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Plan

1. Reaction-diffusion with compact initial conditions	



•  Finite number of particles	



2. Reaction-diffusion with sparse initial conditions	



•  Reaction kinetics



Diffusion-Controlled Annihilation

•  Diffusion: particles move randomly                                       	



!

• Annihilation: two particles annihilate upon contact	



!

• Theory: role of spatial correlations & fluctuations 	



• Experiments: photoexcitations in nanotubes
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Infinite system: uniform density

• Hydrodynamic approach	



!

• Dimensional analysis for reaction rate	



!

• Fluctuations dominate below critical dimension
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Infinite system: finite number of particles

• Initial condition: uniform density in compact domain	



• Initial number of particles is N	



• Final state: average number of particles is M 

• Scaling law for final number of surviving particles

Number of reaction events reduced in high spatial dimensions!

M ⇠
(
0 d < 2

N (d�2)/d d > 2



Below critical dimension: no escape
• Probability a random walk returns to origin	



!

• The separation between two random walks itself 
performs a random walk	



• Two diffusing particles are guaranteed to meet

P = 1 when d  2

Above critical dimension: escape feasible
• Probability a random walk at distance r returns to origin	



!

• Two diffusing particles may or may not meet

P ⇠ r�(d�2) when d > 2

All particles eventually disappear



Uniform-density approximation
• Concentration obeys reaction-diffusion equation	



!

• Dimensionless form 	



• Total number of particles obeys rate equation	



!

• Two simplifying assumptions	


1. Particles confined to volume 	


2. Spatial distribution remains uniform 	



• Closed equation for number of remaining particles
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Early phase: fast reactions

• Particles still inside initial-occupied domain	



!

• Mean-field like decay	



!

• Valid until particles exit initially-occupied domain	



!

• Diffusion time scale gives number of particles 
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Intermediate phase: slow reactions

• Particles confined to a growing volume	



!

• Slower decay of the density	



!

• Recover scaling law for final number of particles	



!

• Reaction rate gives “escape time” for final reaction 
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Three Phases
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• Most reactions	



!

• Few reactions	



!

• No reactions at all	



!

• Two length scales

t ⌧ N2/d

N2/d ⌧ t ⌧ N4/d

N4/d ⌧ t

R ⇠ N1/d and ⇢ ⇠ N2/d

Two time and length scales



Finite-size scaling
• Universal behavior, independent of system size	



!

• Scaling function 	



!

!

• Average lifetime of particles logarithmic in N	


!

• Numerical simulations can not measure M directly	



• Confirm finite-size scaling, extrapolate M	



• Brute-force Monte Carlo (keep track of sites, not particles)
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Numerical Simulations: Slow Kinetics
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Reaction-Diffusion Equations
• Concentration obeys reaction-diffusion equation	



!

!

• Initial state: compact initial conditions with N particles	



!

!

• Final state: “Gaussian cloud” with N1/3 particles
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Probabilistic Derivation
• Initial state: many particles uniformly pack a sphere	



!

• Late state: few surviving particles uniformly spaced	



!

• Survival probability of test particle at the origin	



!

!

• Probability finite iff log of product is finite
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R
• Particles occupy a fractal region	



!

• Co-dimension controls the behavior	


!

• Scaling law for the number of escaping particles	


!

!

!

• Example: two-dimensional disk in three dimensions 

Sparse & compact initial conditions

N ⇠ R�

� = d� �

M ⇠

8
><

>:
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Conclusions I
• Diffusion-controlled annihilation, starting with finite 

number of particles	



• Finite number of particles escape annihilation	



• Two time scales control the kinetics	



• Escape time scale is nontrivial	



• Average lifetime is logarithmic	



• Scaling law for time-dependence	



• Scaling law for final number of particles	



• Finite-size scaling allows for numerical verification	



• Beyond scaling arguments?	



• Other reaction schemes: two-species annihilation?



• Particles occupy a sub-space with dimension 	



• Embedded in space with dimension	



• Number of particle is unbounded	



• Co-dimension controls behavior	


!

• Survival probability of a test particle

Sparse initial conditions
�

d = 2, � = 1
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A filament in three dimensions
• Concentration obeys reaction-diffusion equation	



!

• Problem is two dimensional	



!

• Rate equation for the survival probability	


!

!

• Assume uniform distribution inside circle with 
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Uniform density approximation, again
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Numerical simulations:	


Filament in three dimensions
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d = 3
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Very slow decay: inverse logarithmic



100 101 102 103 104 105 106
t

10-3

10-2

10-1

100

S

Filament in three dimensions
dS

dt
⇠ �S2

p
t

=) S ⇠ t�1/2

� = 2

d = 3



• Dimension of Laplace operator = co-dimension	


!

!

• Three regimes of behavior

General behavior (d>2)
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dt
⇠ � S2
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Critical dimension (d=2)
• Logarithmic correction to reaction rate
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Conclusions II

• Diffusion-controlled annihilation with sparse initial 
conditions	



• Used same uniform volume approximation	



• Co-dimension controls the behavior	



• Kinetics slow down below critical co-dimension	



• Extremely slow, inverse logarithmic, kinetics at the 
critical co-dimension	



• Finite survival probability above the critical co-dimension


