \phi(r) dr = +\infty$, then the dynamics converges to a **flock**.

Remarks.

• Extensions for various non-symmetric model

 \Rightarrow add leaders

• The asymptotic velocity v_{*} is unknown:

 \Rightarrow emergent quantity

• We need long-range interaction $\mathsf{Supp}(\phi) = [0, +\infty)$

Electring: non symmetric interactions			
	0000000	0000000	
Introduction	Flocking	Consensus	Conclusion

Flocking: non-symmetric interactions

Using a Lyapunov functional (Ha-Liu), we deduce:

Theorem [M,Tadmor]

If the influence function ϕ decays slowly enough, $\int_0^{\infty} \phi(r) dr = +\infty$, then the dynamics converges to a **flock**.

Remarks.

• Extensions for various non-symmetric model

 \Rightarrow add leaders

• The asymptotic velocity v_{*} is unknown:

 \Rightarrow emergent quantity

- We need long-range interaction $\mathsf{Supp}(\phi) = [0, +\infty)$
- Extension to kinetic equation: **Ref.**: Karper-Mellet-Trivisa, Kang-Vasseur...

Outline

Introduction

2 Flocking

- Cucker-Smale model
- Non-symmetric model

3 Consensus

- Cluster formation
- Heterophilious dynamics

4 Conclusion

Introduction	Flocking 0000000	Consensus ●000000	Conclusion
Consensus mo	del		

Opinions are represented by a vector $x_i \in \mathbb{R}^d$

$$\dot{x}_i = \sum_j a_{ij}(x_j - x_i), \qquad a_i = rac{\phi_{ij}}{\sum_k \phi_{ik}},$$

with $\phi_{ij} = \phi(|x_j - x_i|^2)$ and ϕ has a **compact support** in [0, 1].

Introduction	Flocking 0000000	Consensus ●000000	Conclusion
Consensus model			

Opinions are represented by a vector $x_i \in \mathbb{R}^d$

$$\dot{x}_i = \sum_j a_{ij}(x_j - x_i), \qquad a_i = \frac{\phi_{ij}}{\sum_k \phi_{ik}},$$

with $\phi_{ij} = \phi(|x_j - x_i|^2)$ and ϕ has a **compact support** in [0, 1].

Discretization:
$$x_i^{n+1} = \frac{\sum_j \phi_{ij} x_j^n}{\sum_k \phi_{ik}}$$

Hegselmann-Krause model. Ref. Blondel, Hendricks, Tsitsiklis...

Introduction	Flocking 0000000	Consensus ●000000	Conclusion
Consensus mode	2		

Opinions are represented by a vector $x_i \in \mathbb{R}^d$

$$\dot{x}_i = \sum_j a_{ij}(x_j - x_i), \qquad a_i = \frac{\phi_{ij}}{\sum_k \phi_{ik}},$$

with $\phi_{ij} = \phi(|x_j - x_i|^2)$ and ϕ has a **compact support** in [0, 1].

Discretization:
$$x_i^{n+1} = \frac{\sum_j \phi_{ij} x_j^n}{\sum_k \phi_{ik}}$$

Hegselmann-Krause model. Ref. Blondel. Hendricks. Tsitsiklis...

Question 1: do we have formation of consensus? $x_i(t) \xrightarrow{t \to \infty} x_*.$

Short answers:

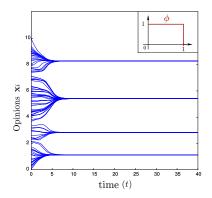
- yes if $|x_i(0) x_j(0)| < 1$ for all $i, j \ (\Rightarrow \text{ global interaction})$
- otherwise, it depends...

Sébastien Motsch (ASU)

Introduction	Flocking 00000000	Consensus o●ooooo	Conclusion

Numerical examples

Simulation 1D

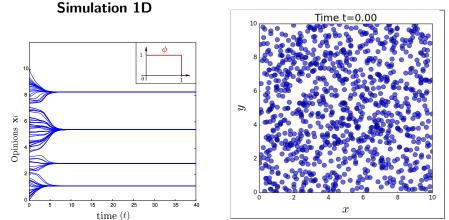


Flocking

Consensus

Numerical examples

Simulation 2D

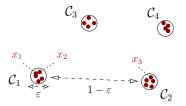


Introduction	Flocking 00000000	Consensus 0000000	Conclusion

Convergence to a stationary state

We observe the formation of **clusters**.

Question II: do the dynamics always converge? i.e. $x_i(t) \xrightarrow{t \to \infty} \overline{x}_i.$

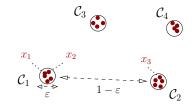


Convergence to a stationary state

We observe the formation of **clusters**.

Question II: *do the dynamics always converge? i.e.*

 $x_i(t) \xrightarrow{t \to \infty} \overline{x}_i.$



Theorem [Jabin, M]

Suppose the interaction function ϕ satisfies $|\phi'(r)|^2 \leq C\phi(r)$, then the dynamics converges.

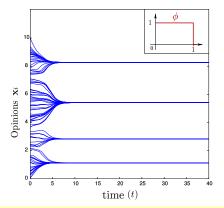
6			
	0000000	000000	
Introduction	Flocking	Consensus	Conclusion

Question III: how can we 'enhance' consensus formation? Which interaction function ϕ is more likely to lead to a consensus?

Components			
	0000000	000000	
Introduction	Flocking	Consensus	Conclusion

Question III: how can we 'enhance' consensus formation? Which interaction function ϕ is more likely to lead to a consensus?

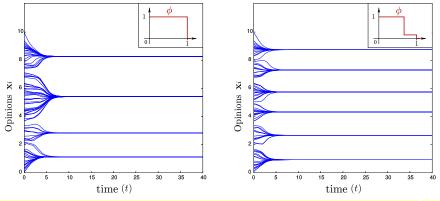
We investigate several influence functions ϕ .



Sébastien Motsch (ASU)

Question III: how can we 'enhance' consensus formation? Which interaction function ϕ is more likely to lead to a consensus?

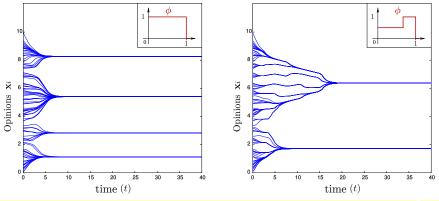
We investigate several influence functions ϕ .



Sébastien Motsch (ASU)

Question III: how can we 'enhance' consensus formation? Which interaction function ϕ is more likely to lead to a consensus?

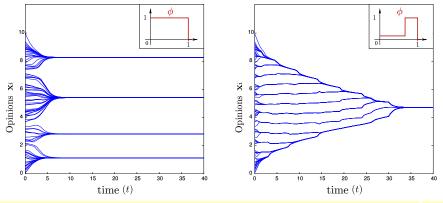
We investigate several influence functions ϕ .



Sébastien Motsch (ASU)

Question III: how can we 'enhance' consensus formation? Which interaction function ϕ is more likely to lead to a consensus?

We investigate several influence functions ϕ .



Sébastien Motsch (ASU)

Key Observation:

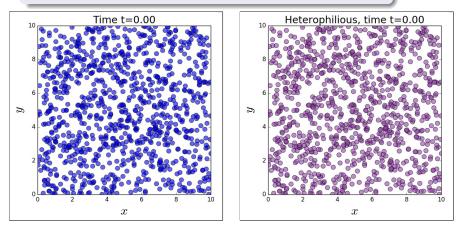
the stronger the influenced of 'close' neighbors, the less likely a consensus will form.

 \Rightarrow heterophily (*love of the different*) enhances consensus.

Key Observation:

the stronger the influenced of 'close' neighbors, the less likely a consensus will form.

 \Rightarrow heterophily (*love of the different*) enhances consensus.



Heterophilious dynamics

Analytic study is challenging

 \Rightarrow trace the connectivity of the graph A (e.g. eigenvalues)

Simplified model: nearest-neighbor interactions

$$\dot{x}_i = \sum_{i-1,i+1} \phi_{ij}(x_j - x_i).$$

Theorem [M,Tadmor]

if ϕ increases (on its support) then the connectivity is preserved: \Rightarrow if $\{x_i(0)\}_i$ connected, then it converges to a **consensus**.

Proof. Let $\Delta_i = x_{i+1} - x_i$ and $\Delta_p = \max_i \Delta_i$:

$$\frac{d}{dt} |\Delta_{\rho}|^{2} \leq \left(\phi_{(\rho-1)\rho} - 2\phi_{\rho(\rho+1)} + \phi_{(\rho+1)(\rho+2)} \right) |\Delta_{\rho}|^{2} \leq 0.$$

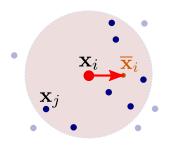
Introduction	Flocking 00000000	Consensus ○○○○○●	Conclusion

"No-one left behind" dynamics

Consensus dynamics

 $\dot{x}_i = \overline{x}_i - x_i$

with $\overline{x}_i = \sum_j a_{ij}(x_j - x_i)$

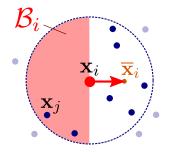


Flocking 0000000 Consensus

Conclusion

"No-one left behind" dynamics

Consensus dyn. *no-one left behind* $\dot{x}_i = \mu_i (\overline{x}_i - x_i)$ with $\overline{x}_i = \sum_j a_{ij} (x_j - x_i)$ and $\mu_i = \begin{cases} 0 & \text{if } x_j \in B_i \\ 1 & \text{otherwise} \end{cases}$

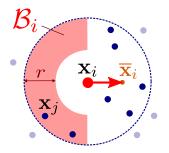


Flocking 0000000 Consensus

Conclusion

"No-one left behind" dynamics

Consensus dyn. no-one left behind $\dot{x}_i = \mu_i(\overline{x}_i - x_i)$ with $\overline{x}_i = \sum_j a_{ij}(x_j - x_i)$ and $\mu_i = \begin{cases} 0 & \text{if } x_j \in B_i \\ 1 & \text{otherwise} \end{cases}$



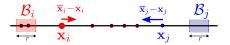
Introduction	Flocking 0000000	Consensus 000000	Conclusion

"No-one left behind" dynamics

Consensus dyn. *no-one left behind* $\dot{x}_i = \mu_i (\overline{x}_i - x_i)$

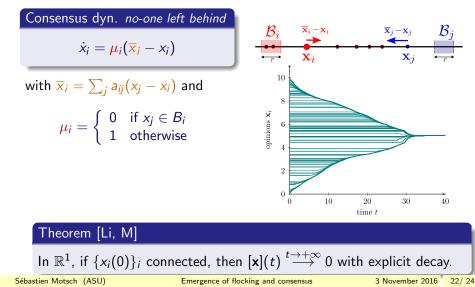
with $\overline{x}_i = \sum_j a_{ij}(x_j - x_i)$ and

$$\mu_i = \begin{cases} 0 & \text{if } x_j \in B_i \\ 1 & \text{otherwise} \end{cases}$$



Introduction	Flocking 00000000	Consensus ○○○○○○	Conclusion

"No-one left behind" dynamics

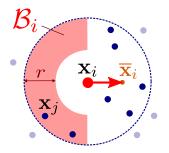


Flocking 0000000 Consensus

Conclusion

"No-one left behind" dynamics

Consensus dyn. no-one left behind $\dot{x}_i = \mu_i(\overline{x}_i - x_i)$ with $\overline{x}_i = \sum_j a_{ij}(x_j - x_i)$ and $\mu_i = \begin{cases} 0 & \text{if } x_j \in B_i \\ 1 & \text{otherwise} \end{cases}$



Introduction

Flocking 00000000 Consensus

Conclusion

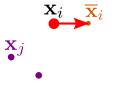
"No-one left behind" dynamics

Consensus dyn. no-one left behind

 $\dot{x}_i = \mu_i (\overline{x}_i - x_i)$

with $\overline{x}_i = \sum_i a_{ij}(x_j - x_i)$ and

$$\mu_i = \left\{egin{array}{cc} 0 & ext{if } x_j \in B_i \ 1 & ext{otherwise} \end{array}
ight.$$



Consensus

"No-one left behind" dynamics

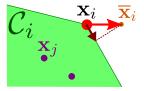
Consensus dyn. no-one left behind

 $\dot{x}_i = P_{\mathcal{C}_i}(\overline{x}_i - x_i)$

with $\overline{x}_i = \sum_j a_{ij}(x_j - x_i)$ and

 P_{C_i} orthogonal projection on

 $C_i = \{ v \mid \langle v, x_j - x_i \rangle \ge 0, \forall x_j \in B_i \}.$



Consensus

"No-one left behind" dynamics

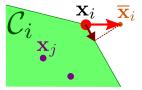
Consensus dyn. no-one left behind

 $\dot{x}_i = P_{\mathcal{C}_i}(\overline{x}_i - x_i)$

with $\overline{x}_i = \sum_j a_{ij}(x_j - x_i)$ and

 P_{C_i} orthogonal projection on

$$\mathcal{C}_i = \{ \mathbf{v} \mid \langle \mathbf{v}, x_j - x_i \rangle \geq 0, \, \forall x_j \in \mathcal{B}_i \}.$$



Theorem [Li, M]

In \mathbb{R}^d , if $\{x_i(0)\}_i$ connected, then $[\mathbf{x}](t) \xrightarrow{t \to +\infty} 0$ with explicit decay.

Sébastien Motsch (ASU)

Outline

Introduction

2 Flocking

- Cucker-Smale model
- Non-symmetric model

3 Consensus

- Cluster formation
- Heterophilious dynamics

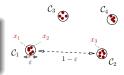
4 Conclusion

Summary/Perspectives

Summary

- Large time behavior for model of flocking
 - \Rightarrow flocking for the 3-zones model
 - \Rightarrow method for non-symmetric models

- \Rightarrow convergence to cluster formation
- \Rightarrow enhancing consensus ("heterophilia")
- \Rightarrow enforcing consensus ("no-one left behind")



Perspectives

- Control the dynamics
 - ⇒ M. Caponigro, N. Pouradier-Duteil, B. Piccoli...
- Mixing behaviors (heterogeneity)
 - $\Rightarrow \textit{Daniel Weser}$