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Motivation: dynamics of electrons in crystals

I Idea: Electron in a crystal moving under the influence of an
applied electric field can be modeled as a wavepacket
(localized, propagating) solution of Schrödinger’s equation

I Seek an effective (simplified) description of the dynamics
(PDE → ODEs)

I Assumption: Potential slowly-varying relative to lattice
constant; treat wavepacket as localized with respect to
variation of potential, spread over a few lattice periods
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First: wavepacket dynamics under the influence of a
slowly-varying potential without periodic background

Model:

i∂tψ
ε = −1

2
∆xψ

ε + W (εx),

assume ε� 1.
Re-scale:

x ′ := εx , t ′ := εt, ψε′(x ′, t ′) := ψε(x , t)

dropping primes we obtain equivalent form:

iε∂tψ
ε = −ε2 1

2
∆xψ

ε + W (x)ψε



WKB method

Model:

iε∂tψ
ε = −ε2 1

2
∆xψ

ε + W (x)ψε.

Make the WKB ansatz:

ψε(x , t) = e iφ(x ,t)/εaε (x , t)

Expanding aε in powers of the small parameter:

aε (x , t) = a0 (x , t) + εa1 (x , t) + ...

Construct an approximate solution by collecting terms
∝ ε0, ε1... =⇒ equations for φ, aj



Analysis of terms ∝ ε0

Equating terms in the expansion ∝ ε0:[
∂tφ+

1

2
(∇xφ)2 + W (x)

]
a0(x , t) = 0 (1)

For a non-trivial solution a0 6= 0 =⇒ equation for phase φ(x , t):

∂tφ+
1

2
(∇xφ)2 + W (x) = 0

Known as the eikonal, Hamilton-Jacobi type.



Solution of eikonal equation

Fully nonlinear equation for φ(x , t):

∂tφ+
1

2
(∇xφ)2 + W (x) = 0

Solve by method of characteristics:

q̇(t) = p(t), ṗ(t) = −∇qW (q(t))

q(0) = x ,p(0) = ∇xφ(x , 0)
(2)

↑ equations of motion of Hamiltonian 1
2p

2 + W (q)

φ(q(t), t) =

∫ t

0

1

2
p(t ′)2 −W (q(t ′))dt ′

=⇒ φ(q(t), t) is the action along q(t). Solution φ(x , t) explicit
as long as flow map x 7→ q(t; x) invertible, if not: caustic.



Analysis of terms ∝ ε

Equating terms ∝ ε =⇒ transport equation for a0(x , t):

∂ta
0 +∇xφ · ∇xa

0 +
1

2
(∇2

xφ)a0 = 0.

Again, solution explicit while x 7→ q(t; x) invertible (no caustics):

a0(q(t; x), t) =
1√

Jacobian(x 7→ q(t; x))
a0(x , 0). (3)

=⇒ initial data transported along solutions of the characteristic
equations generated by H = 1

2p
2 + W (q).



Rigorous error bound

iε∂tψ
ε = −1

2
ε2∆xψ

ε + W (x)ψε

So far (formal analysis): ψε(x , t) = e iφ(x ,t)/εa0(x , t) + O(ε)
φ, a0 explicit (solve ODEs) up to time of first caustic TC > 0.

How to make O(ε) rigorous?

Define ηε(x , t) := ψε(x , t)− e iφ(x ,t)/εa0(x , t), assume
ηε(x , 0) = 0. Then ηε satisfies:

iε∂tη
ε = −1

2
ε2∆xη

ε + W (x)ηε + r ε, (4)

Let T < TC . Standard L2 estimate for solutions of (4):

‖ηε(·, t)‖L2 ≤
1

ε

∫ t

0
‖r ε(·, t ′)‖L2 dt ′ (5)

Forms of φ, a0 =⇒ supt∈[0,T ] ‖r ε(·; t)‖L2 ≤ C1ε
2,

L2 estimate (5) =⇒ supt∈[0,T ] ‖ηε(·, t)‖L2 ≤ C2ε.



Motivation: dynamics of electrons in crystals

Seek generalization of WKB theory (geometric optics):
wavelength � scale of medium features

→ slowly varying periodic media:
wavelength ≈ scale of periodicity of medium
� scale of variation of periodic structure
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Outline of talk

I Generalization of WKB theory to slowly-varying periodic
media by a multi-scale WKB ansatz

I Extensions of this description:
I First-order corrections to dynamics
I Dynamics at band crossings

Key tool: multi-scale semiclassical wavepacket ansatz

I Ongoing work/future directions



Model: Schrödinger’s equation

Non-dimensionalized Schrödinger equation:

i∂tψ
ε = −1

2
∆xψ

ε + U(x , εx)ψε

U periodic with respect to a d-dimensional lattice Λ in its first
argument:

∀v ∈ Λ,U(x + v ,X ) = U(x ,X )

In this talk:

i∂tψ
ε = −1

2
∆xψ

ε + V (x)ψε + W (εx)ψε

∀v ∈ Λ,V (x + v) = V (x)

recover standard WKB setting when V = 0.



Recap: spectral theory of periodic operators

I Recall the spectral theory of the operator with periodic
potential (ε = 0 case):

h := −1

2
∆z + V (z)

∀v ∈ Λ,V (z + v) = V (z)

I Bloch’s theorem: bounded eigenfunctions of h satisfy the
p-quasi-periodic boundary condition:

hΦ(z ; p) = E (p)Φ(z ; p)

∀v ∈ Λ,Φ(z + v) = e ip·vΦ(z ; p)

symmetry of BC =⇒ restrict p to a primitive cell of the
reciprocal lattice: first Brillouin zone B

I Fixed quasi-momentum p, self-adjoint elliptic eigenvalue
problem =⇒ discrete real spectrum:

E1(p) ≤ E2(p) ≤ ... ≤ En(p) ≤ ...



Spectral theory of periodic operators

I Maps p ∈ B → En(p) ∈ R are the Bloch band dispersion
surfaces

I The spectrum of h = −1
2 ∆z + V (z) is then the union of real

intervals swept out by the Bloch band dispersion functions
En(p)

3

3Fefferman, Lee-Thorp, Weinstein; PNAS 2014.



Spectral theory of periodic operators

I The set of Bloch waves (eigenfunctions)
{Φn(z ; p) : n ∈ N,p ∈ B} is complete in L2(Rd)

I Can decompose Φn(z ; p) = e ip·zχn(z ; p) where χn(z ; p)
satisfies another self-adjoint elliptic eigenvalue problem with
periodic boundary conditions:

h(p)χ(z ; p) = E (p)χ(z ; p)

∀v ∈ Λ, χ(z + v) = χ(z ; p)

h(p) :=
1

2
(p − i∇z)2 + V (z)

(6)

(6) is the reduced Bloch eigenvalue problem



Re-scaling

Model:

i∂tψ
ε = −1

2
∆xψ

ε + V (x)ψε + W (εx)ψε

Again, re-scale:

x ′ := εx , t ′ := εt, ψε′(x ′, t ′) := ψε(x , t)

Dropping the primes gives the equivalent formulation:

iε∂tψ
ε = −ε2 1

2
∆xψ

ε + V
(x
ε

)
ψε + W (x)ψε



Multiscale WKB method

iε∂tψ
ε = −ε2 1

2
∆xψ

ε + V
(x
ε

)
ψε + W (x)ψε

Make the multiscale WKB ansatz:

ψε(x , t) = e iφ(x ,t)/ε f ε (z , x , t)|z= x
ε

Expanding f ε in powers of the small parameter:

f ε (z , x , t) = f 0 (z , x , t) + εf 1 (z , x , t) + ...

Impose that f j have the periodicity of the lattice Λ in z :

∀v ∈ Λ, f j(z + v , x , t) = f j(z , x , t)

Equating terms of like order, we obtain equations for φ, f j



Analysis of terms ∝ ε0

Equating terms in the expansion ∝ ε0 obtain self-adjoint elliptic
eigenvalue problem in z for f 0 which depends on x , t as
parameters:[

1

2
(∇xφ− i∇z)2 + V (z)

]
f 0(z , x , t) = [−∂tφ−W (x)] f 0(z , x , t)

∀v ∈ Λ, f 0(z + v , x , t) = f 0(z , x , t).

(7)

Let En be an isolated Bloch band (non-degenerate eigenvalue):

∀p ∈ B,En−1(p) < En(p) < En+1(p)

Then we can solve (7) by taking:

f 0(z , x , t) = a0(x , t)χn(z ;∇xφ)

∂tφ+ En(∇xφ) + W (x) = 0



Eikonal equation

Again, Eikonal equation for φ(x , t):

∂tφ+ En(∇xφ) + W (x) = 0

Fully nonlinear, solve by method of characteristics:

q̇(t) = ∇pEn(p(t)), ṗ(t) = −∇qW (q(t))

q(0) = x ,p(0) = ∇xφ(x , 0)
(8)

↑ equations of motion of Hamiltonian En(p) + W (q)

φ(q(t), t) =

∫ t

0
q̇(t ′) · p(t ′)− En(p(t ′))−W (q(t ′))dt ′

=⇒ φ(q(t), t) is the action along q(t). Again, solution φ(x , t)
explicit as long as x 7→ q(t; x) invertible, if not: caustics.



First order analysis

Equating terms proportional to ε + imposing periodic BCs obtain
inhomogeneous self-adjoint elliptic equation in z for f 1:[

1

2
(∇xφ− i∇z)2 + V (z)− En(∇xφ)

]
f 1(z , x , t)

=

[
i∂t + i(∇xφ− i∇z) · ∇x + i

1

2
∇2

xφ

]
f 0(z , x , t)

Fredholm alternative =⇒ solvability equivalent to vanishing
projection of RHS onto null-space of LHS operator =⇒ transport
equation for a0:

∂ta
0 +∇pEn(∇xφ) · ∇xa

0 +
1

2
∇x · ∇pEn(∇xφ)

+ i∇xW (x) · 〈χn(·;∇xφ)|i∇pχn(·;∇xφ)〉L2(Rd/Λ) = 0

=⇒ initial conditions are transported along solutions of the
characteristic equations generated by H = En(p) + W (q)



Outline of talk

I Generalization of WKB theory to slowly-varying periodic
media by a multi-scale WKB ansatz

I Extensions of this description:
I First-order corrections to dynamics (∝ ε)
I Dynamics at band crossings (eigenvalue degeneracies)

Key tool: multi-scale semiclassical wavepacket ansatz

I First-order corrections =⇒ spin Hall effect of light:

4
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Theorem (Carles-Sparber 2008, Hagedorn 1980, Heller 1976)

Let (q(t),p(t)) denote a classical trajectory generated by the
Bloch band Hamiltonian H = En(p) + W (q) such that the band
En is isolated at each p(t):

∀t ≥ 0,En−1(p(t)) < En(p(t)) < En+1(p(t)).

Then there exists a solution ψε(x , t) of the PDE:

iε∂tψ
ε = −ε2 1

2
∆xψ

ε + V
(x
ε

)
ψε + W (x)ψε

which is asymptotic as ε ↓ 0 to a ‘semiclassical wavepacket’ up to
‘Ehrenfest time’ t ∼ ln 1/ε:

ψε(x , t) =

ε−d/4e iS(t)/εe−ip(t)·q(t)/εa

(
x − q(t)

ε1/2
, t

)
e ip(t)·x/εχn

(x
ε

; p(t)
)

+ OL2
x (Rd )(ε1/2eCt).



Precise interpretation of functions (q(t),p(t))

Writing the solution in terms of the multiscale variables:

ψε(x , t) = ψ̃ε(y , z , t)
∣∣∣
y= x−q(t)

ε1/2
,z= x

ε

+ OL2
x (Rd )(ε1/2)

q(t),p(t) the center of mass and average quasi-momentum of the
wavepacket, to leading order in ε1/2:

Qε(t) :=

∫
Rd

x |ψ̃ε(y , z , t)|2
y= x−q(t)

ε1/2
,z= x

ε

dx

= q(t) + ε1/2

∫
Rd

y |a(y , t)|2 dy + O(ε)

Pε(t) :=

∫
Rd

ψ̃ε(y , z , t)(−iε1/2∇y )ψ̃ε(y , z , t)
∣∣∣
y= x−q(t)

ε1/2
,z= x

ε

dx

= p(t) + ε1/2

∫
Rd

a(y , t)(−i∇y )a(y , t) dy + O(ε)



Theorem (Watson-Weinstein-Lu 2016)

1) The observables Qε(t) and Pε(t), the center of mass and
average quasi-momentum, satisfy the equations of motion:

Q̇ε
(t) = ∇PεEn(Pε(t)) + εC 1[aε](t)

− εṖε
(t)×Fn(Pε(t)) + O(ε3/2)

Ṗε
(t) = −∇QεW (Qε(t)) + εC 2[aε](t) + O(ε3/2)

where Fn(Pε) is the Berry curvature of the Bloch band.
C 1[aε](t),C 2[aε](t) describe coupling to the wavepacket envelope
aε(y , t), which satisfies:

i∂ta
ε = −1

2
∇y · D2

PεEn(Pε(t))∇ya
ε +

1

2
y · D2

QεW (Qε(t))yaε



Theorem (Watson-Weinstein-Lu 2016 continued)

2) After an appropriate change of variables, the coupled dynamics
of Qε(t),Pε(t), aε(y , t) can be derived from the ε-dependent
Hamiltonian:

Hε := En(Pε) + W (Qε) + ε∇QεW (Qε) ·An(Pε)

+ ε
1

2

∫
Rd

∇yaε · D2
PεEn(Pε)∇ya

ε dy + ε
1

2

∫
Rd

yaε · D2
QεW (Qε)yaε dy

where An(Pε) is the n-th band Berry connection.

Q̇ε
= ∇PεHε

Ṗε
= −∇QεHε

i∂ta
ε =

δH
δaε



Gaussian reduction of envelope equation

The equation satisfied by the wavepacket envelope:

i∂ta
ε = −1

2
∇y · D2

PεEn(Pε(t))∇ya
ε +

1

2
y · D2

QεW (Qε(t))yaε

has family of exact solutions which form a basis
e.g. time-dependent Gaussians5:

aε(y , t) =
1

[detAε(t)]1/2
exp

(
−1

2
y · Bε(t)Aε(t)−1y

)
Ȧε(t) = iD2

PεEn(Pε)Bε(t), Ḃε(t) = iD2
QεW (Qε)Aε(t) (9)

appropriate initial data =⇒ (Qε,Pε, aε) system reduces to ODEs

5Hagedorn; Annals of Physics 1998.



Numerical simulation: ε = 0, decoupled system
Study coupling of observables to
wave-field:

I One-dimensional: d = 1

I Uniform background:
V
(
x
ε

)
= 0

I Gaussian envelope

I Applied potential
W (Q) = 1

6Q
3 + 1

2Q
2
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Numerical simulation: ε 6= 0, coupled system

Simulation of full coupled
system:

I Wave-field coupling has
destabilizing effect on
periodic orbits

I Wavepacket may escape
potential well to Qε = −∞
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Dynamics at band crossings

I Would like to relax the ‘isolated band’ assumption:

∀t ≥ 0,En−1(p(t)) < En(p(t)) < En+1(p(t))

I Crossings usually associated with symmetries

I At crossings Bloch band functions: p → (En(p), χn(z ; p)) not
smooth in general, e.g. conical degeneracies (Dirac points)
=⇒ restrict to d = 1



Theorem (Watson-Weinstein 2016)

p∗ denote a crossing point in d = 1

E+(p),E−(p) denote smooth band functions at p∗

(p+(t), q+(t)) denote a classical trajectory of the +-band
Hamiltonian E+(p) + W (q) s.t. p+(0) = p∗, ṗ+(0) 6= 0

Then the solution of the PDE on a small interval t ∈ [−T ,T ],
with initial data at t = −T a wavepacket associated with the
+-band localized about (p+(−T ), q+(−T )), remains to leading
order a wavepacket associated with the +-band localized about the
classical trajectory (p+(t), q+(t)) ∀t ∈ [−T ,T ].



Theorem (Watson-Weinstein 2016 ctd.)

At the crossing time t = 0, a wavepacket associated with E− is
excited whose centers (q−(t), p−(t)) follow the classical trajectory
of the −-band Hamiltonian E−(p) + W (q) with initial data:

q−(0) = q+(0)

p−(0) = p+(0) = p∗.

This correction is of order ε1/2 (in L2
x(R)) and is explicitly

characterized.



Remarks on band crossing result

I Proof is by matched asymptotic expansion: error in
single-band approximation blows up as t ↑ 0, resolution by
more general ansatz which includes contributions from the
band E− =⇒ excited wave

I Since ∂pE+(p∗) = −∂pE−(p∗), the wavepacket ‘excited’ at
the crossing has opposite group velocity. Call this a ‘reflected
wave’

I Our result can be seen as an analog of those obtained by
Hagedorn6 in the context of Born-Oppenheimer approximation
of molecular dynamics

6Molecular propagation through electron energy level crossings,
Hagedorn G., Memoirs of the American Mathematical Society (1994).



Recap of talk

I Generalization of WKB theory to slowly-varying periodic
media by a multi-scale WKB ansatz

I Extensions of this description:
I First-order corrections to dynamics
I Dynamics at band crossings

Key tool: multi-scale semiclassical wavepacket ansatz

I Ongoing work/future directions



Ongoing work/future directions

I Schrödinger → Maxwell: spin Hall effect of light:

I Conical band crossings:

e.g. anisotropic Maxwell’s equations, honeycomb lattice
potentials


