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Flocking & Consensus

Flocking and consensus are typical collective behaviors.
They result from long-term social-interactions.

Open questions:

What are the social-interactions? (inverse problem)

Given the rules of interactions, will a flock/consensus
emerge? (direct problem)
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Comparison experimental data

◦ pattern formation (e.g. vortex)
◦ Bayesian statistics
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Cucker-Smale model

N agents (xi , vi ):

ẋi = vi ,

v̇i =
1

N

N∑
j=1

φij(vj − vi )

where φij = φ(|xj − xi |) is the
influence function (φ decays).
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Numerical example

Evolution of the positions xi Evolution of the velocities vi
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Energy estimate:

H =
1

2N2

∑
i ,j

|vj − vi |2 (kinetic energy)

Using the symmetry φij = φji (e.g. conservation of mean velocity):

dH
dt

= − 1

2N2

∑
i ,j

φij |vj − vi |2 ≤ −φ(max
ij
|xi − xj |) · H.

Theorem

If the influence function φ decays slowly enough,∫∞
0 φ(r) dr = +∞, then the dynamics converges to a flock.

Proof. Gronwall lemma + linearly growth of |xi − xj |:
⇒ vi (t)

t→∞−→ v∗ for all i

Ref. Cucker-Smale (’07), Ha-Tadmor (’08),

Carrillo-Fornasier-Rosado-Toscani (’09), Ha-Liu (’09)... A flock

v∗
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3-zones model

ẋi = vi , v̇i =
1

N

N∑
j=1

φij(vj − vi )

repulsion

alignment

attraction

with V (r) potential.

Energy: (kinetic + potential)

H =
1

2N2

∑
i ,j

|vj−vi |2+
1

2N2

∑
j 6=i

V (|xj−xi |)

⇒ dH
dt

= − 1

2N2

∑
i ,j

φij |vj − vi |2 + 0

Theorem [Reamy, M, Theisen]

If φ > 0 and V (r)
r→+∞−→ +∞ (confinement potential), then the

dynamics converges to a flock.
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N
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0

repulsion attraction

alignment
distance r

φ(r) alignment

V (r) repul./attrac.
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ẋi = vi , v̇i =
1

N

N∑
j=1

alignment︷ ︸︸ ︷
φij(vj − vi )− 1

N

∑
j 6=i

repul ./attrac.︷ ︸︸ ︷
∇xiV (|xj − xi |)

repulsion

alignment

attraction

with V (r) potential.

Energy: (kinetic + potential)

H =
1

2N2

∑
i ,j

|vj−vi |2+
1

2N2

∑
j 6=i

V (|xj−xi |)

⇒ dH
dt

= − 1

2N2

∑
i ,j

φij |vj − vi |2 + 0

Theorem [Reamy, M, Theisen]

If φ > 0 and V (r)
r→+∞−→ +∞ (confinement potential), then the

dynamics converges to a flock.
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Drawback of the normalization 1/N

group

In the “small” group G1 alone:

v̇i =
1

N1

N1∑
j=1

φij(vj − vi )
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Drawback of the normalization 1/N

group group

large distance

In the “small” group G1 with the “large” group G2:

v̇i =
1

N1 + N2
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φij(vj − vi )

Sébastien Motsch (ASU) Emergence of flocking and consensus 3 November 2016 11/ 24



Introduction Flocking Consensus Conclusion

Drawback of the normalization 1/N

group group

large distance

In the “small” group G1 with the “large” group G2:

v̇i =
1

N1 + N2

N1+N2∑
j=1

φij(vj − vi ) ≈
1

N1 + N2

N1∑
j=1

φij(vj − vi ) ≈ 0!
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We propose the following dynamical system:

ẋi = vi , v̇i =
1∑N

k=1 φik

N∑
j=1

φij (vj − vi ),

with aij =
φij∑N

k=1 φik
, A = [aij ] stochastic matrix (

∑
j aij = 1).

We weight by the total influence
∑N

k=1 φik rather than N.

Consequences: ◦ non-symmetric interaction:
�� ��aij 6= aji

◦ momentum v not preserved: d
dt v 6= 0.

Question: Can we prove flocking for this dynamics?
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Flocking: `∞ approach

Trick: v̇i =
∑

j aij(vj − vi )

Let [v] = maxp,q |vp − vq| the velocity diameter

d

dt
[v] ≤ |vp − vq| − [v] ≤ 0.

Lemma. Let A stochastic matrix, then

[Av] ≤ (1− λ)[v], λ = min
p,q

∑
i

min(api , aqi ).

λ is a measure of the connectivity of A.

Here, λ ≥ φ([x]), where [x] is the diameter of positions. Thus,

d

dt
[x] ≤ [v] ,

d

dt
[v] ≤ −φ([x])[v].

vp

vq
vq

vp
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Flocking: non-symmetric interactions

Using a Lyapunov functional (Ha-Liu), we deduce:

Theorem [M,Tadmor]

If the influence function φ decays slowly enough,∫∞
0 φ(r) dr = +∞, then the dynamics converges to a flock.

Remarks.

Extensions for various non-symmetric model
⇒ add leaders

The asymptotic velocity v∗ is unknown:
⇒ emergent quantity

We need long-range interaction
Supp(φ) = [0,+∞)

Extension to kinetic equation:
Ref.: Karper-Mellet-Trivisa, Kang-Vasseur...
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Consensus model

Opinions are represented by a vector xi ∈ Rd

ẋi =
∑
j

aij(xj − xi ), ai =
φij∑
k φik

,

with φij = φ(|xj − xi |2) and φ has a compact support in [0, 1].

Discretization: xn+1
i =

∑
j φijx

n
j∑

k φik
Hegselmann-Krause model.

Ref. Blondel, Hendricks, Tsitsiklis...

Question I: do we have formation of consensus?

xi (t)
t→∞−→ x∗.

Short answers:

yes if |xi (0)−xj(0)| < 1 for all i , j (⇒ global interaction)

otherwise, it depends...
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Numerical examples

Simulation 1D
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Simulation 2D
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Convergence to a stationary state

We observe the formation of
clusters.

Question II: do the dynamics
always converge? i.e.

xi (t)
t→∞−→ x i .

x1

ε

x2

1− ε

x3

C3 C4

C2
C1

Theorem [Jabin, M]

Suppose the interaction function φ satisfies |φ′(r)|2 ≤ Cφ(r), then
the dynamics converges.
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Consensus formation

Question III: how can we ’enhance’ consensus formation?
Which interaction function φ is more likely to lead to a consensus?

We investigate several influence functions φ.
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Key Observation:

the stronger the influenced of ’close’ neighbors,
the less likely a consensus will form.

⇒ heterophily (love of the different) enhances consensus.
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Heterophilious dynamics

Analytic study is challenging

⇒ trace the connectivity of the graph A (e.g. eigenvalues)

Simplified model: nearest-neighbor interactions

ẋi =
∑

i−1,i+1

φij(xj − xi ).

Theorem [M,Tadmor]

if φ increases (on its support) then the connectivity is preserved:

⇒ if {xi (0)}i connected, then it converges to a consensus.

Proof. Let ∆i = xi+1−xi and ∆p = maxi ∆i :

d

dt
|∆p|2 ≤

(
φ(p−1)p − 2φp(p+1) + φ(p+1)(p+2)

)
|∆p|2 ≤ 0. �

Sébastien Motsch (ASU) Emergence of flocking and consensus 3 November 2016 21/ 24



Introduction Flocking Consensus Conclusion

“No-one left behind” dynamics

Consensus dynamics

ẋi = x i − xi

with x i =
∑

j aij(xj − xi )

and
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“No-one left behind” dynamics

Consensus dyn. no-one left behind

ẋi = µi (x i − xi )

with x i =
∑

j aij(xj − xi ) and

µi =

{
0 if xj ∈ Bi

1 otherwise
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Sébastien Motsch (ASU) Emergence of flocking and consensus 3 November 2016 22/ 24



Introduction Flocking Consensus Conclusion
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Consensus dyn. no-one left behind

ẋi = µi (x i − xi )

with x i =
∑

j aij(xj − xi ) and

µi =

{
0 if xj ∈ Bi

1 otherwise

Theorem [Li, M]

In R1, if {xi (0)}i connected, then [x](t)
t→+∞−→ 0 with explicit decay.
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“No-one left behind” dynamics

Consensus dyn. no-one left behind

ẋi = PCi (x i − xi )

with x i =
∑

j aij(xj − xi ) and

PCi orthogonal projection on

Ci = {v | 〈v , xj−xi 〉 ≥ 0, ∀xj ∈ Bi}.
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Theorem [Li, M]
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Outline

1 Introduction

2 Flocking
Cucker-Smale model
Non-symmetric model

3 Consensus
Cluster formation
Heterophilious dynamics

4 Conclusion
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Summary/Perspectives

Summary

Large time behavior for model of flocking

⇒ flocking for the 3-zones model
⇒ method for non-symmetric models

Opinion formation: cluster and consensus

⇒ convergence to cluster formation
⇒ enhancing consensus (“heterophilia”)
⇒ enforcing consensus (“no-one left behind”)

Perspectives

Control the dynamics
⇒ M. Caponigro, N. Pouradier-Duteil, B. Piccoli...

Mixing behaviors (heterogeneity)
⇒ Daniel Weser

A flock

v∗

x1

ε

x2

1− ε

x3

C3 C4

C2
C1
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