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Microbial ecology
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General framework

We consider mathematical models of the form:

I X is the “phase space”;

I
X

t

is the “true state” of bioreactor (your stomach) at time t ;

I Y is the “observation space”;

I
Y

t

is our observation at time t .

We only have access to the observations {Y

t

k

}n

k=0.
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General questions

Given access to the observations {Y

t

k
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k=0, we might want to
ask

I what is the “true state” of the bioreactor at time t? (filtering)

I what are we likely to observe at time t

n+1? (prediction)

I what are the rules governing the evolution of the system?
(model selection / parameter estimation)

We’ll focus on the last type of question.
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Basic assumptions

How are the variables {X

t

k

}n

k=0 and {Y

t

k

}n

k=0 related?

We’ll assume the process (X
t

,Y
t

)
t

has:

I
stationarity: the rules governing both the state space and
our observations don’t change over time.

I
Markov property: given the microbial population today,
the microbial population tomorrow is independent of the
population yesterday.

I
conditionally independent observations: given the state
of the population today, today’s observation is independent
of any other variables.

Such systems are called “hidden Markov models” (HMMs).
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HMMs

The basic model for a HMM is

X

k

= a✓(X
k�1,Wk

),

Y

k

= b✓(X
k

,V
k

),

where (V
k

)
k

and (W
k

)
k

are sequences of iid random variables
independent of X0.



HMMs



Stochastic versus deterministic systems
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I If the conditional distribution of X

t

k+1 given X
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variance, then we’ll say the process (X
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I Otherwise, we’ll say the process (X
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is deterministic.

In ecology both types of systems are commonly used.
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Setting for deterministic dynamics

Suppose that for each ✓ in ⇥ (parameter space), we have
(X,X ,T✓, µ✓), where

I X is a complete separable metric space with Borel
�-algebra X

I
T✓ : X ! X is a measurable map,

I µ✓ is a probability measure on (X,X ) is T✓-invariant if
µ✓(T

�1
✓ A) = µ✓(A), 8A 2 X

I the measure preserving system (X,X ,T✓, µ✓) is ergodic if
T

�1
✓ A = A implies µ(A) = {0, 1}.

Family of systems (X, ,X ,T✓, µ✓)✓2⇥ ⌘ (T✓, µ✓)✓2⇥.
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Observational noise

Conditional likelihood: g✓(y | x) = f (Y
t

= y | x

t

= x , ✓), with
Z

g✓(y | x)d⌫(y) = 1.

Also g : ⇥⇥ X ⇥ Y ! R+.

Likelihood for y

n

0 in Yn+1 conditioned on ✓ and X0 = x is

p✓(y
n

0 | x) =
nY

k=0

g✓(y
k

| T

k

✓ (x)),

and the (marginal) likelihood of observing y

n

0 given ✓ is

p✓(y
n

0 ) =

Z
p✓(y

n

0 | x) dµ✓(x).
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An example

I
X0 ⇠ U[0, 1];

I
X

k+1 = ✓X

k

(1 � X

k

);

I
Y

k

⇠ N(X
k

,�2
✓ ).
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Approaches to estimation

There are many approaches to estimation:
I maximum likelihood estimation,
I Bayesian estimation,
I optimization (minimization of a cost function),
I etc.

We’ll focus on one approaches:
(2) Bayesian inference.
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Preliminaries

Observation system (Y,T , ⌫) with T : Y ! Y

Tracking systems:
Compact metrizable space X := X ⇥⇥ with map S : X ! X .

S : ⇥⇥ X ! X, S✓ : X ! X.

Loss or regret: ` : X ⇥ Y ! R+. Cost of

`
n

(x , y) := `
n

(xn�1
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k
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k
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Dynamic linear models

x

t+1 = A

t+1x

t

y

t

= B

t

x

t

+ v

t

,

Here:
y

t

is an observation in Rp;
x

t

is a hidden state in Rq;
A

t

is a p ⇥ p state transition matrix;
B

t

is a q ⇥ p observation matrix;
v

t

is a zero-mean vector in Rq.



Classical Bayesian inference

Likelihood: Lik(data | ✓)

Prior: ⇡(✓)

Marginal likelihood:
R
✓ Lik(data | ✓)⇥ ⇡(✓)d✓ = Pr(data)

Bayes posterior:

⇡(✓ | data) =
Lik(data | ✓)⇥ ⇡(✓)

Pr(data)
.

Gibbes:

⇡(✓ | data) =
exp(�`(data | ✓))⇥ ⇡(✓)R

✓ exp(�`(data | ✓))⇥ ⇡(✓)d✓
.
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Gibbs posterior

Given observations (y ,Ty , . . . ,T n�1
y) 2 Yn and a prior ⇡ on X .

Consider the probability measure over Borel sets A ⇢ X

P

n

(A | y) =

R
A

exp
�
�`

n

(x , y)
�

d⇡(x)

Z

n

(y)
, A ⇢ ⇥⇥ X

Z

n

(y) =

Z

X
exp

�
�`

n

(x , y)
�

d⇡(x).
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Gibbs posterior

(1) Decision theoretic perspective of Bayesian inference,
coherent inference with respect to a utility.

(2) If `
n

is the negative log likelihood then recover standard
posterior.

(3) Robust to misspecification, robust statistics.

(4) Calibration/violation of likelihood principle

P

n

(A | y) =
R

A

exp
�
� `

n

(x ,y)
�

d⇡(x)

Z

n

(y) .
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Mixing shifts of finite type

Alphabet A and ⌃ = AZ.

Left shift �(x)
n+1 = x

n

.
X ia SFT if 9n � 0 and W ⇢ An such that X is exactly the set
of sequences in ⌃ that contain no words from W.

The map S : X ! X is the restriction of � to X .

A SFT X is mixing if and only if there exists N � 1 with matrix

A

uv

=

⇢
1, if 9x 2 X with x

n�1 = u, x
n

= v

0 otherwise,

and A

N contains all positive entries.
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Gibbs measure

A Gibbs measure µ is given by a potential function f : X ! R if
there exists constants P 2 R and K > 0 such that for all x 2 X
and m � 1

K

�1 
µ(xm�1

0 )

exp
⇣
�Pm +

P
m�1
k=1 f (Sk (x))

⌘  K .

Under mild conditions unique, ergodic µ 2 M(X ,S).
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The model class

F = {f✓ : ✓ 2 ⇥}, with ⇥ compact is a regular family if for all
✓ 2 ⇥, x 2 X , and m � 1

K

�1 
µ✓(x

m�1
0 )

exp
⇣
�P(f✓)m +

P
m�1
k=1 f✓(Sk (x))

⌘  K .



Hidden SFT models

Let X be a mixing SFT, {f✓ : ✓ 2 ⇥} ⇢ C

r (X ) a regular family of
Hölder potential functions and {µ✓ : ✓ 2 ⇥} the corresponding
Gibbs measures with prior ⇧

o

fully supported on ⇥. Also let
 ✓(u | x) be the observation process, with regularity.

Given the prior ⇧
o

and marginal likelihood p✓(u
n�1
0 ) for E 2 ⇥

⇧
n

(E | u

n�1
0 ) =

R
E

p✓(u
n�1
0 )d⇧

o

(✓)
R
⇥ p✓(u

n�1
0 )d⇧

o

(✓)



Posterior consistency

Theorem (McGoff-M-Nobel)
Let E ⇢ ⇥ be an open neighborhood of [⇥⇤]. Then

lim
n

⇧
n

(⇥ \ E | U

n�1
0 ) = 0, PU

✓⇤ � a.s.



Joinings and couplings

Definition (Joining)
Let (X ,A, µ,T ) and (Y ,B, ⌫,S) be two dynamical systems. A
joining of T and S is a probability measure � on X ⇥ Y , with
marginals µ and ⌫ respectively, and invariant to the product
map T ⇥ S.

Definition (Coupling)
A coupling of two random variable X and X

0 taking values in
(E , E) is any pair of random variables (Y ,Y 0) taking values in
(E ⇥ E , E ⇥ E) whose marginals have the same distribution as
X and X

0, X

D

= Y and X

0 D

= Y
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Joinings

J (µ, ⌫) is the set of all joinings of (X ,S, µ) and (Y,T , ⌫).

Define J (S : ⌫) =
S

µ J (µ, ⌫), where the union is over all
S-invariant Borel probability measures µ 2 M(X ,S).



Variational formulation of Z

n

(y) – average cost

Recall ⌫ is the measure for T and � 2 J (S : ⌫)

Define �
y

2 M(X ) (� “projected" onto d⌫
y

)

� =

Z

Y
�

y

⌦ �
y

d⌫(y).

Limiting average cost

lim
n!1

1
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Z

X
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(x) =

Z
c d�.



Variational formulation of Z

n

(y) – average cost

Recall ⌫ is the measure for T and � 2 J (S : ⌫)

Define �
y

2 M(X ) (� “projected" onto d⌫
y

)

� =

Z

Y
�

y

⌦ �
y

d⌫(y).

Limiting average cost

lim
n!1

1
n

Z

X
c

n

(x , y) d�
y

(x) =

Z
c d�.



Variational formulation of Z

n

(y) – average cost

Recall ⌫ is the measure for T and � 2 J (S : ⌫)

Define �
y

2 M(X ) (� “projected" onto d⌫
y

)

� =

Z

Y
�

y

⌦ �
y

d⌫(y).

Limiting average cost

lim
n!1

1
n

Z

X
c

n

(x , y) d�
y

(x) =

Z
c d�.



Variational formulation of Z

n

(y) – entropy term

Given two Borel probability measures ⇡ and µ on X and a finite
measurable partition ⇠ of X .
Denote µ �⇠ ⇡ as ⇡(C) = 0 ) µ(C) = 0 for C 2 ⇠.

Define

L(µ k⇡, ⇠) =
⇢ P

C2⇠ µ(C) log⇡(C), if µ �⇠ ⇡
�1, otherwise,

with 0 · log 0 = 0.

In spirit consider all finite measurable partitions ⇠

F (µ,⇡) = sup
⇠

L(µ k⇡, ⇠).
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Convergence

Theorem (McGoff-M.-Nobel)
Suppose a GIbbs prior, then for ⌫ almost every y,

lim
n!1

�1
n

log Z

n

(y) = inf
�2J (S:⌫)

⇢Z
c d�+ F (�, µ✓)

�
,

and the infimum in the above expression is attained.

The above is the rate function in the large deviation sense.
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Bayes as a variational problem

Suppose a GIbbs prior, then for ⌫ almost every y ,

lim
n!1

�1
n

log Z

n

(y) = inf
�2J (S:⌫)

⇢Z
c d�+ F (�, µ✓)

�
,

A way to write Bayes rule

⇡(✓ | x) = arg min
µ

⇢Z

✓
`(✓, x)dµ(✓) + d

KL

(µ,⇡)

�



Convergence

Proposition (McGoff-M.-Nobel)
Suppose a GIbbs prior and consider the pressure

P(µ✓, ⌫) = inf
�2J (S:⌫)

⇢Z
c d�+ F (�, µ✓)

�

P(✓ : ⌫) = inf
µ2M(X✓,S✓)

P(µ✓, ⌫),

✓⇤ = arg min
✓2⇥

P(✓ : ⌫).

For all " > 0

P(d(S✓⇤ ,T ) < ") ! 1a.s as n ! 1.
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Contributions

Reframes posterior consistency as two-stage process: first find
the limiting variational problem, and then analyze this problem
to address consistency.

Provides general framework and suite of tools from the
thermodynamic formalism for analyzing asymptotic behavior of
Gibbs posteriors.



Questions

Statistics questions.

I What types of observations and models are amenable to
this analysis?

I For which combinations of observations and models can
one establish posterior consistency?

Dynamics questions.

I How far can the thermodynamic formalism be pushed?
I Under what conditions is there a limiting variational

characterization?
I Under what conditions is there a unique equilibrium

joining?
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Dimension reduction



Commutative diagrams
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V
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Topological conjugacy
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Topological conjugacy: Two functions S : U 7! U and
T : V 7! V are topologically conjugate if there exists a
homeomorphism ⇡ : U 7! V such that

⇡ � S = T � ⇡.
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Factors
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Factors: Given two dynamical systems (U,U , µ,T ) and
(V ,V, ⌫,S) with a map ⇡ : U 7! V if

1. The map ⇡ is measurable.
2. For each V 2 V, µ(⇡�1

B) = ⌫(B).
3. For µ-almost all u 2 U, ⇡(Tx) = S(⇡x),

Then (V ,V, ⌫,S) is a factor of (U,U , µ,T ).
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An objective

The factor suggests minimize either the difference in
conditional probabilities

min
⇡⇤,T

KL(U
n

| U

n�1 k⇡⇤(V
n

| V

n�1))

or the one step error

min
⇡⇤,T

EkU

n

� ⇡⇤(S(V
n�1)k.



Partial factor model

Consider the the following linear regression setting for the
dynamics

Y

i

= B

T

X

i

+ E

i

, E

i

iid⇠ N(0, �)

with Y

i

= X

i+1.

With a factor model on X

X

i

= Af

i

+ ⌫
i

, ⌫
i

iid⇠ N(o, )

f

i

⇠ N(0, I).

The statistical problem is to learn A := ⇡⇤ and B = T .



Partial factor model

Consider the the following linear regression setting for the
dynamics

Y

i

= B

T

X

i

+ E

i

, E

i

iid⇠ N(0, �)

with Y

i

= X

i+1.
With a factor model on X

X

i

= Af

i

+ ⌫
i

, ⌫
i

iid⇠ N(o, )

f

i

⇠ N(0, I).

The statistical problem is to learn A := ⇡⇤ and B = T .



Partial factor model

Consider the the following linear regression setting for the
dynamics

Y

i

= B

T

X

i

+ E

i

, E

i

iid⇠ N(0, �)

with Y

i

= X

i+1.
With a factor model on X

X

i

= Af

i

+ ⌫
i

, ⌫
i

iid⇠ N(o, )

f

i

⇠ N(0, I).

The statistical problem is to learn A := ⇡⇤ and B = T .



The key idea

Typical joint distribution
✓

X

Y

◆
⇠ N(0,⌃),

with
⌃ =


AA

T + � BA

T

AB

T  + BB

T

�
.



The key idea

Instead model 0

@
X

f

Y

1

A ⇠ N(0,⌃),

with

⌃ =

2

4
AA

T + � A

T

BA

T

A I

k

B

T

AB

T

B  + BB

T

3

5 .

We can apply some standard Bayesian models to infer A, B.



Open problems

(1) Rates of convergence for a family of dynamical systems F .

(2) General conditions for learnability in dynamical systems.
(3) Extension to continuous time dynamics, differential

equations.
(4) Computational issues.
(5) Integration of ideas from statistical models of time series

and dynamical systems theory.
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