Dynamics of wavepackets in crystals by multiscale analysis

Alexander Watson1

Michael Weinstein12, Jianfeng Lu3

1Applied Physics and Applied Mathematics, Columbia University
2Mathematics, Columbia University 3Mathematics, Duke University

November 28, 2016
Motivation: dynamics of electrons in crystals

- **Idea:** Electron in a crystal moving under the influence of an applied electric field can be modeled as a *wavepacket* (localized, propagating) solution of Schrödinger’s equation

- **Seek an effective (simplified) description of the dynamics** (PDE → ODEs)

- **Assumption:** Potential *slowly-varying* relative to lattice constant; treat wavepacket as *localized* with respect to variation of potential, *spread* over a few lattice periods

1 Solid State Physics, Ashcroft and Mermin (1976).
First: wavepacket dynamics under the influence of a slowly-varying potential without periodic background

Model:

\[i \partial_t \psi^\epsilon = -\frac{1}{2} \Delta_x \psi^\epsilon + W(\epsilon x), \]

assume \(\epsilon \ll 1 \).

Re-scale:

\[x' := \epsilon x, \quad t' := \epsilon t, \quad \psi^{\epsilon'}(x', t') := \psi^\epsilon(x, t) \]

dropping primes we obtain equivalent form:

\[i \epsilon \partial_t \psi^\epsilon = -\epsilon^2 \frac{1}{2} \Delta_x \psi^\epsilon + W(x) \psi^\epsilon \]
WKB method

Model:
\[i\epsilon \partial_t \psi^\epsilon = -\epsilon^2 \frac{1}{2} \Delta_x \psi^\epsilon + W(x) \psi^\epsilon. \]

Make the WKB ansatz:
\[\psi^\epsilon(x, t) = e^{i\phi(x,t)/\epsilon} a^\epsilon(x, t) \]

Expanding \(a^\epsilon \) in powers of the small parameter:
\[a^\epsilon(x, t) = a^0(x, t) + \epsilon a^1(x, t) + \ldots \]

Construct an approximate solution by collecting terms \(\propto \epsilon^0, \epsilon^1 \ldots \) \(\implies \) equations for \(\phi, a^j \)
Analysis of terms $\propto \epsilon^0$

Equating terms in the expansion $\propto \epsilon^0$:

$$\left[\partial_t \phi + \frac{1}{2} (\nabla_x \phi)^2 + W(x) \right] a^0(x, t) = 0$$ (1)

For a non-trivial solution $a^0 \neq 0 \implies$ equation for phase $\phi(x, t)$:

$$\partial_t \phi + \frac{1}{2} (\nabla_x \phi)^2 + W(x) = 0$$

Known as the *eikonal*, Hamilton-Jacobi type.
Solution of eikonal equation

Fully nonlinear equation for $\phi(x, t)$:

$$\partial_t \phi + \frac{1}{2} (\nabla_x \phi)^2 + W(x) = 0$$

Solve by method of characteristics:

$$\dot{q}(t) = p(t), \quad \dot{p}(t) = -\nabla_q W(q(t))$$

$$q(0) = x, \quad p(0) = \nabla_x \phi(x, 0)$$

\uparrow equations of motion of Hamiltonian $\frac{1}{2} p^2 + W(q)$

$$\phi(q(t), t) = \int_0^t \frac{1}{2} p(t')^2 - W(q(t')) \, dt'$$

$\implies \phi(q(t), t)$ is the action along $q(t)$. Solution $\phi(x, t)$ explicit as long as flow map $x \mapsto q(t; x)$ invertible, if not: caustic.
Analysis of terms $\propto \epsilon$

Equating terms $\propto \epsilon \implies$ *transport equation* for $a^0(x, t)$:

$$\partial_t a^0 + \nabla_x \phi \cdot \nabla_x a^0 + \frac{1}{2} (\nabla^2_x \phi) a^0 = 0.$$

Again, solution explicit while $x \mapsto q(t; x)$ invertible (no caustics):

$$a^0(q(t; x), t) = \frac{1}{\sqrt{\text{Jacobian}(x \mapsto q(t; x))}} a^0(x, 0). \quad (3)$$

\implies initial data *transported along solutions of the characteristic equations* generated by $\mathcal{H} = \frac{1}{2} p^2 + W(q)$.

Rigorous error bound

\[i\epsilon \partial_t \psi^\epsilon = -\frac{1}{2} \epsilon^2 \Delta_x \psi^\epsilon + W(x) \psi^\epsilon \]

So far (formal analysis):
\[\psi^\epsilon(x, t) = e^{i\phi(x, t)/\epsilon} a^0(x, t) + O(\epsilon) \]
\(\phi, a^0 \) explicit (solve ODEs) up to time of first caustic \(T_C > 0 \).

How to make \(O(\epsilon) \) rigorous?

Define \(\eta^\epsilon(x, t) := \psi^\epsilon(x, t) - e^{i\phi(x, t)/\epsilon} a^0(x, t) \), assume \(\eta^\epsilon(x, 0) = 0 \). Then \(\eta^\epsilon \) satisfies:

\[i\epsilon \partial_t \eta^\epsilon = -\frac{1}{2} \epsilon^2 \Delta_x \eta^\epsilon + W(x) \eta^\epsilon + r^\epsilon, \quad (4) \]

Let \(T < T_C \). Standard \(L^2 \) estimate for solutions of (4):

\[\| \eta^\epsilon(\cdot, t) \|_{L^2} \leq \frac{1}{\epsilon} \int_0^t \| r^\epsilon(\cdot, t') \|_{L^2} \, dt' \quad (5) \]

Forms of \(\phi, a^0 \) \(\implies \) \(\sup_{t \in [0, T]} \| r^\epsilon(\cdot; t) \|_{L^2} \leq C_1 \epsilon^2 \),

\(L^2 \) estimate (5) \(\implies \) \(\sup_{t \in [0, T]} \| \eta^\epsilon(\cdot, t) \|_{L^2} \leq C_2 \epsilon \).
Motivation: dynamics of electrons in crystals

Seek *generalization* of WKB theory (geometric optics):

wavelength \ll scale of medium features

\rightarrow slowly varying *periodic* media:

wavelength \approx scale of periodicity of medium

\ll scale of *variation of periodic structure*

2 *Solid State Physics, Ashcroft and Mermin (1976).*
Outline of talk

- Generalization of WKB theory to slowly-varying periodic media by a *multi-scale* WKB ansatz
- Extensions of this description:
 - First-order corrections to dynamics
 - Dynamics at band crossings

Key tool: multi-scale *semiclassical wavepacket* ansatz

- Ongoing work/future directions
Model: Schrödinger’s equation

Non-dimensionalized Schrödinger equation:

\[i \partial_t \psi^\epsilon = -\frac{1}{2} \Delta_x \psi^\epsilon + U(x, \epsilon x) \psi^\epsilon \]

\(U \) periodic with respect to a \(d \)-dimensional lattice \(\Lambda \) in its first argument:

\[\forall \mathbf{v} \in \Lambda, \: U(x + \mathbf{v}, X) = U(x, X) \]

In this talk:

\[i \partial_t \psi^\epsilon = -\frac{1}{2} \Delta_x \psi^\epsilon + V(x) \psi^\epsilon + W(\epsilon x) \psi^\epsilon \]

\[\forall \mathbf{v} \in \Lambda, \: V(x + \mathbf{v}) = V(x) \]

recover standard WKB setting when \(V = 0 \).
Recap: spectral theory of periodic operators

- Recall the spectral theory of the operator with periodic potential ($\epsilon = 0$ case):

\[
h := -\frac{1}{2} \Delta z + V(z)
\]
\[
\forall \mathbf{v} \in \Lambda, \quad V(z + \mathbf{v}) = V(z)
\]

- Bloch’s theorem: bounded eigenfunctions of h satisfy the p-quasi-periodic boundary condition:

\[
h \Phi(z; p) = E(p) \Phi(z; p)
\]
\[
\forall \mathbf{v} \in \Lambda, \quad \Phi(z + \mathbf{v}) = e^{i p \cdot \mathbf{v}} \Phi(z; p)
\]

symmetry of BC \implies restrict p to a primitive cell of the reciprocal lattice: first Brillouin zone \mathcal{B}

- Fixed quasi-momentum p, self-adjoint elliptic eigenvalue problem \implies discrete real spectrum:

\[
E_1(p) \leq E_2(p) \leq ... \leq E_n(p) \leq ...
\]
Spectral theory of periodic operators

- Maps $p \in \mathcal{B} \rightarrow E_n(p) \in \mathbb{R}$ are the Bloch band dispersion surfaces

- The spectrum of $h = -\frac{1}{2} \Delta_z + V(z)$ is then the union of real intervals swept out by the Bloch band dispersion functions $E_n(p)$

3Fefferman, Lee-Thorp, Weinstein; PNAS 2014.
The set of Bloch waves (eigenfunctions) \(\{ \Phi_n(z; p) : n \in \mathbb{N}, p \in B \} \) is complete in \(L^2(\mathbb{R}^d) \).

Can decompose \(\Phi_n(z; p) = e^{ip \cdot z} \chi_n(z; p) \) where \(\chi_n(z; p) \) satisfies another self-adjoint elliptic eigenvalue problem with periodic boundary conditions:

\[
h(p) \chi(z; p) = E(p) \chi(z; p)
\]
\[
\forall \mathbf{v} \in \Lambda, \chi(z + \mathbf{v}) = \chi(z; p)
\]

(6) is the reduced Bloch eigenvalue problem.
Re-scaling

Model:
\[i \partial_t \psi^\epsilon = -\frac{1}{2} \Delta_x \psi^\epsilon + V(x) \psi^\epsilon + W(\epsilon x) \psi^\epsilon \]

Again, re-scale:
\[x' := \epsilon x, \ t' := \epsilon t, \ \psi'^\epsilon(x', t') := \psi^\epsilon(x, t) \]

Dropping the primes gives the equivalent formulation:
\[i \epsilon \partial_t \psi^\epsilon = -\epsilon^2 \frac{1}{2} \Delta_x \psi^\epsilon + V \left(\frac{x}{\epsilon} \right) \psi^\epsilon + W(x) \psi^\epsilon \]
Multiscale WKB method

\[i \epsilon \partial_t \psi^\epsilon = - \epsilon^2 \frac{1}{2} \Delta x \psi^\epsilon + V \left(\frac{x}{\epsilon} \right) \psi^\epsilon + W(x) \psi^\epsilon \]

Make the *multiscale WKB ansatz*:

\[\psi^\epsilon(x, t) = e^{i \phi(x, t)/\epsilon} f^\epsilon(z, x, t)|_{z=x/\epsilon} \]

Expanding \(f^\epsilon \) in powers of the small parameter:

\[f^\epsilon(z, x, t) = f^0(z, x, t) + \epsilon f^1(z, x, t) + \ldots \]

Impose that \(f^j \) have the periodicity of the lattice \(\Lambda \) in \(z \):

\[\forall v \in \Lambda, f^j(z + v, x, t) = f^j(z, x, t) \]

Equating terms of like order, we obtain equations for \(\phi, f^j \)
Analysis of terms $\propto \epsilon^0$

Equating terms in the expansion $\propto \epsilon^0$ obtain self-adjoint elliptic eigenvalue problem in z for f^0 which depends on x, t as parameters:

$$\left[\frac{1}{2}(\nabla_x \phi - i \nabla_z)^2 + V(z)\right]f^0(z, x, t) = \left[-\partial_t \phi - W(x)\right]f^0(z, x, t)$$

$\forall v \in \Lambda, f^0(z + v, x, t) = f^0(z, x, t)$. \hspace{1cm} (7)

Let E_n be an isolated Bloch band (non-degenerate eigenvalue):

$$\forall p \in B, E_{n-1}(p) < E_n(p) < E_{n+1}(p)$$

Then we can solve (7) by taking:

$$f^0(z, x, t) = a^0(x, t)\chi_n(z; \nabla_x \phi)$$

$$\partial_t \phi + E_n(\nabla_x \phi) + W(x) = 0$$
Eikonal equation

Again, *Eikonal* equation for $\phi(x, t)$:

$$\partial_t \phi + E_n(\nabla_x \phi) + W(x) = 0$$

Fully nonlinear, solve by *method of characteristics*:

$$\dot{q}(t) = \nabla_p E_n(p(t)), \quad \dot{p}(t) = -\nabla_q W(q(t))$$

$$q(0) = x, \quad p(0) = \nabla_x \phi(x, 0)$$

(8)

↑ equations of motion of Hamiltonian $E_n(p) + W(q)$

$$\phi(q(t), t) = \int_0^t \dot{q}(t') \cdot p(t') - E_n(p(t')) - W(q(t')) \, dt'$$

$\implies \phi(q(t), t)$ is the *action* along $q(t)$. Again, solution $\phi(x, t)$ explicit as long as $x \mapsto q(t; x)$ invertible, if not: *caustics.*
First order analysis

Equating terms proportional to $\epsilon +$ imposing periodic BCs obtain \textit{inhomogeneous} self-adjoint elliptic equation in z for f^1:

$$
\left[\frac{1}{2} (\nabla_x \phi - i \nabla_z)^2 + V(z) - E_n(\nabla_x \phi) \right] f^1(z, x, t)
$$

$$
= \left[i \partial_t + i (\nabla_x \phi - i \nabla_z) \cdot \nabla_x + i \frac{1}{2} \nabla^2_x \phi \right] f^0(z, x, t)
$$

Fredholm alternative \implies solvability equivalent to vanishing projection of RHS onto null-space of LHS operator \implies transport equation for a^0:

$$
\partial_t a^0 + \nabla_p E_n(\nabla_x \phi) \cdot \nabla_x a^0 + \frac{1}{2} \nabla_x \cdot \nabla_p E_n(\nabla_x \phi)
$$

$$
+ i \nabla_x W(x) \cdot \langle \chi_n(\cdot; \nabla_x \phi) | i \nabla_p \chi_n(\cdot; \nabla_x \phi) \rangle_{L^2(\mathbb{R}^d/\Lambda)} = 0
$$

\implies initial conditions are \textit{transported along solutions of the characteristic equations} generated by $\mathcal{H} = E_n(p) + W(q)$
Outline of talk

- Generalization of WKB theory to slowly-varying periodic media by a *multi-scale* WKB ansatz
- Extensions of this description:
 - First-order corrections to dynamics ($\propto \epsilon$)
 - Dynamics at band crossings (eigenvalue degeneracies)

Key tool: multi-scale *semiclassical wavepacket* ansatz

- First-order corrections \implies *spin Hall effect of light*:

4 [Bliokh, Niv, Kleiner, Hasman; Nature Photonics 2008.](#)

Let \((q(t), p(t))\) denote a classical trajectory generated by the Bloch band Hamiltonian \(H = E_n(p) + W(q)\) such that the band \(E_n\) is isolated at each \(p(t)\):

\[
\forall t \geq 0, E_{n-1}(p(t)) < E_n(p(t)) < E_{n+1}(p(t)).
\]

Then there exists a solution \(\psi^\epsilon(x, t)\) of the PDE:

\[
i\epsilon \partial_t \psi^\epsilon = -\epsilon^2 \frac{1}{2} \Delta_x \psi^\epsilon + V\left(\frac{x}{\epsilon}\right) \psi^\epsilon + W(x) \psi^\epsilon
\]

which is asymptotic as \(\epsilon \downarrow 0\) to a ‘semiclassical wavepacket’ up to ‘Ehrenfest time’ \(t \sim \ln 1/\epsilon\):

\[
\psi^\epsilon(x, t) = \\
\epsilon^{-d/4} e^{iS(t)/\epsilon} e^{-i p(t) \cdot q(t)/\epsilon} a\left(\frac{x - q(t)}{\epsilon^{1/2}}, t\right) e^{ip(t) \cdot x / \epsilon} \chi_n \left(\frac{x}{\epsilon}; p(t)\right) \\
+ O_{L^2_x(\mathbb{R}^d)}(\epsilon^{1/2} e^{Ct}).
\]
Precise interpretation of functions \((q(t), p(t))\)

Writing the solution in terms of the multiscale variables:

\[
\psi^\epsilon(x, t) = \tilde{\psi}^\epsilon(y, z, t) \bigg|_{y = \frac{x - q(t)}{\epsilon^{1/2}}, z = \frac{x}{\epsilon}} + O_{L^2_x(\mathbb{R}^d)}(\epsilon^{1/2})
\]

\(q(t), p(t)\) the center of mass and average quasi-momentum of the wavepacket, to leading order in \(\epsilon^{1/2}\):

\[
Q^\epsilon(t) := \int_{\mathbb{R}^d} x |\tilde{\psi}^\epsilon(y, z, t)|^2 \bigg|_{y = \frac{x - q(t)}{\epsilon^{1/2}}, z = \frac{x}{\epsilon}} \, dx
\]

\[
= q(t) + \epsilon^{1/2} \int_{\mathbb{R}^d} y |a(y, t)|^2 \, dy + O(\epsilon)
\]

\[
P^\epsilon(t) := \int_{\mathbb{R}^d} \overline{\tilde{\psi}^\epsilon(y, z, t)}(-i\epsilon^{1/2}\nabla_y)\tilde{\psi}^\epsilon(y, z, t) \bigg|_{y = \frac{x - q(t)}{\epsilon^{1/2}}, z = \frac{x}{\epsilon}} \, dx
\]

\[
= p(t) + \epsilon^{1/2} \int_{\mathbb{R}^d} a(y, t)(-i\nabla_y) a(y, t) \, dy + O(\epsilon)
\]
Theorem (Watson-Weinstein-Lu 2016)

1) The observables $Q^\epsilon(t)$ and $P^\epsilon(t)$, the center of mass and average quasi-momentum, satisfy the equations of motion:

$$
\dot{Q}^\epsilon(t) = \nabla P^\epsilon E_n(P^\epsilon(t)) + \epsilon C_1[a^\epsilon](t)
$$

$$
- \epsilon \dot{P}^\epsilon(t) \times F_n(P^\epsilon(t)) + O(\epsilon^{3/2})
$$

$$
\dot{P}^\epsilon(t) = -\nabla Q^\epsilon W(Q^\epsilon(t)) + \epsilon C_2[a^\epsilon](t) + O(\epsilon^{3/2})
$$

where $F_n(P^\epsilon)$ is the Berry curvature of the Bloch band. $C_1[a^\epsilon](t)$, $C_2[a^\epsilon](t)$ describe coupling to the wavepacket envelope $a^\epsilon(y, t)$, which satisfies:

$$
i \partial_t a^\epsilon = -\frac{1}{2} \nabla_y \cdot D_{P^\epsilon}^2 E_n(P^\epsilon(t)) \nabla_y a^\epsilon + \frac{1}{2} y \cdot D_{Q^\epsilon}^2 W(Q^\epsilon(t)) y a^\epsilon
$$
Theorem (Watson-Weinstein-Lu 2016 continued)

2) After an appropriate change of variables, the coupled dynamics of $Q^\epsilon(t), P^\epsilon(t), a^\epsilon(y, t)$ can be derived from the ϵ-dependent Hamiltonian:

$$
\mathcal{H}^\epsilon := E_n(P^\epsilon) + W(Q^\epsilon) + \epsilon \nabla Q^\epsilon W(Q^\epsilon) \cdot A_n(P^\epsilon) \\
+ \epsilon \frac{1}{2} \int_{\mathbb{R}^d} \nabla_y a^\epsilon \cdot D^2_{P^\epsilon} E_n(P^\epsilon) \nabla_y a^\epsilon \, dy + \epsilon \frac{1}{2} \int_{\mathbb{R}^d} y a^\epsilon \cdot D^2_{Q^\epsilon} W(Q^\epsilon) y a^\epsilon \, dy
$$

where $A_n(P^\epsilon)$ is the n-th band Berry connection.

$$
\dot{Q}^\epsilon = \nabla_{P^\epsilon} \mathcal{H}^\epsilon, \quad \dot{P}^\epsilon = -\nabla_{Q^\epsilon} \mathcal{H}^\epsilon, \quad \imath \partial_t a^\epsilon = \frac{\delta \mathcal{H}}{\delta a^\epsilon}
$$
Gaussian reduction of envelope equation

The equation satisfied by the wavepacket envelope:

\[i \partial_t a^\epsilon = -\frac{1}{2} \nabla_y \cdot D_{\mathcal{P}^\epsilon}^2 E_n(\mathcal{P}^\epsilon(t)) \nabla_y a^\epsilon + \frac{1}{2} y \cdot D_{\mathcal{Q}^\epsilon}^2 W(\mathcal{Q}^\epsilon(t)) y a^\epsilon \]

has family of exact solutions which form a basis e.g. time-dependent Gaussians\(^5\):

\[
a^\epsilon(y, t) = \frac{1}{[\det A^\epsilon(t)]^{1/2}} \exp \left(-\frac{1}{2} y \cdot B^\epsilon(t) A^\epsilon(t)^{-1} y \right)
\]

\[
\dot{A}^\epsilon(t) = i D_{\mathcal{P}^\epsilon}^2 E_n(\mathcal{P}^\epsilon) B^\epsilon(t), \quad \dot{B}^\epsilon(t) = i D_{\mathcal{Q}^\epsilon}^2 W(\mathcal{Q}^\epsilon) A^\epsilon(t) \quad (9)
\]

appropriate initial data \(\implies (\mathcal{Q}^\epsilon, \mathcal{P}^\epsilon, a^\epsilon) \) system reduces to ODEs

\(^5\)Hagedorn; Annals of Physics 1998.
Numerical simulation: $\epsilon = 0$, decoupled system

Study coupling of observables to wave-field:

- One-dimensional: $d = 1$
- Uniform background: $V \left(\frac{x}{\epsilon} \right) = 0$
- Gaussian envelope
- Applied potential $W(Q) = \frac{1}{6} Q^3 + \frac{1}{2} Q^2$
Numerical simulation: $\epsilon \neq 0$, coupled system

Simulation of full coupled system:

- Wave-field coupling has destabilizing effect on periodic orbits
- Wavepacket may escape potential well to $Q^c = -\infty$
Dynamics at band crossings

- Would like to relax the ‘isolated band’ assumption:

\[\forall t \geq 0, E_{n-1}(p(t)) < E_n(p(t)) < E_{n+1}(p(t)) \]

- Crossings usually associated with symmetries

- At crossings Bloch band functions: \(p \rightarrow (E_n(p), \chi_n(z; p)) \) not smooth in general, e.g. conical degeneracies (Dirac points) \(\Rightarrow \) restrict to \(d = 1 \)
Theorem (Watson-Weinstein 2016)

\(p^* \) denote a crossing point in \(d = 1 \)

\(E_+(p), E_-(p) \) denote smooth band functions at \(p^* \)

\((p_+(t), q_+(t)) \) denote a classical trajectory of the \(+\)-band Hamiltonian \(E_+(p) + W(q) \) s.t. \(p_+(0) = p^*, \dot{p}_+(0) \neq 0 \)

Then the solution of the PDE on a small interval \(t \in [-T, T] \), with initial data at \(t = -T \) a wavepacket associated with the \(+\)-band localized about \((p_+(-T), q_+(-T)) \), remains to leading order a wavepacket associated with the \(+\)-band localized about the classical trajectory \((p_+(t), q_+(t)) \ \forall t \in [-T, T] \).
Theorem (Watson-Weinstein 2016 ctd.)

At the crossing time $t = 0$, a wavepacket associated with E_- is excited whose centers $(q_-(t), p_-(t))$ follow the classical trajectory of the $-$-band Hamiltonian $E_-(p) + W(q)$ with initial data:

$$
q_-(0) = q_+(0) \\
p_-(0) = p_+(0) = p^*.
$$

This correction is of order $\epsilon^{1/2}$ (in $L^2_\times(\mathbb{R})$) and is explicitly characterized.
Remarks on band crossing result

- Proof is by matched asymptotic expansion: error in single-band approximation blows up as $t \uparrow 0$, resolution by more general ansatz which includes contributions from the band E_- \Rightarrow excited wave

- Since $\partial_p E_+(p^*) = -\partial_p E_-(p^*)$, the wavepacket ‘excited’ at the crossing has opposite group velocity. Call this a ‘reflected wave’

- Our result can be seen as an analog of those obtained by Hagedorn\(^6\) in the context of Born-Oppenheimer approximation of molecular dynamics

Recap of talk

- Generalization of WKB theory to slowly-varying periodic media by a *multi-scale* WKB ansatz
- Extensions of this description:
 - First-order corrections to dynamics
 - Dynamics at band crossings

Key tool: multi-scale *semiclassical wavepacket* ansatz

- **Ongoing work/future directions**
Ongoing work/future directions

- Schrödinger → Maxwell: spin Hall effect of light:

- Conical band crossings:

 e.g. *anisotropic* Maxwell’s equations, *honeycomb lattice potentials*