# Dynamics of wavepackets in crystals by multiscale analysis 

Alexander Watson ${ }^{1}$

Michael Weinstein ${ }^{12}$, Jianfeng Lu ${ }^{3}$

${ }^{1}$ Applied Physics and Applied Mathematics, Columbia University<br>${ }^{2}$ Mathematics, Columbia University ${ }^{3}$ Mathematics, Duke University

November 28, 2016

## Motivation: dynamics of electrons in crystals

- Idea: Electron in a crystal moving under the influence of an applied electric field can be modeled as a wavepacket (localized, propagating) solution of Schrödinger's equation
- Seek an effective (simplified) description of the dynamics (PDE $\rightarrow$ ODEs)
- Assumption: Potential slowly-varying relative to lattice constant; treat wavepacket as localized with respect to variation of potential, spread over a few lattice periods

${ }^{1}$ Solid State Physics, Ashcroft and Mermin (1976).

First: wavepacket dynamics under the influence of a slowly-varying potential without periodic background

Model:

$$
i \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+W(\epsilon \boldsymbol{x})
$$

assume $\epsilon \ll 1$.
Re-scale:

$$
\boldsymbol{x}^{\prime}:=\epsilon \boldsymbol{x}, t^{\prime}:=\epsilon t, \psi^{\epsilon \prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right):=\psi^{\epsilon}(\boldsymbol{x}, t)
$$

dropping primes we obtain equivalent form:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon}
$$

## WKB method

Model:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon} .
$$

Make the WKB ansatz:

$$
\psi^{\epsilon}(\boldsymbol{x}, t)=e^{i \phi(\boldsymbol{x}, t) / \epsilon} a^{\epsilon}(\boldsymbol{x}, t)
$$

Expanding $a^{\epsilon}$ in powers of the small parameter:

$$
a^{\epsilon}(\boldsymbol{x}, t)=a^{0}(\boldsymbol{x}, t)+\epsilon a^{1}(\boldsymbol{x}, t)+\ldots
$$

Construct an approximate solution by collecting terms $\propto \epsilon^{0}, \epsilon^{1} \ldots \Longrightarrow$ equations for $\phi, a^{j}$

## Analysis of terms $\propto \epsilon^{0}$

Equating terms in the expansion $\propto \epsilon^{0}$ :

$$
\begin{equation*}
\left[\partial_{t} \phi+\frac{1}{2}\left(\nabla_{\boldsymbol{x}} \phi\right)^{2}+W(\boldsymbol{x})\right] a^{0}(\boldsymbol{x}, t)=0 \tag{1}
\end{equation*}
$$

For a non-trivial solution $a^{0} \neq 0 \Longrightarrow$ equation for phase $\phi(\boldsymbol{x}, t)$ :

$$
\partial_{t} \phi+\frac{1}{2}\left(\nabla_{\boldsymbol{x}} \phi\right)^{2}+W(\boldsymbol{x})=0
$$

Known as the eikonal, Hamilton-Jacobi type.

## Solution of eikonal equation

Fully nonlinear equation for $\phi(\boldsymbol{x}, t)$ :

$$
\partial_{t} \phi+\frac{1}{2}\left(\nabla_{\boldsymbol{x}} \phi\right)^{2}+W(\boldsymbol{x})=0
$$

Solve by method of characteristics:

$$
\begin{align*}
& \dot{\boldsymbol{q}}(t)=\boldsymbol{p}(t), \dot{\boldsymbol{p}}(t)=-\nabla_{\boldsymbol{q}} W(\boldsymbol{q}(t))  \tag{2}\\
& \boldsymbol{q}(0)=\boldsymbol{x}, \boldsymbol{p}(0)=\nabla_{\boldsymbol{x}} \phi(\boldsymbol{x}, 0)
\end{align*}
$$

$\uparrow$ equations of motion of Hamiltonian $\frac{1}{2} \boldsymbol{p}^{2}+W(\boldsymbol{q})$

$$
\phi(\boldsymbol{q}(t), t)=\int_{0}^{t} \frac{1}{2} \boldsymbol{p}\left(t^{\prime}\right)^{2}-W\left(\boldsymbol{q}\left(t^{\prime}\right)\right) \mathrm{d} t^{\prime}
$$

$\Longrightarrow \phi(\boldsymbol{q}(t), t)$ is the action along $\boldsymbol{q}(t)$. Solution $\phi(\boldsymbol{x}, t)$ explicit as long as flow map $\boldsymbol{x} \mapsto \boldsymbol{q}(t ; \boldsymbol{x})$ invertible, if not: caustic.

## Analysis of terms $\propto \epsilon$

Equating terms $\propto \epsilon \Longrightarrow$ transport equation for $a^{0}(\boldsymbol{x}, t)$ :

$$
\partial_{t} a^{0}+\nabla_{\boldsymbol{x}} \phi \cdot \nabla_{\boldsymbol{x}} a^{0}+\frac{1}{2}\left(\nabla_{\boldsymbol{x}}^{2} \phi\right) a^{0}=0 .
$$

Again, solution explicit while $\boldsymbol{x} \mapsto \boldsymbol{q}(t ; \boldsymbol{x})$ invertible (no caustics):

$$
\begin{equation*}
a^{0}(\boldsymbol{q}(t ; \boldsymbol{x}), t)=\frac{1}{\sqrt{\operatorname{Jacobian}(\boldsymbol{x} \mapsto \boldsymbol{q}(t ; \boldsymbol{x}))}} a^{0}(\boldsymbol{x}, 0) \tag{3}
\end{equation*}
$$

$\Longrightarrow$ initial data transported along solutions of the characteristic equations generated by $\mathcal{H}=\frac{1}{2} \boldsymbol{p}^{2}+W(\boldsymbol{q})$.

## Rigorous error bound

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \epsilon^{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon}
$$

So far (formal analysis): $\psi^{\epsilon}(\boldsymbol{x}, t)=e^{i \phi(x, t) / \epsilon} a^{0}(\boldsymbol{x}, t)+O(\epsilon)$ $\phi, a^{0}$ explicit (solve ODEs) up to time of first caustic $T_{C}>0$.

How to make $O(\epsilon)$ rigorous?
Define $\eta^{\epsilon}(\boldsymbol{x}, t):=\psi^{\epsilon}(\boldsymbol{x}, t)-e^{i \phi(\boldsymbol{x}, t) / \epsilon} a^{0}(\boldsymbol{x}, t)$, assume $\eta^{\epsilon}(\boldsymbol{x}, 0)=0$. Then $\eta^{\epsilon}$ satisfies:

$$
\begin{equation*}
i \epsilon \partial_{t} \eta^{\epsilon}=-\frac{1}{2} \epsilon^{2} \Delta_{x} \eta^{\epsilon}+W(\mathbf{x}) \eta^{\epsilon}+r^{\epsilon} \tag{4}
\end{equation*}
$$

Let $T<T_{C}$. Standard $L^{2}$ estimate for solutions of (4):

$$
\begin{equation*}
\left\|\eta^{\epsilon}(\cdot, t)\right\|_{L^{2}} \leq \frac{1}{\epsilon} \int_{0}^{t}\left\|r^{\epsilon}\left(\cdot, t^{\prime}\right)\right\|_{L^{2}} \mathrm{~d} t^{\prime} \tag{5}
\end{equation*}
$$

Forms of $\phi, a^{0} \Longrightarrow \sup _{t \in[0, T]}\left\|r^{\epsilon}(\cdot ; t)\right\|_{L^{2}} \leq C_{1} \epsilon^{2}$,
$L^{2}$ estimate $(5) \Longrightarrow \sup _{t \in[0, T]}\left\|\eta^{\epsilon}(\cdot, t)\right\|_{L^{2}} \leq C_{2} \epsilon$,

## Motivation: dynamics of electrons in crystals

Seek generalization of WKB theory (geometric optics):
wavelength $\ll$ scale of medium features
$\rightarrow$ slowly varying periodic media:
wavelength $\approx$ scale of periodicity of medium
$\ll$ scale of variation of periodic structure


[^0]
## Outline of talk

- Generalization of WKB theory to slowly-varying periodic media by a multi-scale WKB ansatz
- Extensions of this description:
- First-order corrections to dynamics
- Dynamics at band crossings

Key tool: multi-scale semiclassical wavepacket ansatz

- Ongoing work/future directions


## Model: Schrödinger's equation

Non-dimensionalized Schrödinger equation:

$$
i \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+U(\boldsymbol{x}, \epsilon \boldsymbol{x}) \psi^{\epsilon}
$$

$U$ periodic with respect to a $d$-dimensional lattice $\Lambda$ in its first argument:

$$
\forall \boldsymbol{v} \in \Lambda, U(\boldsymbol{x}+\boldsymbol{v}, \boldsymbol{X})=U(\boldsymbol{x}, \boldsymbol{X})
$$

In this talk:

$$
\begin{aligned}
& i \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V(\boldsymbol{x}) \psi^{\epsilon}+W(\epsilon \boldsymbol{x}) \psi^{\epsilon} \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{x}+\boldsymbol{v})=V(\boldsymbol{x})
\end{aligned}
$$

recover standard WKB setting when $V=0$.

## Recap: spectral theory of periodic operators

- Recall the spectral theory of the operator with periodic potential ( $\epsilon=0$ case):

$$
\begin{aligned}
& h:=-\frac{1}{2} \Delta_{z}+V(z) \\
& \forall \boldsymbol{v} \in \Lambda, V(\boldsymbol{z}+\boldsymbol{v})=V(\boldsymbol{z})
\end{aligned}
$$

- Bloch's theorem: bounded eigenfunctions of $h$ satisfy the $\boldsymbol{p}$-quasi-periodic boundary condition:

$$
\begin{aligned}
& h \Phi(\boldsymbol{z} ; \boldsymbol{p})=E(\boldsymbol{p}) \Phi(\boldsymbol{z} ; \boldsymbol{p}) \\
& \forall \boldsymbol{v} \in \Lambda, \Phi(\boldsymbol{z}+\boldsymbol{v})=e^{i \boldsymbol{p} \cdot \boldsymbol{v}} \Phi(\boldsymbol{z} ; \boldsymbol{p})
\end{aligned}
$$

symmetry of $B C \Longrightarrow$ restrict $\boldsymbol{p}$ to a primitive cell of the reciprocal lattice: first Brillouin zone $\mathcal{B}$

- Fixed quasi-momentum $\boldsymbol{p}$, self-adjoint elliptic eigenvalue problem $\Longrightarrow$ discrete real spectrum:

$$
E_{1}(\boldsymbol{p}) \leq E_{2}(\boldsymbol{p}) \leq \ldots \leq E_{n}(\boldsymbol{p}) \leq \ldots
$$

## Spectral theory of periodic operators

- Maps $\boldsymbol{p} \in \mathcal{B} \rightarrow E_{n}(\boldsymbol{p}) \in \mathbb{R}$ are the Bloch band dispersion surfaces
- The spectrum of $h=-\frac{1}{2} \Delta_{z}+V(z)$ is then the union of real intervals swept out by the Bloch band dispersion functions $E_{n}(\boldsymbol{p})$

${ }^{3}$ Fefferman, Lee-Thorp, Weinstein; PNAS 2014.


## Spectral theory of periodic operators

- The set of Bloch waves (eigenfunctions) $\left\{\Phi_{n}(\boldsymbol{z} ; \boldsymbol{p}): n \in \mathbb{N}, \boldsymbol{p} \in \mathcal{B}\right\}$ is complete in $L^{2}\left(\mathbb{R}^{d}\right)$
- Can decompose $\Phi_{n}(\boldsymbol{z} ; \boldsymbol{p})=e^{i \boldsymbol{p} \cdot \boldsymbol{z}} \chi_{n}(\boldsymbol{z} ; \boldsymbol{p})$ where $\chi_{n}(\boldsymbol{z} ; \boldsymbol{p})$ satisfies another self-adjoint elliptic eigenvalue problem with periodic boundary conditions:

$$
\begin{align*}
& h(\boldsymbol{p}) \chi(\boldsymbol{z} ; \boldsymbol{p})=E(\boldsymbol{p}) \chi(\boldsymbol{z} ; \boldsymbol{p}) \\
& \forall \boldsymbol{v} \in \Lambda, \chi(\boldsymbol{z}+\boldsymbol{v})=\chi(\boldsymbol{z} ; \boldsymbol{p})  \tag{6}\\
& h(\boldsymbol{p}):=\frac{1}{2}\left(\boldsymbol{p}-i \nabla_{\boldsymbol{z}}\right)^{2}+V(\boldsymbol{z})
\end{align*}
$$

(6) is the reduced Bloch eigenvalue problem

## Re-scaling

Model:

$$
i \partial_{t} \psi^{\epsilon}=-\frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V(\boldsymbol{x}) \psi^{\epsilon}+W(\epsilon \boldsymbol{x}) \psi^{\epsilon}
$$

Again, re-scale:

$$
\boldsymbol{x}^{\prime}:=\epsilon \boldsymbol{x}, t^{\prime}:=\epsilon t, \psi^{\epsilon \prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right):=\psi^{\epsilon}(\boldsymbol{x}, t)
$$

Dropping the primes gives the equivalent formulation:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V\left(\frac{\boldsymbol{x}}{\epsilon}\right) \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon}
$$

## Multiscale WKB method

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V\left(\frac{\boldsymbol{x}}{\epsilon}\right) \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon}
$$

Make the multiscale WKB ansatz:

$$
\psi^{\epsilon}(\boldsymbol{x}, t)=\left.e^{i \phi(\boldsymbol{x}, t) / \epsilon} f^{\epsilon}(\boldsymbol{z}, \boldsymbol{x}, t)\right|_{\boldsymbol{z}=\frac{x}{\epsilon}}
$$

Expanding $f^{\epsilon}$ in powers of the small parameter:

$$
f^{\epsilon}(\boldsymbol{z}, \boldsymbol{x}, t)=f^{0}(\boldsymbol{z}, \boldsymbol{x}, t)+\epsilon f^{1}(\boldsymbol{z}, \boldsymbol{x}, t)+\ldots
$$

Impose that $f^{j}$ have the periodicity of the lattice $\Lambda$ in $z$ :

$$
\forall \boldsymbol{v} \in \Lambda, f^{j}(\boldsymbol{z}+\boldsymbol{v}, \boldsymbol{x}, t)=f^{j}(\boldsymbol{z}, \boldsymbol{x}, t)
$$

Equating terms of like order, we obtain equations for $\phi, f^{j}$

## Analysis of terms $\propto \epsilon^{0}$

Equating terms in the expansion $\propto \epsilon^{0}$ obtain self-adjoint elliptic eigenvalue problem in $\boldsymbol{z}$ for $f^{0}$ which depends on $\boldsymbol{x}, t$ as parameters:

$$
\begin{align*}
& {\left[\frac{1}{2}\left(\nabla_{\boldsymbol{x}} \phi-i \nabla_{\boldsymbol{z}}\right)^{2}+V(\boldsymbol{z})\right] f^{0}(\boldsymbol{z}, \boldsymbol{x}, t)=\left[-\partial_{t} \phi-W(\boldsymbol{x})\right] f^{0}(\boldsymbol{z}, \boldsymbol{x}, t)} \\
& \forall \boldsymbol{v} \in \Lambda, f^{0}(\boldsymbol{z}+\boldsymbol{v}, \boldsymbol{x}, t)=f^{0}(\boldsymbol{z}, \boldsymbol{x}, t) \tag{7}
\end{align*}
$$

Let $E_{n}$ be an isolated Bloch band (non-degenerate eigenvalue):

$$
\forall \boldsymbol{p} \in \mathcal{B}, E_{n-1}(\boldsymbol{p})<E_{n}(\boldsymbol{p})<E_{n+1}(\boldsymbol{p})
$$

Then we can solve (7) by taking:

$$
\begin{aligned}
& f^{0}(\boldsymbol{z}, \boldsymbol{x}, t)=a^{0}(\boldsymbol{x}, t) \chi_{n}\left(\boldsymbol{z} ; \nabla_{\boldsymbol{x}} \phi\right) \\
& \partial_{t} \phi+E_{n}\left(\nabla_{\boldsymbol{x}} \phi\right)+W(\boldsymbol{x})=0
\end{aligned}
$$

## Eikonal equation

Again, Eikonal equation for $\phi(\boldsymbol{x}, t)$ :

$$
\partial_{t} \phi+E_{n}\left(\nabla_{\boldsymbol{x}} \phi\right)+W(\boldsymbol{x})=0
$$

Fully nonlinear, solve by method of characteristics:

$$
\begin{align*}
& \dot{\boldsymbol{q}}(t)=\nabla_{\boldsymbol{p}} E_{n}(\boldsymbol{p}(t)), \dot{\boldsymbol{p}}(t)=-\nabla_{\boldsymbol{q}} W(\boldsymbol{q}(t))  \tag{8}\\
& \boldsymbol{q}(0)=\boldsymbol{x}, \boldsymbol{p}(0)=\nabla_{\boldsymbol{x}} \phi(x, 0)
\end{align*}
$$

$\uparrow$ equations of motion of Hamiltonian $E_{n}(\boldsymbol{p})+W(\boldsymbol{q})$

$$
\phi(\boldsymbol{q}(t), t)=\int_{0}^{t} \dot{\boldsymbol{q}}\left(t^{\prime}\right) \cdot \boldsymbol{p}\left(t^{\prime}\right)-E_{n}\left(\boldsymbol{p}\left(t^{\prime}\right)\right)-W\left(\boldsymbol{q}\left(t^{\prime}\right)\right) \mathrm{d} t^{\prime}
$$

$\Longrightarrow \phi(\boldsymbol{q}(t), t)$ is the action along $\boldsymbol{q}(t)$. Again, solution $\phi(\boldsymbol{x}, t)$ explicit as long as $\boldsymbol{x} \mapsto \boldsymbol{q}(t ; \boldsymbol{x})$ invertible, if not: caustics.

## First order analysis

Equating terms proportional to $\epsilon+$ imposing periodic BCs obtain inhomogeneous self-adjoint elliptic equation in $\boldsymbol{z}$ for $f^{1}$ :

$$
\begin{aligned}
& {\left[\frac{1}{2}\left(\nabla_{\boldsymbol{x}} \phi-i \nabla_{\boldsymbol{z}}\right)^{2}+V(\boldsymbol{z})-E_{n}\left(\nabla_{\boldsymbol{x}} \phi\right)\right] f^{1}(\boldsymbol{z}, \boldsymbol{x}, t)} \\
& =\left[i \partial_{t}+i\left(\nabla_{\boldsymbol{x}} \phi-i \nabla_{\boldsymbol{z}}\right) \cdot \nabla_{\boldsymbol{x}}+i \frac{1}{2} \nabla_{\boldsymbol{x}}^{2} \phi\right] f^{0}(\boldsymbol{z}, \boldsymbol{x}, t)
\end{aligned}
$$

Fredholm alternative $\Longrightarrow$ solvability equivalent to vanishing projection of RHS onto null-space of LHS operator $\Longrightarrow$ transport equation for $a^{0}$ :

$$
\begin{aligned}
& \partial_{t} a^{0}+\nabla_{\boldsymbol{p}} E_{n}\left(\nabla_{\boldsymbol{x}} \phi\right) \cdot \nabla_{\boldsymbol{x}} a^{0}+\frac{1}{2} \nabla_{\boldsymbol{x}} \cdot \nabla_{\boldsymbol{p}} E_{n}\left(\nabla_{\boldsymbol{x}} \phi\right) \\
& +i \nabla_{\boldsymbol{x}} W(\boldsymbol{x}) \cdot\left\langle\chi_{n}\left(\cdot ; \nabla_{\boldsymbol{x}} \phi\right) \mid i \nabla_{\boldsymbol{p}} \chi_{n}\left(\cdot ; \nabla_{\boldsymbol{x}} \phi\right)\right\rangle_{L^{2}\left(\mathbb{R}^{d} / \Lambda\right)}=0
\end{aligned}
$$

$\Longrightarrow$ initial conditions are transported along solutions of the characteristic equations generated by $\mathcal{H}=E_{n}(\boldsymbol{p})+W(\boldsymbol{q})$

## Outline of talk

- Generalization of WKB theory to slowly-varying periodic media by a multi-scale WKB ansatz
- Extensions of this description:
- First-order corrections to dynamics ( $\propto \epsilon$ )
- Dynamics at band crossings (eigenvalue degeneracies)

Key tool: multi-scale semiclassical wavepacket ansatz

- First-order corrections $\Longrightarrow$ spin Hall effect of light:


[^1]Theorem (Carles-Sparber 2008, Hagedorn 1980, Heller 1976) Let $(\boldsymbol{q}(t), \boldsymbol{p}(t))$ denote a classical trajectory generated by the Bloch band Hamiltonian $\mathcal{H}=E_{n}(\boldsymbol{p})+W(\boldsymbol{q})$ such that the band $E_{n}$ is isolated at each $\boldsymbol{p}(t)$ :

$$
\forall t \geq 0, E_{n-1}(\boldsymbol{p}(t))<E_{n}(\boldsymbol{p}(t))<E_{n+1}(\boldsymbol{p}(t)) .
$$

Then there exists a solution $\psi^{\epsilon}(\boldsymbol{x}, t)$ of the PDE:

$$
i \epsilon \partial_{t} \psi^{\epsilon}=-\epsilon^{2} \frac{1}{2} \Delta_{\boldsymbol{x}} \psi^{\epsilon}+V\left(\frac{\boldsymbol{x}}{\epsilon}\right) \psi^{\epsilon}+W(\boldsymbol{x}) \psi^{\epsilon}
$$

which is asymptotic as $\epsilon \downarrow 0$ to a 'semiclassical wavepacket' up to 'Ehrenfest time' $t \sim \ln 1 / \epsilon$ :

$$
\begin{aligned}
& \psi^{\epsilon}(\boldsymbol{x}, t)= \\
& \epsilon^{-d / 4} e^{i S(t) / \epsilon} e^{-i \boldsymbol{p}(t) \cdot \boldsymbol{q}(t) / \epsilon} a\left(\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, t\right) e^{i \boldsymbol{p}(t) \cdot \boldsymbol{x} / \epsilon} \chi_{n}\left(\frac{\boldsymbol{x}}{\epsilon} ; \boldsymbol{p}(t)\right) \\
& +O_{L_{\mathbf{x}}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{1 / 2} e^{C t}\right) .
\end{aligned}
$$

## Precise interpretation of functions $(\boldsymbol{q}(t), \boldsymbol{p}(t))$

Writing the solution in terms of the multiscale variables:

$$
\psi^{\epsilon}(\boldsymbol{x}, t)=\left.\tilde{\psi}^{\epsilon}(\boldsymbol{y}, \boldsymbol{z}, t)\right|_{\boldsymbol{y}=\frac{x-\boldsymbol{q}(t)}{\epsilon^{1 / 2}}, \boldsymbol{z}=\frac{x}{\epsilon}}+O_{L_{\chi}^{2}\left(\mathbb{R}^{d}\right)}\left(\epsilon^{1 / 2}\right)
$$

$\boldsymbol{q}(t), \boldsymbol{p}(t)$ the center of mass and average quasi-momentum of the wavepacket, to leading order in $\epsilon^{1 / 2}$ :

$$
\begin{aligned}
& \mathcal{Q}^{\epsilon}(t):=\int_{\mathbb{R}^{d}} \boldsymbol{x}\left|\tilde{\psi}^{\epsilon}(\boldsymbol{y}, \boldsymbol{z}, t)\right|_{\boldsymbol{y}=\frac{x-\boldsymbol{q}(t)}{\epsilon^{1 / 2}, z=\frac{x}{\epsilon}}} \mathrm{~d} \boldsymbol{x} \\
& =\boldsymbol{q}(t)+\epsilon^{1 / 2} \int_{\mathbb{R}^{d}} \boldsymbol{y}|a(\boldsymbol{y}, t)|^{2} \mathrm{~d} \boldsymbol{y}+O(\epsilon) \\
& \boldsymbol{P}^{\epsilon}(t):=\left.\int_{\mathbb{R}^{d}} \overline{\tilde{\psi}^{\epsilon}(\boldsymbol{y}, \boldsymbol{z}, t)}\left(-i \epsilon^{1 / 2} \nabla_{\boldsymbol{y}}\right) \tilde{\psi}^{\epsilon}(\boldsymbol{y}, \boldsymbol{z}, t)\right|_{\boldsymbol{y}=\frac{\boldsymbol{x}-\boldsymbol{q}(t)}{\epsilon^{1 / 2}, \boldsymbol{z}=\frac{x}{\epsilon}}} \mathrm{~d} \boldsymbol{x} \\
& =\boldsymbol{p}(t)+\epsilon^{1 / 2} \int_{\mathbb{R}^{d}} \overline{a(\boldsymbol{y}, t)}\left(-i \nabla_{\boldsymbol{y}}\right) a(\boldsymbol{y}, t) \mathrm{d} \boldsymbol{y}+O(\epsilon)
\end{aligned}
$$

## Theorem (Watson-Weinstein-Lu 2016)

1) The observables $\mathcal{Q}^{\epsilon}(t)$ and $\mathcal{P}^{\epsilon}(t)$, the center of mass and average quasi-momentum, satisfy the equations of motion:

$$
\begin{aligned}
& \dot{\mathcal{Q}}^{\epsilon}(t)=\nabla_{\mathcal{P}^{\epsilon}} E_{n}\left(\mathcal{P}^{\epsilon}(t)\right)+\epsilon \boldsymbol{C}_{1}\left[a^{\epsilon}\right](t) \\
& -\epsilon \dot{\mathcal{P}}^{\epsilon}(t) \times \mathcal{F}_{n}\left(\mathcal{P}^{\epsilon}(t)\right)+O\left(\epsilon^{3 / 2}\right) \\
& \dot{\mathcal{P}}^{\epsilon}(t)=-\nabla_{\mathcal{Q}^{\epsilon}} W\left(\mathcal{Q}^{\epsilon}(t)\right)+\epsilon \boldsymbol{C}_{2}\left[a^{\epsilon}\right](t)+O\left(\epsilon^{3 / 2}\right)
\end{aligned}
$$

where $\mathcal{F}_{n}\left(\mathcal{P}^{\epsilon}\right)$ is the Berry curvature of the Bloch band.
$\boldsymbol{C}_{1}\left[a^{\epsilon}\right](t), \boldsymbol{C}_{2}\left[a^{\epsilon}\right](t)$ describe coupling to the wavepacket envelope $a^{\epsilon}(\boldsymbol{y}, t)$, which satisfies:

$$
i \partial_{t} a^{\epsilon}=-\frac{1}{2} \nabla_{\boldsymbol{y}} \cdot D_{\mathcal{P}^{\epsilon}}^{2} E_{n}\left(\mathcal{P}^{\epsilon}(t)\right) \nabla_{\boldsymbol{y}} a^{\epsilon}+\frac{1}{2} \boldsymbol{y} \cdot D_{\mathcal{Q}^{\epsilon}}^{2} W\left(\mathcal{Q}^{\epsilon}(t)\right) \boldsymbol{y} a^{\epsilon}
$$

## Theorem (Watson-Weinstein-Lu 2016 continued)

2) After an appropriate change of variables, the coupled dynamics of $\mathcal{Q}^{\epsilon}(t), \mathcal{P}^{\epsilon}(t), a^{\epsilon}(\boldsymbol{y}, t)$ can be derived from the $\epsilon$-dependent Hamiltonian:

$$
\begin{aligned}
& \mathcal{H}^{\epsilon}:=E_{n}\left(\mathcal{P}^{\epsilon}\right)+W\left(\mathcal{Q}^{\epsilon}\right)+\epsilon \nabla_{\mathcal{Q}^{\epsilon}} W\left(\mathcal{Q}^{\epsilon}\right) \cdot \mathcal{A}_{n}\left(\mathcal{P}^{\epsilon}\right) \\
& +\epsilon \frac{1}{2} \int_{\mathbb{R}^{d}} \nabla_{\boldsymbol{y}} \overline{a^{\epsilon}} \cdot D_{\mathcal{P}^{\epsilon}}^{2} E_{n}\left(\mathcal{P}^{\epsilon}\right) \nabla_{\boldsymbol{y}} \boldsymbol{a}^{\epsilon} d \boldsymbol{y}+\epsilon \frac{1}{2} \int_{\mathbb{R}^{d}} \boldsymbol{y} \overline{a^{\epsilon}} \cdot D_{\mathcal{Q}^{\epsilon}}^{2} W\left(\mathcal{Q}^{\epsilon}\right) \boldsymbol{y} a^{\epsilon} d \boldsymbol{y}
\end{aligned}
$$

where $\mathcal{A}_{n}\left(\mathcal{P}^{\epsilon}\right)$ is the $n$-th band Berry connection.

$$
\begin{aligned}
& \dot{\mathcal{Q}}^{\epsilon}=\nabla_{\mathcal{P}^{\epsilon}} \mathcal{H}^{\epsilon} \\
& \dot{\mathcal{P}}^{\epsilon}=-\nabla_{\mathcal{Q}^{\epsilon} \mathcal{H}^{\epsilon}} \quad i \partial_{t} a^{\epsilon}=\frac{\delta \mathcal{H}}{\delta \overline{a^{\epsilon}}}
\end{aligned}
$$

## Gaussian reduction of envelope equation

The equation satisfied by the wavepacket envelope:

$$
i \partial_{t} a^{\epsilon}=-\frac{1}{2} \nabla_{\boldsymbol{y}} \cdot D_{\mathcal{P}^{\epsilon}}^{2} E_{n}\left(\mathcal{P}^{\epsilon}(t)\right) \nabla_{\boldsymbol{y}} a^{\epsilon}+\frac{1}{2} \boldsymbol{y} \cdot D_{\boldsymbol{\mathcal { Q }}^{\epsilon}}^{2} W\left(\mathcal{Q}^{\epsilon}(t)\right) \boldsymbol{y} a^{\epsilon}
$$

has family of exact solutions which form a basis e.g. time-dependent Gaussians ${ }^{5}$ :

$$
\begin{gather*}
a^{\epsilon}(\boldsymbol{y}, t)=\frac{1}{\left[\operatorname{det} A^{\epsilon}(t)\right]^{1 / 2}} \exp \left(-\frac{1}{2} \boldsymbol{y} \cdot B^{\epsilon}(t) A^{\epsilon}(t)^{-1} \boldsymbol{y}\right) \\
\dot{A}^{\epsilon}(t)=i D_{\mathcal{P}^{\epsilon}}^{2} E_{n}\left(\mathcal{P}^{\epsilon}\right) B^{\epsilon}(t), \quad \dot{B}^{\epsilon}(t)=i D_{\mathcal{Q}^{\epsilon}}^{2} W\left(\mathcal{Q}^{\epsilon}\right) A^{\epsilon}(t) \tag{9}
\end{gather*}
$$

appropriate initial data $\Longrightarrow\left(\mathcal{Q}^{\epsilon}, \mathcal{P}^{\epsilon}, a^{\epsilon}\right)$ system reduces to ODEs

## ${ }^{5}$ Hagedorn; Annals of Physics 1998.

Numerical simulation: $\epsilon=0$, decoupled system
Study coupling of observables to wave-field:

- One-dimensional: $d=1$
- Uniform background:
$V\left(\frac{x}{\epsilon}\right)=0$
- Gaussian envelope
- Applied potential
$W(\mathcal{Q})=\frac{1}{6} \mathcal{Q}^{3}+\frac{1}{2} \mathcal{Q}^{2}$




## Numerical simulation: $\epsilon \neq 0$, coupled system

Simulation of full coupled system:

- Wave-field coupling has destabilizing effect on periodic orbits
- Wavepacket may escape potential well to $\mathcal{Q}^{\epsilon}=-\infty$





## Dynamics at band crossings

- Would like to relax the 'isolated band' assumption:

$$
\forall t \geq 0, E_{n-1}(\boldsymbol{p}(t))<E_{n}(\boldsymbol{p}(t))<E_{n+1}(\boldsymbol{p}(t))
$$

- Crossings usually associated with symmetries

- At crossings Bloch band functions: $\boldsymbol{p} \rightarrow\left(E_{n}(\boldsymbol{p}), \chi_{n}(\boldsymbol{z} ; \boldsymbol{p})\right)$ not smooth in general, e.g. conical degeneracies (Dirac points) $\Longrightarrow$ restrict to $d=1$

Theorem (Watson-Weinstein 2016)
$p^{*}$ denote a crossing point in $d=1$
$E_{+}(p), E_{-}(p)$ denote smooth band functions at $p^{*}$
$\left(p_{+}(t), q_{+}(t)\right)$ denote a classical trajectory of the +-band Hamiltonian $E_{+}(p)+W(q)$ s.t. $p_{+}(0)=p^{*}, \dot{p}_{+}(0) \neq 0$


Then the solution of the PDE on a small interval $t \in[-T, T]$, with initial data at $t=-T$ a wavepacket associated with the +- band localized about $\left(p_{+}(-T), q_{+}(-T)\right)$, remains to leading order a wavepacket associated with the +-band localized about the classical trajectory $\left(p_{+}(t), q_{+}(t)\right) \forall t \in[-T, T]$.

Theorem (Watson-Weinstein 2016 ctd.)
At the crossing time $t=0$, a wavepacket associated with $E_{-}$is excited whose centers $\left(q_{-}(t), p_{-}(t)\right)$ follow the classical trajectory of the --band Hamiltonian $E_{-}(p)+W(q)$ with initial data:

$$
\begin{aligned}
& q_{-}(0)=q_{+}(0) \\
& p_{-}(0)=p_{+}(0)=p^{*} .
\end{aligned}
$$

This correction is of order $\epsilon^{1 / 2}$ (in $L_{x}^{2}(\mathbb{R})$ ) and is explicitly characterized.

## Remarks on band crossing result

- Proof is by matched asymptotic expansion: error in single-band approximation blows up as $t \uparrow 0$, resolution by more general ansatz which includes contributions from the band $E_{-} \Longrightarrow$ excited wave
- Since $\partial_{p} E_{+}\left(p^{*}\right)=-\partial_{p} E_{-}\left(p^{*}\right)$, the wavepacket 'excited' at the crossing has opposite group velocity. Call this a 'reflected wave'
- Our result can be seen as an analog of those obtained by Hagedorn ${ }^{6}$ in the context of Born-Oppenheimer approximation of molecular dynamics

[^2]
## Recap of talk

- Generalization of WKB theory to slowly-varying periodic media by a multi-scale WKB ansatz
- Extensions of this description:
- First-order corrections to dynamics
- Dynamics at band crossings

Key tool: multi-scale semiclassical wavepacket ansatz

- Ongoing work/future directions


## Ongoing work/future directions

- Schrödinger $\rightarrow$ Maxwell: spin Hall effect of light:

- Conical band crossings:

e.g. anisotropic Maxwell's equations, honeycomb lattice potentials


[^0]:    ${ }^{2}$ Solid State Physics, Ashcroft and Mermin (1976).

[^1]:    ${ }^{4}$ Bliokh, Niv, Kleiner, Hasman; Nature Photonics 2008.

[^2]:    ${ }^{6}$ Molecular propagation through electron energy level crossings, Hagedorn G., Memoirs of the American Mathematical Society (1994).

