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|. Reaction-diffusion with compact initial conditions
® Finite number of particles
2. Reaction-diffusion with sparse initial conditions

® Reaction kinetics



Diffusion-Controlled Annihilation
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® Diffusion: particles move randomly

D
O@®@O0O0O = O0eO0 reversible

® Annihilation: two particles annihilate upon contact

O®@@®0O =2 OO0 OO ireversible

® Theory:role of spatial correlations & fluctuations

O I o 1 i 1 Allam et al
Experiments: photoexcitations in nanotubes o

Paradigmatic model of Nonequilibrium Stat. Phys.



Infinite system: uniform density
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® Hydrodynamic approach

dp 2
- K
dt g
® Dimensional analysis for reaction rate
L4 Dp?=% d<?2
Kl=— — Kux
K T {DR‘Z2 d > 2

® Fluctuations dominate below critical dimension

(Dt)= /2 d < 2
PR (D) d> 2

Reaction rate reduced in low spatial dimensions



Infinite system: finite number of particles
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® |nitial condition: uniform density in compact domain
® |nitial number of particles is N
® Final state: average number of particles is M

® Scaling law for final number of surviving particles

0 d <2
e {N<d2>/d 152

Number of reaction events reduced in high spatial dimensions!



Below critical dimension: no escape

® Probability a random walk returns to origin

P=1 when d<2

® The separation between two random walks itself
performs a random walk

® [wo diffusing particles are guaranteed to meet
All particles eventually disappear

Above critical dimension: escape feasible

® Probability a random walk at distance 7 returns to origin
P~r=472) when d>2

® Two diffusing particles may or may not meet



Uniform-density approximation

® Concentration obeys reaction-diffusion equation
oc(r, t)

ot
® Dimensionlessform D=K =a=c¢cy =1

= DVZ?c(r,t) — K ¢*(r, t)

® TJotal number of particles obeys rate equation

n(t) = /drc(r,t) — df{fgt) = —/dr c*(r, 1)

® Two simplifying assumptions
|. Particles confined to volume V

2. Spatial distribution remains uniform

® Closed equation for number of remaining particles
dn n?

dt Vv



Early phase: fast reactions
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Particles still inside initial-occupied domain

an n?
VN — —=—-——
dat N
Mean-field like decay
n(t) ~ Nt

Valid until particles exit initially-occupied domain
e~ ti2 N — T~ N

Diffusion time scale gives number of particles
n(T) ~ N(d=2)/d



Intermediate phase: slow reactions

Particles confined to a growing volume

V ~

4d/2

—

dn

dt

Slower decay of the density

Reaction rate gives “escape time” for final reaction
n(t) — n(oo

n(t) —n(oo) ~
Recover scaling law for final number of particles
A(d—2)/d

M ~

)~ 1

—

n2

td/2

N2(d—2)/d 1 —(d—2)/2

T~ N4/




Three Phases

® Most reactions
t < N2/d
® Few reactions

N2/« « N¥d

® No reactions at all

N4 « ¢

escape

® Jwo length scales zone

R~ NY% and p~ N?/4

Two time and length scales



Finite-size scaling
Universal behavior, independent of system size
n(t) ~ N4=2)/d p (t/NQ/d>

Scaling function

r—1 r < 1:
F(x) ~ ’
( ) {1 + const. X r(2=4)/2 4 > 1

Average lifetime of particles logarithmic in N
N2/

/ dttt ™ = (t)~InN
Numerical simulations can not measure M directly
Confirm finite-size scaling, extrapolate M

Brute-force Monte Carlo (keep track of sites, not particles)
O(N x N xInN)



Numerical Simulations: Finite-Size Scaling

3 n(t) ~ N1/3 F (t/N2/3)
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Numerical Simulations: Slow Kinetics

A(t) = n(oc) ~ 1/




Numerical Simulations: Final Number

n(t)— M ~t 12 o N3
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Reaction-Diffusion Equations

® Concentration obeys reaction-diffusion equation

oc(r, t)
ot

® |nitial state: compact initial conditions with N particles
Aqrs
{1 - <N

3
0 *=->N

= DV-?c(r,t) — K c*(r, 1)

c(r,t) =

® Final state:“Gaussian cloud” with N7 particles
a N1/3 1
1) —
e(r;?) (4w Dt)3/2 eXp( 2Dt>

Nonlinear “selection” problem for constant a




Probabilistic Derivation
® |nitial state: many particles uniformly pack a sphere
spacing =1 = N ~ L¢
® |ate state: few surviving particles uniformly spaced
spacing = ¢ = M ~ (L/0)°

® Survival probability of test particle at the origin

spherical shells L/¢ | nd—1
radius n¥ H (1 ; )
n=1,2,.. L/ N (1)

® Probability finite iff log of product is finite
L/t

22” —~1 — ([~ LYY — M~ N2/




Sparse & compact initial conditions

Particles occupy a fractal region
N~ R
Co-dimension controls the behavior
A=d—o
Scaling law for the number of escaping particles
N@=2)/0 A <2,
M~¢N(InN)"t A=2,
N A > 2.

Example: two-dimensional disk in three dimensions

M ~ N1/2



Conclusions |

Diffusion-controlled annihilation, starting with finite
number of particles

Finite number of particles escape annihilation
Two time scales control the kinetics

Escape time scale is nontrivial

Average lifetime is logarithmic

Scaling law for time-dependence

Scaling law for final number of particles
Finite-size scaling allows for numerical verification
Beyond scaling arguments!?

Other reaction schemes: two-species annihilation?



Sparse initial conditions

Particles occupy a sub-space with dimension ¢
Embedded in space with dimension d > 2
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Number of particle is unbounded

Co-dimension controls behavior

A=d—090

Survival probability of a test particle

(—(2-0)/2 A<
S(t) ~ < (Int)~1 A =2,
S +const. x t—(A=2)/2 A > 9

Finite survival probability when 0 < d — 2



. . . 6=1
A filament in three dimensions

d=3
® Concentration obeys reaction-diffusion equation
oc(x,y, z,t
( ;t ) = Vic(z,y, z,t) — c*(z,y, 2, t)

® Problem is two dimensional
0,=0 = V=040,

® Rate equation for the survival probability

S(t)://da:dyc(az,y,t) — %:—//CMdch

® Assume uniform distribution inside circle with

S(t) {1 r </t s  S2

c(r,t) ~ — X
(r;?) t 0 r >4/t dt t

Uniform density approximation, again



Numerical simulations:
Filament in three dimensions

P2 = S~(lnt)"!
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Very slow decay: inverse logarithmic



Filament in three dimensions

dS 52 _
— — S ~ T 1/2
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General behavior (d>2)

® Dimension of Laplace operator = co-dimension

dS G2
dt A2

® Three regimes of behavior
t—(2=2)/2 A <2,
S(t) ~ < (Int)~1 A =2,
S +const. x t—(A=2)/2 A > 9

Critical dimension (d=2)
® | ogarithmic correction to reaction rate

dsS S?

o~ — S ~ (Int)t7%/?
dt A2 In(t1/2/9) (Int)




Conclusions |l

Diffusion-controlled annihilation with sparse initial
conditions

Used same uniform volume approximation
Co-dimension controls the behavior
Kinetics slow down below critical co-dimension

Extremely slow, inverse logarithmic, kinetics at the
critical co-dimension

Finite survival probability above the critical co-dimension



