Propagation of Monokinetic Measures with Rough Momentum Profiles II

Claude Bardos

Université Paris-Diderot
Laboratoire Jacques-Louis Lions

CSCAMM, University of Maryland, Quantum Systems: A Mathematical Journey from Few to Many ParticlesGeometric Analysis and PDE Seminar, May 16th 2013

Work in collaboration with François Golse,
Peter Markowich and Thierry Paul

STRUCTURE OF $\mu(t)$ ON CAUSTIC FIBER

Theorems and examples.
All the examples are constructed in 1 d with the free flow:

$$
\begin{aligned}
& (y, \xi) \mapsto \Phi_{t}(y, \xi)=(y+t \xi, \xi) \\
& \left(y, U^{i n}(y)\right) \mapsto F_{t}(y)=y+t U^{i n}(y)
\end{aligned}
$$

Structure of $\mu(t)$ and $\rho(t)$ outside caustic fiber, recall from previous talk

Thm A: Assume Hamiltonian H satisfies condition (H) and that momentum profile $U^{i n}$ satisfies (SL+DU). Then
(a) for a.e. $x \in \mathbf{R}^{N}$ and all $t \in \mathbf{R}$, the set $F_{t}^{-1}(\{x\})$ is finite
(b) the following conditions are equivalent

$$
\rho(t)\left(C_{t}\right)=0 \Leftrightarrow \rho(t)\left(\mathbf{R}^{N} \backslash C_{t}\right)=1 \Leftrightarrow \rho^{i n}=0 \text { a.e. on } Z_{t}
$$

(c) under the equivalent conditions in (b), $\rho(t) \ll \mathscr{L}^{N}$ and

$$
\rho(t, x):=\frac{d \rho(t)}{d \mathscr{L}^{N}}(x)=\sum_{F_{t}(y)=x} \frac{\rho^{i n}(y)}{J_{t}(y)} \quad \text { for a.e. } x \in \mathbf{R}^{N}
$$

(d) under the equivalent conditions in (b)

Lebesgue decomposition of $\rho(t)$

Thm C: Assume Hamiltonian H satisfies condition (H) and that momentum profile $U^{i n}$ satisfies (SL+DU). Then
(a) for each $t \in \mathbf{R}$, one has

$$
\operatorname{supp}(\mu(t)) \subset \Lambda_{t}
$$

(b) writing the Lebesgue decomposition of $\rho(t)$ w.r.t. \mathscr{L}^{N} as

$$
\rho(t)=\rho_{a}(t)+\rho_{s}(t) \text { with } \rho_{a}(t) \ll \mathscr{L}^{N} \text { and } \rho_{s}(t) \perp \mathscr{L}^{N}
$$

then

$$
\rho_{a}(t)=F_{t} \#\left(\rho^{i n} 1_{P_{t}} \mathscr{L}^{N}\right) \quad \text { and } \rho_{s}(t)=F_{t} \#\left(\rho^{i n} \mathbf{1}_{Z_{t}} \mathscr{L}^{N}\right)
$$

Let $\mu_{a}^{i n}$ and $\mu_{s}^{i n}$ be the monokinetic measures with densities $\rho^{i n} \mathbf{1}_{P_{t}}$ and $\rho^{i n} 1_{Z_{t}}$ respectively and momentum profile $U^{i n}$:

$$
\mu_{a}^{i n}(x, \cdot):=\rho^{i n}(x) 1_{P_{t}}(x) \delta_{U i n(x)}, \quad \mu_{s}^{i n}(x, \cdot):=\rho^{i n}(x) 1_{Z_{t}}(x) \delta_{U \text { in }(x)}
$$

Propagate these measures by Hamiltonian flow

$$
\mu(t)=\mu_{a}(t)+\mu_{s}(t) \text { with } \mu_{a}(t)=\Phi_{t} \# \mu_{a}^{i n} \text { and } \mu_{s}(t)=\Phi_{t} \# \mu_{s}^{i n}
$$

- Structure of $\mu_{a}(t)$ and of $\rho_{a}(t)=\Pi \# \mu_{a}(t)$ described by Thm A
- Structure of $\mu_{s}(t)$? of $\rho_{s}(t)$?

Atoms of $\rho_{s}(t)$

Thm D: Assume Hamiltonian H satisfies condition (H) and that momentum profile $U^{\text {in }}$ satisfies (SL+DU). For each $t \in \mathbf{R}$, let

$$
A_{t}:=\left\{x \text { s.t. } \mathscr{L}^{N}\left(F_{t}^{-1}(\{x\}) \cap Z_{t}\right)>0\right\}
$$

(a) For each $t \in \mathbf{R}$, one has $A_{t} \subset C_{t}$
(b) For each $t>0$ the set A_{t} is at most countable
(c) Let $\rho^{i n} \in L^{1}\left(\mathbf{R}^{N}\right)$ s.t. $\rho^{i n}>0$ a.e. on Z_{t}; then

$$
\rho(t)(\{x\})>0 \Leftrightarrow x \in A_{t}
$$

- If $N=1$, if $H(x, \xi)=\frac{1}{2} \xi^{2}$ and if $U^{i n}$ is real analytic+sublinear at infinity, then $F_{t}=$ id $+t U^{i n}$ is real analytic + proper. Therefore $F_{t}^{-1}(\{x\})$ is finite for all $x \in \mathbf{R}$ - even if $x \in C_{t}$.
- In particular, $\mathscr{L}^{N}\left(F_{t}^{-1}(\{x\}) \cap Z_{t}\right)=0$ and therefore $\rho(t)(\{x\})=0$ for all $t \in \mathbf{R}$ and all $x \in \mathbf{R}$

In space dimension 1, and
for analytic flow+momentum profile
$\rho_{s}(t)$ does not have atoms

- However, $\rho_{s}(t)$ may have atoms even if the flow and the initial momentum profiles are C^{∞}.

Example A: Lip and C^{∞} case

Lagrangian Λ_{t} at $t=0$ for $U^{\text {in }}(y)= \begin{cases}-y /|y| & \text { if }|y|>1 \\ -y & \text { if }|y| \leq 1\end{cases}$

Lagrangian Λ_{t} at $t=1$. Here, $A_{1}=\{0\}$ and $F_{1}^{-1}(\{0\}) \cap Z_{1}=(-1,1)$. Analogous picture if $U^{i n}$ is regularized near $y= \pm 1$.

Example B: analytic case

Lagrangian at times $t=0,8,16$ for $U^{i n}=$ inverse of $y \mapsto-8 y-3 y^{3}$. Here $\# F_{t}^{-1}(\{x\}) \leq 3$ for all t and all x. Therefore $A_{t}=\varnothing$ for all t.

APPLICATIONS TO THE CLASSICAL LIMIT

WKB method for Schrödinger's equation

Classical limit of Schrödinger's equation for $x \in \mathbf{R}^{N}$:

$$
i \epsilon \partial_{t} \psi_{\epsilon}+\frac{1}{2} \epsilon^{2} \Delta_{x} \psi_{\epsilon}=V(x) \psi_{\epsilon}, \quad \psi_{\epsilon}(0, x)=a^{i n}(x) e^{i S^{i n}(x) / \epsilon}
$$

WKB ansatz for wave function ψ_{ϵ}

$$
\psi_{\epsilon}(t, x) \simeq \sum_{n \geq 0} \epsilon^{n} a_{n}(t, x) e^{i S(t, x) / \epsilon}
$$

Explicit solution of Cauchy pbm for Schrödinger's eqn when $V \equiv 0$

$$
\psi_{\epsilon}(t, x)=\frac{1}{\sqrt{2 \pi i \epsilon}^{N}} \int_{\mathbf{R}^{N}} e^{\frac{i}{\epsilon}\left(\frac{|x-y|^{2}}{2 t}+S^{i n}(y)\right)} a^{i n}(y) d y
$$

If $V \not \equiv 0$, replace explicit solution with FIO parametrix (Laptev-Sigal)

WKB after caustic onset for C^{2} phase functions

Caustic fiber (case $S^{\text {in }} \in C^{2}$): set $F_{t}(y):=y+t \nabla S^{i n}(y)$ and $J_{t}(y):=\left|\operatorname{det} D F_{t}(y)\right|$; since $F_{t} \in C^{1}\left(\mathbf{R}^{N}, \mathbf{R}^{N}\right)$, one has $E=\varnothing$ and

$$
C_{t}:=\left\{\text { critical values of } F_{t}\right\}
$$

Thm (Maslov) for $x \notin C_{t}, a^{i n} \in C_{c}^{\infty}\left(\mathbf{R}^{N}\right)$ and $S^{\text {in }} \in C^{\infty}\left(\mathrm{R}^{N}\right)$

$$
\psi_{\epsilon}(t, x)=\sum_{F_{t}(y)=x} \frac{a^{i n}(y)}{\sqrt{J_{t}(y)}} e^{i\left(\frac{S^{\operatorname{in}}(y)}{\epsilon}-\#\left(\sigma\left(D^{2} F_{t}(y)\right) \cap R_{+}^{*}\right) \frac{\pi}{2}\right)}+O(t \epsilon)
$$

Thus $\psi_{\epsilon} \simeq$ locally finite sum of WKB ansatz away from caustic fibers Proof: apply stationary phase

Classical limit for non C^{2} phase functions

Assume initial phase function $S^{\text {in }} \in C^{1}\left(\mathrm{R}^{N}\right)$ with

$$
\nabla^{2} S^{i n} \in L_{l o c}^{N, 1}\left(R^{N}\right) \quad \text { and } \nabla S^{i n}(x)=o(|y|) \quad \text { as }|y| \rightarrow \infty
$$

Let

$$
H(x, \xi)=\frac{1}{2}|\xi|^{2}+V(x)
$$

with $V \in C_{b}^{\infty}\left(\mathrm{R}^{N}\right)$ such that, for some $\alpha>N / 2$,

$$
V(x)=o(|x|) \quad \text { and } V^{-}(x)=o\left(|x|^{-\alpha}\right) \quad \text { as }|x| \rightarrow \infty
$$

Thm E: Let $a^{i n} \in L^{2}\left(\mathbf{R}^{N}\right), \theta, \chi \in C_{b}\left(\mathbf{R}^{N}\right)$ with $\left\|a^{i n}\right\|_{L^{2}}=1$, and

$$
\psi_{\epsilon}(t, \cdot):=e^{i \frac{t}{\epsilon}\left(\frac{1}{2} \epsilon^{2} \Delta_{x}-V(x)\right)}\left(a^{i n} e^{i S^{i n} / \epsilon}\right) \quad t \in \mathbf{R}, \epsilon>0
$$

(a) If $\theta=0$ on C_{t} then

$$
\lim _{\epsilon \rightarrow 0} \int_{\mathbf{R}^{N}} \theta(x)\left|\psi_{\epsilon}(t, x)\right|^{2} d x=\int_{\mathbf{R}^{N}} \theta(x) \sum_{F_{t}(y)=x} \frac{\left|a^{i n}\right|^{2} \mathbf{1}_{P_{t}}}{J_{t}}(y) d x
$$

(b) If $y \in Z_{t} \Rightarrow \tilde{\chi}_{t}(y):=\chi\left(\bar{\Xi}_{t}\left(y, \nabla S^{\text {in }}(y)\right)\right)=0$, then

$$
\lim _{\epsilon \rightarrow 0} \int_{\mathbf{R}^{N}} \chi(-\epsilon \xi)\left|\hat{\psi}_{\epsilon}(t, \xi)\right|^{2} \frac{d \xi}{(2 \pi)^{N}}=\int_{\mathbf{R}^{N}} \sum_{F_{t}(y)=x} \tilde{\chi}(y) \frac{\left|a^{i n}\right|^{2} 1_{P_{t}}}{J_{t}}(y) d x
$$

Sketch of the proof of Thm E

1. That

$$
\left|\psi_{\epsilon}(t, \cdot)\right|^{2} \rightarrow \rho(t) \text { while }(2 \pi \epsilon)^{-N}\left|\hat{\psi}_{\epsilon}(t, \cdot / \epsilon)\right|^{2} \rightarrow \int \mu(t, d x, \cdot)
$$

weakly in the sense of probability measures as $\epsilon \rightarrow 0$ follows from [Lions-Paul, Rev. Mat. Iberoam., 1993], especially Theorem III.1.3 and Theorem IV.1.2. Notice that there is no mass loss at infinity because $\mu(t)=\Phi_{t} \# \mu^{i n}$ is a probability measure for all $t \in \mathbf{R}$
2. The formulas for the limits follow from our theorem (Theorem A, previous talk) on the structure of $\mu(t)$.

MORE EXAMPLES AND COUNTER-EXAMPLES

On the definition of the caustic fiber, rough case

Example 1: set $N=1$ with $H(x, \xi):=\frac{1}{2} \xi^{2}$ and

$$
U^{i n}(y)=y \sin (\ln |y|) \text { for } y \neq 0, \quad U^{i n}(0)=0
$$

so that $F_{t}=\mathrm{id}_{\mathbf{R}^{N}}+t U^{i n} \in \operatorname{Lip}(\mathbf{R}) \backslash C^{1}(\mathbf{R})$ with $E=\{0\}$
For $t<-1$ one has
$F_{t}^{-1}(\{0\}) \cap\left(-e^{\pi}, e^{\pi}\right)=\{0\} \cup\left\{ \pm y_{n}(t) \mid n \geq 0\right\} \cup\left\{ \pm z_{n}(t) \mid n \geq 0\right\}$,
where

$$
y_{n}(t):=e^{\arcsin (-1 / t)-2 \pi n}, \quad z_{n}(t):=e^{\pi-\arcsin (-1 / t)-2 \pi n}
$$

On the other hand

$$
F_{t}^{\prime}(y)=1+t \sin \ln |y|+t \cos \ln |y|
$$

so that

$$
\left|F_{t}^{\prime}\left(y_{n}(t)\right)\right|=\left|F_{t}^{\prime}\left(z_{n}(t)\right)\right|=\sqrt{t^{2}-1} \neq 0
$$

Hence 0 is not a critical value of the restriction of F_{t} to $\left(-e^{\pi}, e^{\pi}\right)$, and yet $F_{t}^{-1}(\{0\}) \cap\left(-e^{\pi}, e^{\pi}\right)$ is infinite

Conclusion: if $U^{\text {in }}$ is not C^{1}, one cannot keep both the usual definition of the caustic fiber $=\left\{\right.$ critical values of $\left.F_{t}\right\}$ and the fact that $F_{t}^{-1}(\{x\})$ is finite for all $x \notin C_{t}$

This is one reason for including the nondifferentiability set E in the definition of the caustic fiber C_{t}

Initial profile $U^{i n}(y)=-\tanh (y) \sin \left(|y|^{10^{-n}-1}\right)$

Initial profile $U^{i n}(y)=-\tanh (y) \sin \left(|y|^{10^{-n}-1}\right)$, zoom near origin

Lagrangian at time $t=0.5$ for $U^{i n}(y)=-\tanh (y) \sin \left(|y|^{10^{-n}-1}\right)$ zoom near origin

Lagrangian at time $t=1$ for $U^{\text {in }}(y)=-\tanh (y) \sin \left(|y|^{10^{-n}-1}\right)$ zoom near origin

Lagrangian at time $t=1.5$ for $U^{i n}(y)=-\tanh (y) \sin \left(|y|^{10^{-n}-1}\right)$ zoom near origin

Lagrangian at time $t=2$ for $U^{i n}(y)=-\tanh (y) \sin \left(|y|^{10^{-n}-1}\right)$ zoom near origin

Example 2: set $N=1$ and $H(x, \xi):=\frac{1}{2} \xi^{2}$
Let $K \subset(0,1) \backslash \mathbf{Q}$ s.t. $\mathscr{L}^{1}(K) \in\left(\frac{1}{2}, 1\right)$ and $\Omega:=(0,1) \backslash K$

$$
U^{\text {in }}(y):= \begin{cases}0 & \text { if } y<0 \\ \mathscr{L}^{1}(\Omega \cap[0, y])-y & \text { if } y \in[0,1] \\ \mathscr{L}^{1}(\Omega)-1 & \text { if } y>1\end{cases}
$$

One has $\Phi_{t}(x, \xi):=(x+t \xi, \xi)$ so that $F_{t}: y \mapsto y+t U^{i n}(y)$. Then (a) the $\operatorname{map} F_{1}: \mathbf{R} \ni y \mapsto y+U^{\text {in }}(y) \in \mathbf{R}$ is increasing and onto
(b) for each $y \in(-\infty, 0) \cup \Omega \cup(1, \infty)$, one has $F_{1}^{\prime}(y)=1$, while $F_{1}^{\prime}(y)=0$ for a.e. $y \in K$
(c) for $\rho^{\text {in }}:=\mathbf{1}_{K} /\left(\mathscr{L}^{1}(K)\right)$, the measure $\rho(1):=F_{1} \#\left(\rho^{\text {in }} \mathscr{L}^{1}\right) \perp$ \mathscr{L}^{1} and

$$
\rho(1)(\{x\})=0 \text { for all } x \in \mathbf{R}
$$

Example 3: set $N=1$ and $H(x, \xi):=\frac{1}{2} \xi^{2}$
Let $K \subset[0,1]=$ ternary Cantor set with Hausdorff dimension $s=\frac{\ln 2}{\ln 3}$

$$
U^{i n}(z):=1_{0 \leq z \leq 1}\left(\mathscr{H}^{s}([0, z] \cap K)-z\right)
$$

(a) Momentum profile $U^{i n} \in C_{c}(\mathbf{R}) \cap B V(\mathrm{R})$ but $\left(U^{i n}\right)^{\prime} \notin L^{1,1}(\mathrm{R})$

One has $\Phi_{t}(x, \xi):=(x+t \xi, \xi)$ so that $F_{t}: y \mapsto y+t U^{i n}(y)$. Then
(b) the map $F_{1} \in C(\mathbf{R})$ and is increasing $\Rightarrow F_{1} \in B V_{\text {loc }}(\mathbf{R})$
(c) the map F_{1} is not differentiable on K and differentiable on $\mathrm{R} \backslash K$

$$
F_{1}^{\prime}(y)=0 \Leftrightarrow y \in[0,1] \backslash K
$$

(d) the caustic fiber is $C_{1}=[0,1]$ and $\mathscr{L}^{1}\left(C_{1}\right)>0$

If $U^{\text {in }}$ is less regular than in assumption (DU) - i.e. if $D U^{i n} \notin L_{\text {loc }}^{N, 1}$ - it may happen that the caustic fiber is not Lebesgue negligeable

In this case, the propagated monokinetic measure may fail to be a.e. equal to a finite sum of monokinetic measures

In fact, if (DU) is not satisfied, it can happen that F_{t} doesn't map Lebesgue-negligeable sets on Lebesgue-negligeable sets; then including E (or any other Lebesgue-negligeable set) in the definition of the caustic fiber C_{t} may result in $\mathscr{L}^{N}\left(C_{t}\right)>0$

However this choice does not have any effect on the propagated measure $\mu(t)$ since

$$
\mu^{i n}\left(E \times \mathbf{R}^{N}\right)=\int_{E} \rho^{i n}(x) d x=0
$$

If $U^{\text {in }}$ is less regular than in assumption (DU) - i.e. if $D U^{i n} \notin L_{\text {loc }}^{N, 1}$ - it may happen that the caustic fiber is not Lebesgue negligeable

In this case, the propagated monokinetic measure may fail to be a.e. equal to a finite sum of monokinetic measures

In fact, if (DU) is not satisfied, it can happen that F_{t} doesn't map Lebesgue-negligeable sets on Lebesgue-negligeable sets; then including E (or any other Lebesgue-negligeable set) in the definition of the caustic fiber C_{t} may result in $\mathscr{L}^{N}\left(C_{t}\right)>0$

However this choice does not have any effect on the propagated measure $\mu(t)$ since

$$
\mu^{i n}\left(E \times \mathbf{R}^{N}\right)=\int_{E} \rho^{i n}(x) d x=0
$$

On the Hausdorff dimension of C_{t} and supp $(\rho(t))$

Example 4:

Set $N=1$ and $H(x, \xi):=\frac{1}{2} \xi^{2}$ so that $\Phi_{t}(x, \xi):=(x+t \xi, \xi)$. Then for each $s \in(0,1)$, there exists
-a compact $K(s) \subset[0,1]$ s.t. $\mathscr{H}^{s}(K(s))=1$
\bullet • momentum profile $U^{i n} \in \operatorname{Lip}\left(\mathbf{R}^{N}\right)$ \& a probability density $\rho^{i n}$ s.t.

$$
C_{1}=\operatorname{supp}\left(F_{1} \# \rho^{i n}\right)=K(s) \quad \text { where } F_{t}(y):=y+t U^{i n}(y)
$$

On the Hausdorff dimension of $\operatorname{supp}(\rho(t))$ (end)

Construction for $s=\frac{\ln 2}{\ln 3}$, set $K:=$ ternary Cantor set and

$$
\left\{\begin{array}{l}
\mathcal{O}:=[0,1] \backslash K=: \bigcup_{\substack{1 \leq k \leq 2^{m-1} \\
m \geq 1}}\left(a_{m, k}-\frac{1}{2} 3^{-m}, a_{m, k}+\frac{1}{2} 3^{-m}\right) \\
\Omega:=\bigcup_{\substack{1 \leq \leq \leq 2 m-1 \\
m \geq 1}}\left(a_{m, k}-\frac{1}{6} 3^{-m}, a_{m, k}+\frac{1}{6} 3^{-m}\right)=:[0,1] \backslash \tilde{K}
\end{array}\right.
$$

Define

$$
\rho^{i n}=\frac{3}{2} 1_{\tilde{K}} \quad \text { and } U^{\text {in }}(y)=1_{0 \leq y \leq 1}\left(3 \mathscr{L}^{1}(\Omega \cap[0, y])-y\right)
$$

$$
\begin{aligned}
& \theta=\frac{1}{3}, \quad r_{m}=\frac{3^{-m}}{6}, \\
& \mu(1)=\frac{1}{1-\theta} \sum_{m \geq 1}^{2^{m-1}} \sum_{k=1}^{2}\left(\delta_{a_{m, k}-r_{m}} \otimes \mathbf{1}_{\left(-(1-\theta) r_{m}, 0\right.}+\delta_{a_{m, k}+r_{m}} \otimes \mathbf{1}_{\left(0,(1-\theta) r_{m}\right)}\right) \\
& \rho(1)=\frac{1}{2} \frac{1}{1-2 \theta} \sum_{m \geq 1} \theta^{m-1} \sum_{k=1}^{2^{m-1}}\left(\delta_{a_{m, k}-r_{m}}+\delta_{\left.a_{m, k}+r_{m}\right)}\right)
\end{aligned}
$$

$\rho(1)=$ denumerable convex combination of Dirac masses at 3 -adic rationals

Conclusions

Our results on the Hamiltonian propagation of monokinetic measures provide information on the classical limit of the Schrödinger equation for WKB initial wave functions with L^{2} amplitudes and rough phase functions ($S^{\text {in }} \in C^{1}\left(\mathbf{R}^{N}\right)$ but $\nabla^{2} S^{\text {in }} \in L_{\text {loc }}^{N, 1} \backslash C\left(\mathbf{R}^{N}\right)$)

Specifically, we obtain formulas for the position and momentum densities in the classical limit, that are consistent with Maslov's theory in the case of smooth amplitudes and phase functions

Various examples show that our results are sharp - especially regarding the regularity assumptions on the momentum profile, the "size" of the caustic fiber, and the structure of the propagated measure on the caustic fiber

