Nonlocal interaction PDEs with nonlinear diffusion

Marco Di Francesco

Table of contents

1. An interdisciplinary model for interacting individuals

2. Gradient flow structure of the discrete model

3. The continuum theory

4. A model with moderate repulsion

5. Interplay with entropy solutions

6. Systems with many species
Table of contents

1. An interdisciplinary model for interacting individuals
2. Gradient flow structure of the discrete model
3. The continuum theory
4. A model with moderate repulsion
5. Interplay with entropy solutions
6. Systems with many species
A discrete particle system

- N particles, located at $X_1(t), \ldots, X_N(t) \in \mathbb{R}^d$ with masses m_1, \ldots, m_N.
- Subject to binary interaction forces depending on their position.
- Friction dominated regime: no inertia.

$$\frac{dX_j(t)}{dt} = - \sum_{k \neq j} m_k \nabla G(X_j(t) - X_k(t)), \quad j = 1, \ldots, N. \quad (1)$$

Typical assumptions for the interaction potential G

- $G \in C(\mathbb{R}^d)$, with $G(0) = 0$,
- Radial symmetry $G(x) = g(|x|)$,

Notation: g increasing \Rightarrow G attractive, g decreasing \Rightarrow G repulsive.

Stochastic version:

$$dX_j(t) = - \sum_{k \neq j} m_k \nabla G(X_j(t) - X_k(t))dt + \sigma_N dW^j(t)$$
An interdisciplinary model for interacting individuals

Figure: N interacting particles
Main motivation: population dynamics

Animal swarming:
- Okubo (1980)
- Oelschläger (1989)
- Morale, Capasso, and Oelschläger (1998)
- Mogilner, Edelstein-Keshet (1999)
- Topaz, Bertozzi, and Lewis (2006)

Typical interaction potentials:
- attractive-repulsive *Morse* potentials \(G(x) = -C_a e^{-|x|/l_a} + C_r e^{-|x|/l_r} \)
- combination of *Gaussian* potentials \(G(x) = -C_a e^{-|x|^2/l_a} + C_r e^{-|x|^2/l_r} \)
- smoothed characteristic functions of a set \(G(x) = \alpha \delta_{\epsilon} \ast \chi_A(x) \).
Hydrodynamic $N \to +\infty$ limit

Empirical measure:

$$\mu_N(t) = \left(\sum_{j=1}^{N} m_j \right)^{-1} \sum_{k=1}^{N} m_k \delta X_k(t)$$

Formal limit of μ_N in the stochastic case

Assuming $\lim_{N \to +\infty} \sigma_N = \sigma > 0$, then

$$\frac{\partial \mu}{\partial t} = \frac{\sigma^2}{2} \Delta \mu + \text{div}(\mu \nabla G \ast \mu)$$

Distributional PDE for μ_N for $\sigma = 0$

$$\frac{\partial \mu}{\partial t} = \text{div}(\mu \nabla G \ast \mu)$$
More motivations: Interplay with physics

Mean-field limits of large particle systems in statistical mechanics:

- Onsager (1949) - Vortex dynamics
- Morrey (1955) - Derivation of hydrodynamics from statistical mechanics
- Dobrushin (1993) - Vlasov equation
- Golse (2003) - Review paper

In those contexts, the potential G blows-up at the origin, which renders the rigorous analytical framework of the model a challenging issue.

Kinetic modeling for granular media:

- Benedetto, Caglioti, Pulvirenti (1997)
- Toscani (2004)

Here, G is a convex attractive potential, typically $G(x) = |x|^{\alpha}$ with $\alpha > 1$.
More motivations: chemotaxis

- In many problems in biology, such as the 2d Keller-Segel model

\[\partial_t \rho = \Delta \rho + \frac{\chi}{2\pi} \text{div}(\rho \nabla \log | \cdot | \ast \rho), \]

the dichotomy between the repulsive linear diffusion term and the attractive log ‘chemotaxis’ term produces blow-up (concentration) of solutions in finite time. No one knows (up to now) how to define solutions in a measure sense after blow up.

- The large time behavior for models with ‘milder’ aggregation force and with nonlinear diffusion

\[\partial_t \rho = \Delta \rho^m + \text{div}(\rho \nabla G \ast \rho) \]

\[G(x) = g(|x|), \quad g'(r) > 0, \quad G \in W^{1,\infty}, \]

is a (most of the times) highly nontrivial question.

More motivations:

- Kinetic dithering

$$\partial_t \rho = -\text{div}(\rho \nabla (G \ast (\rho - \sigma)))$$

with $\sigma \in L^1_+$ being a given profile, and $\int \rho = \int \sigma$. Typically, $G(x) = |x|^\alpha$. Stationary solution $\rho = \sigma$. Stable for large times? PhD thesis of J.-C. Hütter. Ref: Fornasier, Haškovec, Steidl - 2012.

Mathematical motivation

- Models with nonlocal attractive-repulsive kernels

\[\frac{\partial \rho}{\partial t} = \text{div}(\rho \nabla G \ast \rho) \]

with \(G \) being a \textit{double-well} potential, e.g. Lennard–Jones. Stationary solutions? How do they look like?

- Fetecau, Huang, Kolkolnikov - 2011: \(L^1 \) stationary states.
- von Brecht, Bertozzi - 2012: aggregation sheets.

- Similarities with 2\(d \) incompressible Euler.

- A repulsive nonlocal approximation for nonlinear diffusion

\[\frac{\partial \rho}{\partial t} = \text{div}(\rho \nabla G_\epsilon \ast \rho) \]
Table of contents

1. An interdisciplinary model for interacting individuals
2. Gradient flow structure of the discrete model
3. The continuum theory
4. A model with moderate repulsion
5. Interplay with entropy solutions
6. Systems with many species
What is a gradient flow?

Given a smooth function $F : \mathbb{R}^d \to \mathbb{R}$, a differentiable curve $[0, +\infty) \ni t \mapsto X(t) = \mathbb{R}^d$ is a gradient flow of F if $X(t)$ satisfies

$$\dot{X}(t) = -\nabla F(X(t)).$$

- Energy dissipation:
 $$\frac{d}{dt} F(X(t)) = -|\nabla F(X(t))|^2$$

- Implicit Euler variational derivation: time step $\tau > 0$, $X_\tau(t) = X_\tau^n$ for $t \in ((n - 1)\tau, n\tau]$, with
 $$X_\tau^n = \arg\min \left\{ \frac{1}{2\tau} |X - X_\tau^n|^2 + F(X), \ X \in \mathbb{R}^d \right\}$$

- $D^2 F \geq \lambda I$ implies stability
 $$\frac{d}{dt} |X_1(t) - X_2(t)|^2 = -2 < X_1(t) - X_2(t), \nabla F(X_1(t)) - \nabla F(X_1(t)) > \leq -2\lambda |X_1(t) - X_2(t)|^2.$$
Gradient flow structure of the ODE particle system

Consider

\[
\frac{dX_j(t)}{dt} = - \sum_{k \neq j} m_k \nabla G(X_j(t) - X_k(t)), \quad j = 1, \ldots, N.
\]

with \(G(-x) = G(x) \) and \(G \in C^2(\mathbb{R}^d) \).

Weighted metric structure

Denote \(\mathbf{m} = (m_1, \ldots, m_N) \). For \(\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{dN} \), let

\[
\langle \mathbf{X}, \mathbf{Y} \rangle_{L^2_m} := \sum_{j=1}^{N} m_j X_j Y_j, \quad \| \mathbf{X} \|_{L^2_m}^2 = \langle \mathbf{X}, \mathbf{X} \rangle_{L^2_m}.
\]

Fréchet differential

Let \(\mathbf{F} \in C^1(\mathbb{R}^{dN}) \). The linear operator \(\text{grad}_X \mathbf{F}[\mathbf{X}] \) is defined by

\[
\lim_{\epsilon \to 0} \frac{\mathbf{F}[\mathbf{X} + \epsilon \mathbf{Y}] - \mathbf{F}[\mathbf{X}]}{\epsilon} =: \langle \text{grad}_X \mathbf{F}[\mathbf{X}], \mathbf{Y} \rangle_{L^2_m} = \sum_{j=1}^{N} m_j \nabla x_j \mathbf{F}[\mathbf{X}] \cdot Y_j.
\]
Gradient flow structure of the ODE particle system

Energy functional

Let $\mathbf{X} := (X_1, \ldots, X_N)^T.$

$$G[\mathbf{X}] := \frac{1}{2} \sum_{i,j} m_i m_j G(X_i - X_j)$$

Then

$$\dot{\mathbf{X}}(t) = -\nabla_{\mathbf{X}} G[\mathbf{X}(t)].$$

Problem (2) makes sense if $G \in C^1(\mathbb{R}^d).$

Regularity and collisions

If $G \in C^2(\mathbb{R}^d),$ then particles do not collide.
Mildly singular, locally attractive kernels

Assume

(K1) \(G(-x) = G(x) \)

(K2) \(G \in C^1(\mathbb{R}^d \setminus \{0\}) \)

(K3) \(G \) has a local minimum at \(x = 0 \)

(K4) \(G \) is \(\lambda \)-convex, i.e. \(G(x) - \frac{\lambda}{2} |x|^2 \) is convex on \(\mathbb{R}^d \).

Examples:

- Morse type potentials \(G(x) = -e^{-a|x|} \), with \(a > 0 \),
- Pointy potentials, i.e. with a Lipschitz point at the origin,
- Power laws \(G(x) = |x|^\alpha \) with \(\alpha \in (1, 2) \), cf. [Li, Toscani - 2004], [Burger, DF - 2008]

Kernels with above assumptions (K1)–(K4) possibly produce finite time collapse \(\mu = \delta_{x_c} \), with \(x_c \) center of mass of the particles (constant in time).
Gradient flow structure of the discrete model

Weaker gradient flow structure

Introduce the sub-differential of G

$$
\partial G(x) := \left\{ k \in \mathbb{R}^d : G(y) - G(x) \geq k \cdot (y - x) + o(|x - y|) \text{ for all } y \in \mathbb{R}^d \right\},
$$

and the minimal sub-differential of G

$$
\partial^0 G(x) = \arg\min_{k \in \partial G(x)} |k| = \begin{cases}
\nabla G(x) & \text{if } x \neq 0 \\
0 & \text{if } x = 0
\end{cases}
$$

Sub-differential structure of L^2_m

$$
\partial G[X] := \left\{ K \in L^2_m : G(Y) - G(X) \geq \langle K, (Y - X) \rangle_{L^2_m} + o(\|X - Y\|_{L^2_m}) \text{ for all } Y \in L^2_m \right\}.
$$
We replace our particle system with

\[
\frac{dX_j(t)}{dt} \in - \sum_{k \in C_j(t)} m_k \partial^0 G(X_j(t) - X_k(t)), \quad C_j(t) = \{ k : X_j(t) \neq X_k(t) \}. \quad (3)
\]

Then, it is easily checked that

\[
\dot{X}(t) \in -\partial^0 G[X(t)], \quad (4)
\]

with \(\partial^0 G = \arg\min_{K \in \partial G} \| K \|_{L^2_m} \).

Well posedness in the discrete case

- \(\lambda \)-convexity of the functional \(G \)
- Existence and uniqueness of gradient flows.
Finite time collapse for attractive potentials

Assume G satisfies (K1)–(K4) and the additional conditions

$$G(x) = g(|x|), \quad g'(r) > 0 \text{ for } r > 0, \quad \frac{g'(r)}{r} \text{ non-increasing.} \quad (5)$$

Proposition (Finite time collapse)

Let X_1, \ldots, X_N evolve according to (4), i. e.

$$\dot{X}_j(t) = - \sum_{X_k(t) \neq X_j(t)} m_k \nabla G(X_j(t) - X_k(t)).$$

Then, all the particles collapse in a finite time, i. e. $X_j(t) = \delta_{C_m}$ for all $t \geq t^*$ for some t^*, iff

$$\int_0^\varepsilon \frac{1}{g'(z)} dz < +\infty \quad (6)$$

for some $\varepsilon > 0$.

1 G is called attractive when $g'(r) > 0$ and repulsive when $g'(r) < 0$
Figure: The quantity $R(t) = \max\{|X_j(t) - C_m|, j = 1, \ldots, N\}$.
Proof

Assume $\sum_{j=1}^{N} m_j = 1$. Center of mass $C_m = \sum_{j=1}^{N} m_j X_j(t)$ is preserved. Assume for simplicity $C_m = 0$.

$$\frac{d}{dt} R(t) = \frac{d}{dt} |X_1(t)| = - \frac{X_1(t)}{|X_1(t)|} \cdot \sum_{j \neq 1} m_j \nabla G(X_1(t) - X_j(t))$$

$$= - \sum_{j \neq 1} m_j X_1(t) \cdot (X_1(t) - X_j(t)) \frac{g'(|X_1(t) - X_j(t)|)}{|X_1(t)||X_1(t) - X_j(t)|}.$$

Since $X_1(t) \cdot X_j(t) \leq |X_1(t)|^2$, and since $g'(r)/r$ is non increasing, we use $|X_1(t) - X_j(t)| \leq 2|X_1(t)|$:

$$\frac{d}{dt} R(t) \leq - \frac{g'(2|X_1(t)|)}{2|X_1(t)|^2} \sum_{j \neq 1} m_j \left(|X_1(t)|^2 - X_1(t) \cdot X_j(t)\right)$$

$$= -(1 - m_1)g'(2|X_1(t)|) + \frac{g'(2|X_1(t)|)}{2|X_1(t)|^2} X_1(t) \cdot (-m_1 X_1(t)) = -g'(2R(t))$$

and the assertion is proven. Notice that the collapse time is independent of N.

Table of contents

1. An interdisciplinary model for interacting individuals
2. Gradient flow structure of the discrete model
3. The continuum theory
4. A model with moderate repulsion
5. Interplay with entropy solutions
6. Systems with many species
Ingredients for the continuum theory2

Aim: produce a unique notion of measure solution for

\[\frac{\partial \mu}{\partial t} = \text{div}(\mu \nabla G * \mu). \]

The measure space

\[\mu \in \mathcal{P}_2(\mathbb{R}^d) := \left\{ \mu \in \mathcal{P}(\mathbb{R}^d), \quad \int |x|^2 d\mu(x) < +\infty \right\} \]

endowed with the 2-\textit{Wasserstein} distance

\[d_2(\mu, \nu)^2 = \inf \left\{ \int\int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 d\gamma(x, y), \quad \gamma \in \Gamma(\mu, \nu) \right\} \]

\[\Gamma(\mu, \nu) = \left\{ \gamma \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) : \mu \text{ and } \mu \text{ are the marginals of } \gamma \right\} \]

The functional

\[\mathcal{G}[\mu] = \frac{1}{2} \int\int_{\mathbb{R}^d \times \mathbb{R}^d} G(x - y)d\mu(x)d\mu(y) \]

2Ambrosio, Gigli, Savaré - Birkhäuser 2005
Why the Wasserstein distance?

Go back to the discrete case:

\[\mu := \sum_{j=1}^{N} m_j X_j, \quad \nu := \sum_{j=1}^{N} m_j Y_j. \]

The natural distance is

\[d(\mu, \nu)^2 = \inf \left\{ \int_0^1 \| \frac{d}{ds} x(\cdot) \|_{L^2_m}^2, \; X_j(0) = X_j, \; X_j(1) = Y_j \right\}. \]

The natural continuum version is:

\[d(\mu, \nu)^2 = \inf \left\{ \int_0^1 \int |v_s(x)|^2 d\mu_s(x), \; \partial_s \mu_s + \text{div}(\mu_s v_s)0, \; \mu_0 = \mu, \; \mu_1 = \nu \right\}, \]

which coincides with the 2–Wasserstein distance according to the Benamou-Brenier formula.
Definition of Wasserstein gradient flow

An absolutely continuous curve \([0, +\infty) \ni t \mapsto \mu(t) \in \mathcal{P}(\mathbb{R}^d)\) is a Wasserstein gradient flow of the functional \(\mathcal{G}\) iff

\[
\frac{\partial \mu(t)}{\partial t} + \text{div}(\mu(t) \nu(t)) = 0, \quad \text{in } \mathcal{D}'(\mathbb{R}^d \times [0, +\infty))
\]

\[
\nu(t) = -\partial^0 G \ast \mu(t) = -\int_{x \neq y} \nabla G(x - y) d\mu(y, t).
\]

Notice that \(\partial^0 G \ast \mu(t)\) coincides with the minimal sub-differential of \(\mathcal{G}\) on \(\mathcal{P}_2(\mathbb{R}^d)\), namely

\[
\partial^0 G \ast \mu(t) = \arg \min_{\nu \in \partial \mathcal{G}[\mu]} \|\nu\|_{L^2(d\mu: \mathbb{R}^d)}
\]

\[
\partial \mathcal{G}[\mu] = \{ \nu \in L^2(d\mu) : \mathcal{G}[\nu] - \mathcal{G}[\mu] \geq \inf_{\gamma_o \in \Gamma(\mu, \nu)} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \nu(x) \cdot (y - x) d\gamma_o(x, y) + o(d_2(\mu, \nu)) \}
\]

\[
\gamma_o \in \Gamma(\mu, \nu) \text{ such that } d_2(\mu, \nu) = \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 d\gamma_o(x, y).
\]
Existence and uniqueness of solutions

Theorem (Existence and uniquenessa)

aCarrillo, DF, Figalli, Laurent, Slepcev - Duke Math. J. - 2011

\begin{itemize}
 \item Let $\mu_0 \in \mathcal{P}_2(\mathbb{R}^d)$. Then, there exists a unique Wasserstein gradient flow solution for \mathcal{G} with μ_0 as initial datum. Moreover,
 \begin{align}
 \mathcal{G}[\mu(t)] + \int_0^t ds \int_{\mathbb{R}^2} \left| \partial^0 G \ast \mu(x, s) \right|^2 d\mu(x, s) &\leq \mathcal{G}[\mu_0], \\
 \text{for all } t \geq 0.
 \end{align}
 \end{itemize}

\begin{itemize}
 \item Let $\mu_1^0, \mu_2^0 \in \mathcal{P}_2(\mathbb{R}^d)$. Let $\mu_1(t)$ and $\mu_2(t)$ be Wasserstein gradient flows for \mathcal{G} with μ_1^0 and μ_2^0 as initial data respectively. Then,
 \begin{align}
 d_2(\mu_1(t), \mu_2(t)) &\leq e^{\lambda t} d_2(\mu_1^0, \mu_2^0), \\
 \text{for all } t \geq 0.
 \end{align}
 \end{itemize}
The continuum theory

Finite time collapse for general solutions

Theorem (Finite total collapsea)

Let $\mu_0 \in \mathcal{P}_2(\mathbb{R}^d)$ compactly supported. Let $\mu(t)$ the corresponding gradient flow of G. Let

$$C_m := \int_{\mathbb{R}^d} x d\mu(x, t).$$

Then, there exists a time t^* depending only on the radius of $\text{sp}t(\mu_0)$ such that

$$\mu(t) = \delta_{C_m},$$

for all $t \geq t^*$.

M. Di Francesco (University of Bath)
Proof

Similar to an old idea of R. Dobrushin (1979).

1. **Atomization** of μ_0: for a fixed arbitrary $\varepsilon > 0$, take $\mu_0^N = \sum_{j=1}^{N} m_j \delta_{X_j}$ such that
 \[d_2(\mu_0, \mu_0^N) \leq \varepsilon. \]

2. Let the particles X_1, \ldots, X_N evolve via the discrete particle system. Let t^* be the collapse time,
 \[X_1(t) = \ldots = X_N(t) = C_m, \quad \text{for all } t \geq t^*. \]

3. This means that $\mu^N(t) := \sum_{j=1}^{N} Nm_j \delta_{X_j(t)} = \delta_{C_m}$ for all $t \geq t^*$.

4. The stability property (8) implies
 \[d_2(\mu(t^*), \mu^N(t^*)) \leq e^{-\lambda t^*} d_2(\mu_0, \mu_0^N) \leq \varepsilon e^{-\lambda t^*}, \]
 which is an arbitrary small quantity. Hence,

5. $\mu(t^*) = \mu^N(t^*) = \delta_{C_m}.$
Global confinement for attractive-repulsive potentials3

Assume G as in (K1)–(K4), plus

(K5) $G(x) = g(|x|)$, $g \in C^1((0, +\infty))$,

(K6) $g'(r) > 0$ for $r > R_a$ for some $R_a > 0$,

(K7) $g'(r) > -C_G$ for $r < R_a$ for some $C_G > 0$.

Moreover, assume either

(K8) there exists $\bar{R} > 0$ such that $g'(r) \geq 4C_G$ for all $r \geq \bar{R}$,

or

(K9) $\lim \inf_{r \to 0} g(r) > -\infty$, and $\lim_{r \to +\infty} g'(r) \sqrt{r} = +\infty$.

Then, there exists $R^* > 0$ depending only on G and on μ_0 such that

$$\text{spt}(\mu(t)) \subset B(0, R^*),$$

for all $t \geq 0$.

Remark: conditions (K5)–(K7) alone are not enough for global confinement (Theil, 2006).

3Carrillo, DF, Figalli, Laurent, Slepcev - Nonlinear Anal. - 2012
Table of contents

1. An interdisciplinary model for interacting individuals
2. Gradient flow structure of the discrete model
3. The continuum theory
4. A model with moderate repulsion
5. Interplay with entropy solutions
6. Systems with many species
N–dependent repulsion range4

$$
\frac{dX_j(t)}{dt} = - \sum_{k \neq j} m_k \nabla G(X_j(t) - X_k(t)) - \sum_{k \neq j} m_k \nabla V_N(X_j(t) - X_k(t)), \quad j = 1, \ldots, N
$$

$$
V_N(x) = N^{d\beta} V(N^\beta x), \quad \beta \in (0, 1)
$$

$$
V(x) = v(|x|), \quad v \in C^2((0, +\infty)), \quad v'(r) < 0, \quad \text{as } r > 0,
$$

$$
V \geq 0, \quad \int_{\mathbb{R}^d} V(x)dx = \varepsilon.
$$

- V_N is a repulsive kernel, with a range of interaction $O(N^{-\beta})$ and strength of the interaction force $O(N^{d\beta})$ depending on the number of individuals N.
- Formally $V_N(x) \rightarrow \varepsilon \delta$ in \mathcal{D}' as $N \rightarrow +\infty$.

Formal limit of the particle system

$$
\frac{\partial \mu}{\partial t} = \text{div}(\mu \nabla G \ast \mu) + \varepsilon \text{div}(\mu \nabla \mu).
$$

Hence... a quadratic porous medium type diffusion term appears.

Basic properties of the limiting equation

Assume

- $G(x) = g(|x|), g \in C^2([0, +\infty)),$
- $g'(r) > 0$ for all $r > 0,$
- $\text{spt } G = \mathbb{R}^d, G \leq 0, G \in L^1(\mathbb{R}^d).$

Regularizing effect

For all initial data $\mu_0 \in P_2(\mathbb{R}^d),$ the corresponding solutions are densities, $\mu(t) = \rho(t)d\mathcal{L}_d.$

Conservation of the center of mass

Let

$$CM[\rho(t)] := \int x\rho(x, t)dx,$$

then $CM[\rho(t)] = CM[\rho_0]$ for all $t \geq 0.$
Wasserstein gradient flow for the limiting equation

\[\frac{\partial \rho}{\partial t} = \text{div}(\rho \nabla (\varepsilon \rho + G * \rho)). \]

Energy functional:

\[E[\rho] := \frac{\varepsilon}{2} \int_{\mathbb{R}^d} \rho^2(x) \, dx + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} G(x - y) \rho(y) \rho(x) \, dy \, dx. \quad (10) \]

Energy identity:

\[E[\rho(t)] + \int_0^T \int_{\mathbb{R}^d} \rho \left| \nabla (\varepsilon \rho + G * \rho) \right|^2 \, dx \, dt = E[\rho_0]. \quad (11) \]

The identity (11) can be proven rigorously in the context of the Wasserstein gradient flow theory developed in [Ambrosio, Gigli, Savaré, Birkhäuser 2003].
A model with moderate repulsion

A key question: large time behavior

How does $\rho(t)$ behave as $t \to +\infty$? There are (basically) three possibilities:

(i) **Diffusion dominated case:** $\rho(t)$ decays to zero in some L^p norm with $p > 1$. In this case, the repulsive effects dominates.

(ii) **Aggregation dominated case:** $\rho(t)$ concentrates to a singular measure (delta) in finite or infinite time. Here, the aggregation effect dominates.

(iii) **Balanced case:** $\rho(t)$ converges to some (stable) non trivial L^1 steady state for large times.

Unlike the Keller-Segel system, here no mass threshold phenomenon occurs, since the equation is quadratically homogeneous.
A model with moderate repulsion

A minimization problem

$$\argmin_{\rho \in L^1_+ (\mathbb{R}^d)} \left\{ \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx - \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \rho(x) \rho(y) G(x - y) \, dx \, dy \right\}.$$

Existence of nontrivial minimizers\(^5\) under the assumptions

- Total mass sufficiently large,
- \(\Phi(tu) \leq t^\nu \Phi(u)\) with \(1 < \nu < 2\),
- \(G\) slow decaying at infinity, i.e. \(G(tx) \geq t^{-\alpha} G(x)\) with \(\alpha \in (0, d)\),
- \(\Phi(u) = o(u^{1+\frac{\alpha}{d}})\) as \(u \to 0\).

A critical exponent

Nontrivial minimizers exist\(^6\) if

- \(G \in L^1_+ \),
- \(\Phi(u) = cu^2 + o(u^2) \) as \(u \to 0 \) with \(c > 0 \),
- either \(c = 0 \) or \(2c < \int G \).

Case \(\Phi(u) = u^m \): the exponent \(m = 2 \) is critical:

- \(m > 2 \) \(\Rightarrow \) aggregation dominates \(\Rightarrow \) nontrivial stationary patterns,
- \(m < 2 \) \(\Rightarrow \) diffusion dominates (large time decay expected),
- \(m = 2 \) \(\Rightarrow \) ??

\(^6\) [Bedrossian, 2012]
Stationary states in multiple dimensions.

\[\frac{\partial \rho}{\partial t} = \text{div}(\rho \nabla (\varepsilon \rho + G \ast \rho)). \]

Threshold phenomenon\(^a\)

\(^a\)[Burger, DF, Franek - to appear on CMS], [Bedrossian, AML 2011]

- Let \(\varepsilon < \|G\|_{L^1} \). Then, there exists at least one non trivial \(L^1 \) steady state, which is also a minimizer for the energy \(E[\rho] \).
- Let \(\varepsilon \geq \|G\|_{L^1} \). Then, there exist no steady states except \(\rho \equiv 0 \).

Finite time concentration is not possible under the present smoothness assumptions on \(G \).

Stationary points of \(E[\rho] \) are steady states and vice-versa
Uniqueness of steady states in one space dimension

With \(d = 1 \) we can characterize all the steady states as follows.

Theorem (Burger-DF-Franek - to appear on CMS)

Let \(\varepsilon < \|G\|_{L^1} \). Then, there exists a unique \(\rho \in L^2 \cap \mathcal{P} \) with zero center of mass which solves

\[
\rho \partial_x (\varepsilon \rho + G \ast \rho) = 0.
\]

Moreover,

- \(\rho \) is symmetric and monotonically decreasing on \(x > 0 \),
- \(\rho \in C^2(\text{supp}[\rho]) \),
- \(\text{supp}[\rho] \) is a bounded interval in \(\mathbb{R} \),
- \(\rho \) has a global maximum at \(x = 0 \) and \(\rho''(0) < 0 \),
- \(\rho \) is the global minimizer of the energy \(E[\rho] = \frac{\varepsilon}{2} \int \rho^2 \, dx - \frac{1}{2} \int \rho G \ast \rho \, dx \).
Sketch of the proof

- Fix $L > 0$. Look for $\rho \in C(\mathbb{R})$ symmetric on $\text{spt}\rho = [-L, L]$, strictly decreasing on $(0, L]$:
 \[
 \varepsilon \rho(x) = -\int_0^L (G(x - y) + G(x + y)) \rho(y) dy + C \tag{12}
 \]

- Differentiate (12) w.r.t. x, set $u(x) = -\rho_x(x)$:
 \[
 \varepsilon u(x) = -\int_0^L (G(x - y) - G(x + y)) u(y) dy =: G_L[u](x) \tag{13}
 \]

- Solve the eigenvalue problem (13) with Krein-Rutman theorem. G_L is a strictly positive operator, therefore $\varepsilon = \varepsilon(L)$ is a simple eigenvalue \Rightarrow uniqueness of $\rho(x) = \int_x^L u(y) dy$ with $\int_0^L \rho(x) dx = 1$.

- Prove that the function $(0, +\infty) \ni L \mapsto \varepsilon(L) \in (0, 1)$ is continuous and $1 : 1 \Rightarrow$ uniqueness is proven provided all steady states are supported on a bounded interval, symmetric and decreasing on $x > 0$.

- Prove that all steady states are as above. Main tools: symmetric rearrangement and connected support.
Remarks and open problems:

- The uniqueness is surprising because the functional is neither geodesically convex in the Wasserstein space nor convex in the classical sense.
- Uniqueness in many dimensions? We believe it true in the radially symmetric case.
- Porous medium exponent $\gamma \neq 2$ (ongoing discussion with M. Burger, R. Fetecau, Y. Huang).
Table of contents

1. An interdisciplinary model for interacting individuals
2. Gradient flow structure of the discrete model
3. The continuum theory
4. A model with moderate repulsion
5. Interplay with entropy solutions
6. Systems with many species
The JKO scheme produces entropy solutions

- Nonlocal interaction equations with nonlinear diffusion

\[\partial_t \rho = \Delta \rho^m + \text{div}(\rho \nabla G \ast \rho) = 0 \quad (14) \]

with \(m > 1 \) and \(G \in C^2 \) and \(G \) even. Here, both notions of entropy solutions and gradient flow solutions have been used (almost at the same time!) to prove uniqueness of solutions.

- Nonlinear diffusion equations with in-homogeneous term

\[\partial_t \rho = \partial_x (\rho \partial_x (a(x) \rho^{m-1})) \]

with \(a(x) \geq c > 0 \). In [DF, Matthes - submitted 2012] we prove that the notions of gradient flow solution and entropy solutions coincide.

The results in [DF, Matthes] can be applied also for (14).
A one dimensional repulsive equation\(^7\)

Consider \(\rho \) gradient flow solution to

\[
\rho_t = \partial_x (\rho \partial_x (G * \rho)), \quad G(x) = -|x|.
\] (15)

Let

\[
F(x, t) = \int_{-\infty}^{x} \rho(y, t) dy,
\]

then \(F \) is an entropy solution to the Burgers’ type equation

\[
F_t + (F^2 - F)_x = 0.
\] (16)

Applications:

- Smoothing effect: initial deltas become densities,
- Wave front tracking approximation for (16) provide particle approximation for (15).

\(^7\)Work in preparation with G. Bonaschi and J. A. Carrillo
Table of contents

1. An interdisciplinary model for interacting individuals
2. Gradient flow structure of the discrete model
3. The continuum theory
4. A model with moderate repulsion
5. Interplay with entropy solutions
6. Systems with many species
A two species model8

- X_1, \ldots, X_N particles of the first species with masses n_1, \ldots, n_N,
- Y_1, \ldots, Y_M are particles of the second species with masses m_1, \ldots, m_M.

Particle system:

\[
\begin{aligned}
\dot{X}_i(t) &= -\sum_{X_i \neq X_k} n_k \nabla H_1(X_i(t) - X_k(t)) - \sum_{X_i \neq Y_k} m_k \nabla K_1(X_i(t) - Y_k(t)) \\
\dot{Y}_j(t) &= -\sum_{Y_j \neq Y_k} m_k \nabla H_2(Y_j(t) - Y_k(t)) - \sum_{Y_j \neq X_k} n_k \nabla K_2(Y_j(t) - X_k(t))
\end{aligned}
\]

Continuum version:

\[
\begin{aligned}
\partial_t \mu_1 &= \text{div} \left(\mu_1 \nabla H_1 \ast \mu_1 + \mu_1 \nabla K_1 \ast \mu_2 \right) \\
\partial_t \mu_2 &= \text{div} \left(\mu_2 \nabla H_2 \ast \mu_2 + \mu_2 \nabla K_2 \ast \mu_1 \right).
\end{aligned}
\]

8[DF, Fagioli - submitted]
Motivation

- Pedestrian movements, lane formation, segregation, cf. [Appert-Rolland, Degond, Motsch - 2011], [Colombo, Lécureux-Mercier - 2012].
- Two species chemotaxis, cf. [Horstmann - 2011], [Espejo, Stevens, Velázquez - 2009], [Conca, Espejo, Vilches - 2011].
Systems with many species

Symmetrizable case

\[
\begin{align*}
\partial_t \mu_1 &= \text{div} \left(\mu_1 \nabla K_{11} \ast \mu_1 + \mu_1 \nabla K_{12} \ast \mu_2 \right) \\
\partial_t \mu_2 &= \alpha \text{div} \left(\mu_2 \nabla K_{22} \ast \mu_2 + \mu_2 \nabla K_{12} \ast \mu_1 \right).
\end{align*}
\] (17)

System (17) has a gradient flow structure, with functional

\[
F(\mu_1, \mu_2) = \frac{1}{2} \int_{\mathbb{R}^d} K_{11} \ast \mu_1 d\mu_1 + \frac{1}{2} \int_{\mathbb{R}^d} K_{22} \ast \mu_2 d\mu_2 + \int_{\mathbb{R}^d} K_{12} \ast \mu_2 d\mu_1.
\]

The quantity

\[
c_{M, \alpha} := \alpha \int x d\mu_1(x) + \int x d\mu_2(x)
\]

is preserved.

Metric product structure

\[
\mu = (\mu_1, \mu_2) \in \mathcal{P}_2(\mathbb{R}^d) \times \mathcal{P}_2(\mathbb{R}^d),
\]

\[
W^2_{2, \alpha}(\mu, \nu) = W^2_2(\mu_1, \nu_1) + \frac{1}{\alpha} W^2_2(\mu_2, \nu_2).
\]
Results in the symmetrizable case

Assumptions: all the kernels K_{ij} are mildly singular and λ_{ij}–convex. We prove:

- λ convexity of the interaction energy on a suitable sub-differential structure.
- Existence, uniqueness, and stability of gradient flow solutions, by generalizing the one-species theory.
- Finite time collapse if all the kernels are of Non–Osgood type.
- Partial intermediate collapse of each species if the cross interaction kernel decays at infinity.
General case: the strategy

No gradient flow structure in general, no variational formulation. Main idea: semi-implicit version of the JKO scheme.

For all $\mu \in \mathcal{P}(\mathbb{R}^d)^2$ we set

$$F[\mu|\nu] = \frac{1}{2} \int_{\mathbb{R}^d} H_1 \ast \mu_1 d\mu_1 + \int_{\mathbb{R}^d} K_1 \ast \nu_2 d\mu_1 + \frac{1}{2} \int_{\mathbb{R}^d} H_2 \ast \mu_2 d\mu_2 + \int_{\mathbb{R}^d} K_2 \ast \nu_1 d\mu_2.$$

Let $\tau > 0$ be a fixed time step, and let $\mu_0 = (\mu_{0,1}, \mu_{0,2}) \in \mathcal{P}(\mathbb{R}^d)^2$ be a fixed initial pair of probability measures. For a given $\mu_\tau^n \in \mathcal{P}(\mathbb{R}^d)^2$, we define the sequence μ_τ^{n+1} as

$$\mu_\tau^{n+1} \in \arg\min_{\mu \in \mathcal{P}_2(\mathbb{R}^d) \times \mathcal{P}_2(\mathbb{R}^d)} \left\{ \frac{1}{2\tau} \mathcal{W}_2^2(\mu_\tau^n, \mu) + F[\mu|\mu_\tau^n] \right\}.$$
General case: the results

- Existence of weak measure solutions

\[
\frac{d}{dt} \int \phi(x) d\mu_1(x, t) = -\frac{1}{2} \int \int \nabla H_1(x - y) \cdot (\nabla \phi(x) - \nabla \phi(y)) d\mu_1(x) d\mu_1(y) \\
- \int \int \nabla K_1(x - y) \cdot \nabla \phi(x) d\mu_1(x) d\mu_2(y)
\]

\[
\frac{d}{dt} \int \psi(x) d\mu_2(x, t) = -\frac{1}{2} \int \int \nabla H_2(x - y) \cdot (\nabla \psi(x) - \nabla \psi(y)) d\mu_2(x) d\mu_2(y) \\
- \int \int \nabla K_2(x - y) \cdot \psi(x) d\mu_2(x) d\mu_1(y).
\]

as limit of the semi-implicit JKO scheme.

- Uniqueness in case \(H_j\) and \(K_j\) are \(W^{2,\infty}\), via a variant of the characteristics method.
Open problems and future work

- Open problem: uniqueness in the two species system for less regular potentials.

- Many species with nonlocal aggregation and nonlinear cross-diffusion terms: segregation. Ongoing project with M. Burger and A. Stevens.

- Derivation of multi-species continuum second order models via particle methods.

- Derivation of first order systems as damping dominated limits of second order systems.
End of the talk

Thank you for your attention!