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Abstract

We propose a simple fast spectral method for the Boltzmann collision operator with

general collision kernels. In contrast to the direct spectral method [17, 27] which requires

O(N6) memory to store precomputed weights and has O(N6) numerical complexity, the

new method has complexity O(MN
4 logN), where N is the number of discretization points

in each of the three velocity dimensions and M is the total number of discretization points

on the sphere and M ≪ N
2. Furthermore, it requires no precomputation for the variable

hard sphere (VHS) model and only O(MN
4) memory to store precomputed functions for

more general collision kernels. Although a faster spectral method is available [22] (with

complexity O(MN
3 logN)), it works only for hard sphere molecules, thus limiting its use

for practical problems. Our new method, on the other hand, can apply to arbitrary collision

kernels. A series of numerical tests is performed to illustrate the efficiency and accuracy of

the proposed method.

Key words. Boltzmann collision integral, spectral method, convolution, fast Fourier transform,

Lebedev quadrature.
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1 Introduction

Kinetic theory describes the non-equilibrium dynamics of a gas or any system comprised of a

large number of particles. When well-known fluid mechanical laws of Navier-Stokes and Fourier

become inadequate, kinetic equations provide rich information at the mesoscopic level and have

found applications in various fields such as rarefied gas dynamics [10], radiative transfer [11],

semiconductor modeling [21], and biological and social sciences [24]. Our main focus in this

paper is the Boltzmann equation which constitutes the central model in kinetic theory and takes

the form [9, 12, 29]:

∂f

∂t
+ v · ∇xf = Q(f), t > 0, x ∈ Ω ⊂ R

3, v ∈ R
3. (1.1)

Here f = f(t, x, v) is the phase space distribution function, which depends on time t, position

x, and particle velocity v; and Q is the Boltzmann collision operator, which models binary

interactions between particles:1

Q(f)(v) =

∫

R3

∫

S2

B(v − v∗, ω) [f(v
′)f(v′∗)− f(v)f(v∗)] dω dv∗. (1.2)

In this formula, (v′, v′∗) and (v, v∗) represent the velocity pairs before and after a collision. The

requirement that momentum and energy are conserved during such a collision means that (v′, v′∗)

can be expressed in terms of (v, v∗):

v′ =
v + v∗

2
+

|v − v∗|
2

ω, v′∗ =
v + v∗

2
− |v − v∗|

2
ω, (1.3)

where the parameter ω varies over the unit sphere S2. The collision kernel B is a non-negative

function that depends on its arguments only through |v − v∗| and cosine of the deviation angle

θ (the angle between v − v∗ and v′ − v′∗). Thus B is often written as

B(v − v∗, ω) = B(|v − v∗|, cos θ), cos θ =
ω · (v − v∗)

|v − v∗|
. (1.4)

The specific form of B can be determined from the intermolecular potential using scattering

theory [9]. For numerical purposes, a commonly used collision kernel is the variable hard sphere

(VHS) model proposed by Bird [3]:

B = bγ |v − v∗|γ , bγ > 0, 0 ≤ γ ≤ 1, (1.5)

where γ and bγ are constants. In particular, γ = 1 corresponds to hard sphere molecules and

γ = 0 to Maxwell molecules.

The collision operator Q has collision invariants 1, v, and |v|2; that is,
∫

R3

Q(f) dv =

∫

R3

Q(f)v dv =

∫

R3

Q(f)|v|2 dv = 0. (1.6)

In addition, Q satisfies Boltzmann’s H-theorem; that is,

∫

R3

Q(f) ln f dv ≤ 0, (1.7)

1The variables t and x are suppressed because Q acts on f only through the velocity.
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with equality if and only if f takes on the form of a Maxwellian:

M(v) =
ρ

(2πT )
3
2

e−
|v−u|2

2T , (1.8)

where the density ρ, bulk velocity u, and temperature T are given by

ρ =

∫

R3

f dv, u =
1

ρ

∫

R3

fv dv, T =
1

3ρ

∫

R3

f |v − u|2 dv. (1.9)

This implies that in the homogeneous case, the entropy S(f) = −
∫

R3 f ln f dv is always non-

decreasing and reaches its maximum at the equilibrium defined by the Maxwellian in (1.8).

Proposed by Ludwig Boltzmann in 1872, the Boltzmann equation (1.1) is one of the fun-

damental equations of kinetic theory. Yet its numerical approximation still presents a huge

computational challenge, even on today’s supercomputers. This is mainly due to the high-

dimensional, nonlinear, nonlocal structure of the collision integral in (1.2). Two approaches

have been primarily employed for solving the Boltzmann equation numerically: one stochastic

and one deterministic. Direct simulation Monte Carlo (DSMC) methods [3,8,25] have been his-

torically popular because they avoid the curse of dimensionality for this problem, however they

can suffer from slow convergence for certain types of problems such as transient and low-speed

flows and give noisy results due to their stochastic nature. The other approach is to use de-

terministic solvers, which have undergone considerable development over the past twenty years.

These methods include discrete velocity models (DVM) [5, 7, 23, 28] and Fourier spectral meth-

ods [6, 16–18, 26, 27]. DVMs are quadrature-based methods with grid points that are carefully

chosen in order to preserve the conserved quantities of the collision operator. Spectral methods,

on the other hand, compute the collision operator by exploiting its structure in Fourier space.

Compared with DVM, they can provide significantly more accurate results with less numeri-

cal complexity; the conservation properties are not strictly maintained but are preserved up to

spectral accuracy. Compared with DSMC, they produce smooth, noise free solutions and can

simulate regimes that particle methods find difficult.

Despite of the aforementioned advantages, spectral methods are invariably hindered in most

real-world applications since they require O(N6) operations per evaluation of the collision op-

erator, with N being the number of discretization points in each velocity dimension, as well

as O(N6) bytes of memory to store precomputed weight functions. With this type of scaling,

the evaluation of the collision operator quickly becomes the bottleneck when solving large-scale

problems [17, 27]. Fast spectral methods, based on the Carleman representation of the collision

integral, have been proposed in [6, 22]. These methods reduce the complexity of evaluating the

collision operator to O(MN3 logN), where M is the total number of discretization points on

a sphere and M ≪ N2). However, a decoupling assumption for the collision kernel is needed

that restricts application of the method to the hard sphere case, i.e., γ = 1 in (1.5). In practice,

however, γ may take on any value in [0, 1]; in addition, the collision kernel (1.4) may also have

angular dependence. Therefore, the goal of this paper is to introduce a fast spectral method for

the Boltzmann collision operator that can handle general collision kernels as well as mitigate

the memory requirement in the direct spectral method. Specifically, the numerical complexity of

our new method is O(MN4 logN); no precomputation is required for the VHS model, and only

O(MN4) memory is needed to store precomputed functions for more general collision kernels.

The proposed method can serve as a “black-box” solver in the velocity domain to be used in
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conjunction with existing time and spatial discretization methods to treat more practical prob-

lems with complex geometries, multiple temporal/spatial scales, etc. Since our goal here is to

present a simple strategy to accelerate the direct spectral method without sacrificing spectral

accuracy, we will mainly focus on the approximation of the collision operator in the numerical

examples and consider only the spatially homogeneous version of the Boltzmann equation (1.1).

The rest of this paper is organized as follows. In the next section, we review the basic

formulation of the direct spectral method and discuss its numerical challenges. The fast method

is then described in Section 3. Numerical examples are presented in Section 4 to demonstrate

the efficiency and accuracy of the proposed method. The paper is concluded in Section 5.

2 The direct spectral method

While multiple spectral formulations exist, we have elected in this paper to adopt the Fourier-

Galerkin approach [27] to illustrate the idea. The strategy introduced below can be easily applied

to other spectral formulations such as the one based on the Fourier transform [17].

The starting point for the spectral method is a change in the integration variable v∗ in (1.2)

to g = v− v∗. It is then assumed that f has a compact support in v: Suppv(f) ≈ BS, where BS

is a ball centered at the origin with radius S. Of course, many distribution functions, including

the Maxwellian, will not have compact support. Thus in practice, the support is chosen as some

multiple (typically 6 to 8) of the thermal speed vth =
√
T . It then suffices to truncate the infinite

integral in g to a larger ball BR with radius R = 2S:

Q(f)(v) ≈ QR(f)(v) =

∫

BR

∫

S2

B (r, ω · ĝ) [f(v′)f(v′∗)− f(v)f(v − g)] dω dg, (2.1)

where

v′ = v − g

2
+

r

2
ω and v′∗ = v − g

2
− r

2
ω, (2.2)

with r = |g| and ĝ = g/|g| being the magnitude and direction of g, respectively. Next, one

restricts f to the computational domain DL = [−L,L]3 and extends it periodically to the whole

space. For anti-aliasing purposes, we let L ≥ (3 +
√
2)S/2.2 Then f is approximated by a

truncated Fourier series:3

f(v) ≈ fN(v) =

N
2 −1
∑

k=−
N
2

f̂ke
i π
L
k·v, f̂k =

1

(2L)3

∫

DL

f(v)e−i π
L
k·v dv. (2.3)

By substituting (2.3) into (2.1) and performing a Galerkin projection, one can express the k-th

mode of the Fourier expansion of the collision operator as a (discrete) weighted convolution:

Q̂k :=
1

(2L)3

∫

DL

QR(f)(v)e
−i π

L
k·v dv =

N
2 −1
∑

l,m=−
N
2

l+m=k

G(l,m)f̂lf̂m, k = −N

2
, . . . ,

N

2
− 1, (2.4)

where G(l,m) = G(l,m)−G(m,m) and

G(l,m) =

∫

BR

∫

S2

B (r, ω · ĝ) e−i π
L

(l+m)
2 ·g+i π

L
r (l−m)

2 ·ω dω dg. (2.5)

2See [27] for more details justifying this choice of L.
3Note that k = (k1, k2, k3) ∈ Z

3 is a multi-dimensional index so that, for example, the summation in (2.3) is

understood to be over the lattice {k ∈ Z
3 : −N

2
≤ k1, k2, k3 ≤ N

2
− 1}.
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For the VHS model (1.5), the formula for G reduces to

G(l,m) = 16π2bγ

∫ R

0

rγ+2 Sinc

(

π

L
r
|l +m|

2

)

Sinc

(

π

L
r
|l −m|

2

)

dr, (2.6)

where Sinc(x) = sinx/x.

To summarize, a single evaluation of the collision operator Q in the direct spectral method

consists of the following steps:

0. precompute the weight G(l,m) — storage requirement O(N6);

1. compute f̂k using the fast Fourier transform (FFT) — cost O(N3 logN);

2. compute the weighted convolution (2.4) — cost O(N6);

3. take the inverse Fourier transform of Q̂k to obtain Q — cost O(N3 logN).

Step 2 is by far the most expensive step. Indeed, due to the presence of the weights G(l,m)

in the convolution, typical fast methods for convolutions do not apply. Thus the constrained

double summation in (2.4) has to be evaluated directly for every index k, resulting in O(N6)

complexity. Step 0 can be completed in advance, but it requires a huge amount of memory to

store the precomputed weights. This can be a challenge for large-scale problems, even on the

largest supercomputers. For example, when N = 40, it takes just over 32 gigabytes of data to

store the weights—an amount that exceeds the memory capacity on a typical compute node of

Oak Ridge National Laboratory’s Titan supercomputer.

3 The new fast spectral method

In the new fast spectral method, we accelerate the summation in (2.4). Let Q̂k = Q̂+

k − Q̂−

k ,

where

Q̂+

k =

N
2 −1
∑

l,m=−
N
2

l+m=k

G(l,m)f̂lf̂m and Q̂−

k =

N
2 −1
∑

l,m=−
N
2

l+m=k

G(m,m)f̂lf̂m. (3.1)

Because G(m,m) depends only on m, the loss term Q̂−

k is actually a convolution of the functions

G(m,m)f̂m and f̂l. It can therefore be computed efficiently by FFT in O(N3 logN) operations,

since convolution in the Fourier domain becomes multiplication in the original domain. What

makes the total cost O(N6) is the gain term Q̂+

k .

Our goal is to find an approximation for Q̂+

k that can be expressed as a convolution. To this

end, we seek an approximation of G(l,m) in the following decoupled form:

G(l,m) ≈
Np
∑

p=1

αp(l +m)βp(l)γp(m), (3.2)

where αp, βp, and γp are functions of (l+m), l, and m respectively, and Np ≪ N3. Substitution

of (3.2) into (3.1) gives

Q̂+

k ≈
N
2 −1
∑

l,m=−
N
2

l+m=k

Np
∑

p=1

αp(l +m)βp(l)γp(m)f̂lf̂m =

Np
∑

p=1

αp(k)

N
2 −1
∑

l,m=−
N
2

l+m=k

(

βp(l)f̂l

)(

γp(m)f̂m

)

. (3.3)
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The inner summation in (3.3) is a pure convolution of the two functions βp(l)f̂l and γp(m)f̂m

that can be computed in O(N3 logN) via FFT. This, together with the outer summation, results

in a total cost of O(NpN
3 logN) for a single evaluation of Q+.

To generate a suitable low-rank approximation of the form (3.2), we propose a simple solution

in which, instead of precomputing all the weights G(l,m) in (2.5), we compute them partially

“on the fly” using a quadrature rule. Specifically, we rewrite G(l,m) as

G(l,m) =

∫ R

0

∫

S2

F (l +m, r, ω) ei
π
L
r l

2 ·ω e−i π
L
rm

2 ·ω dω dr, (3.4)

where

F (l +m, r, ω) = r2
∫

S2

B (r, ω · ĝ) e−i π
L
r (l+m)

2 ·ĝ dĝ. (3.5)

For each fixed r and ω, the integrand in (3.4) is a product of three functions: one that depends

on (l+m), one that depends on l, and one that depends on m. This is exactly the desired form

of (3.2). In order to maintain this structure, we carry out the integration in r and ω using a

fixed numerical quadrature. This yields

G(l,m) ≈
∑

r,φ1,φ2

wrwφ1wφ2 sinφ2 F (l +m, r, ω)ei
π
L
r l

2 ·ωe−i π
L
rm

2 ·ω, (3.6)

where φ1 is the azimuthal angle, φ2 is the polar angle, and wr, wφ1 and wφ2 represent the

corresponding quadrature weights. Since the radial direction oscillates on the scale of l−m
2

, the

number of quadrature points in r must be at least O(N) in order to resolve this dimension.

For the integration on the sphere, we anticipate that the total number M of quadrature points

needed is much less than N2; this is confirmed in our numerical results. Thus we are able to

obtain an admissible decomposition (3.2) of G(l,m) with Np = O(MN) ≪ N3. Substituting

(3.6) into (3.1), we have

Q̂+

k ≈
∑

r,φ1,φ2

wrwφ1wφ2 sinφ2 F (k, r, ω)

N
2 −1
∑

l,m=−
N
2

l+m=k

[

ei
π
L
r l

2 ·ω f̂l

] [

e−i π
L
rm

2 ·ω f̂m

]

. (3.7)

In summary, the proposed fast algorithm for a single evaluation of Q consists of the following

steps:

0. precompute the weights G(m,m) and F (k, r, ω) — storage requirement O(MN4);

1. compute f̂k using FFT — cost O(N3 logN);

2. compute the loss term Q− using FFT — cost O(N3 logN);

3. compute the gain term Q+ based on (3.7) using FFT — cost O(MN4 logN);

4. compute Q = Q+ −Q− — cost O(N3).

Compared with the direct spectral method in the previous section, the new method saves both

in memory storage (step 0) and computational time (step 3). For the N = 40 case mentioned

in Section 2, if we take M = 14, the precomputed weights only require roughly 247 megabytes.
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This is less than one percent of the memory required for the direct method. For the VHS model,

the function F does not depend on ω and has an analytical form

F (k, r) = 4π bγ r
γ+2 Sinc

(

π

L
r
|k|
2

)

. (3.8)

Thus no precomputation is needed in this case.

In our numerical implementation, we use the Gauss-Legendre quadrature in the radial direc-

tion r, while for the integration in ω we propose to use the Lebedev quadrature [20] which is the

near optimal quadrature on the sphere and requires fewer quadrature points than tensor product

based Gauss quadratures for a large class of functions [2]. The Lebedev quadrature is designed

to enforce the exact integration of spherical harmonics up to a given order and only a certain

number of quadrature points are available. To gain a concrete idea of how many quadrature

points M is needed for our problem, note that in a typical numerical example where N = 32, we

only need M = 14 to reach a relative 10−6 accuracy; a larger M (say, M = 74) may be needed

when considering anisotropic distribution functions. Nevertheless, it is generally expected that

M ≪ N2. A similar observation has been made for the fast spectral method in [13, 14, 22]. Al-

though this method is based on a different representation of the collision integral (and restricted

only to the hard sphere case), it also requires numerical discretization on a sphere.

Remark 3.1. The method proposed above can be followed by a post-processing subroutine after

each evaluation of the collision operator to strictly enforce the collision invariants in (1.6) [17]

for either scalar or system Boltzmann models, where it is shown that the solution of the scalar

problem converges to the equilibrium Maxwellian state (1.8) [1], or alternatively, adapted easily

to preserve exactly the equilibrium Maxwellian state as proposed in [15]. Since the goal in this

paper is to present a simple strategy to accelerate the computation of the weighted convolution

(2.4) in the direct spectral method without sacrificing spectral accuracy, we will mainly focus

on the proposed method itself in the following numerical examples and leave the investigation of

aforementioned extensions to future work.

4 Numerical examples

In this section, we perform a series of numerical tests to validate the accuracy and efficiency

of the proposed method. In the first test, we compare results of the new method to the Bobylev-

Krook-Wu (BKW) solution [4,19], which is constructed for Maxwell-type interactions (i.e., γ = 0

in (1.5)) and is one of the few analytical solutions available for the Boltzmann equation. In

the second test, we again consider Maxwell molecules, but assume an initial condition that is

anisotropic in v. In this case, there is no analytical solution for the full distribution function,

but exact formulas for higher order moments such as the momentum flow tensor

Pij =

∫

R3

fvivj dv, i, j = 1, 2, 3, (4.1)

and the energy flow vector

qi =
1

2

∫

R3

fviv
2 dv, i = 1, 2, 3 (4.2)

can be derived. We will also test our method for the hard sphere case by comparing it with the

direct spectral method. Finally, we illustrate the generality of our method by considering a more

realistic, angularly dependent collision kernel.
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In the following, “direct spectral” refers to the direct spectral method, and “fast spectral”

refers to the new method proposed in this paper. The implementation is in MATLAB and all

numerical results are obtained on a laptop computer (MacBook Pro, 3.0GHz Dual-core Intel

Core i7 with 8GB memory). Further acceleration can be achieved by careful implementation in

C or Fortran.

4.1 Maxwell molecules – BKW solution

When the collision kernel B = 1/(4π) is a constant, one can construct an exact solution to

the spatially homogeneous Boltzmann equation

∂f

∂t
= Q(f), t > 0, v ∈ R

3. (4.3)

This solution takes the form

f(t, v) =
1

2(2πK(t))3/2
exp

(

− v2

2K(t)

)(

5K(t)− 3

K(t)
+

1−K(t)

K2(t)
v2
)

, (4.4)

where K(t) = 1 − exp(−t/6). The initial time t0 has to be greater than 6 ln(5/2) ≈ 5.498 for f

to be positive. We take t0 = 5.5.

Since f given in (4.4) satisfies (4.3) exactly, the time derivative of f gives

Q(f) ≡ ∂f

∂t
=

{(

− 3

2K
+

v2

2K2

)

f +
1

2(2πK)3/2
exp

(

− v2

2K

)(

3

K2
+

K − 2

K3
v2
)}

K ′, (4.5)

where K ′(t) = exp(−t/6)/6. Using (4.5), we can verify the accuracy of the proposed method

without introducing additional time discretization error. We pick an arbitrary time t = 6.5 and

compare the numerical error and evaluation time of the direct and fast spectral methods. The

results are shown in Tables 1 and 2, from which we see that only 14 points are needed on the

sphere for the fast method to obtain comparable accuracy to the direct method. Meanwhile, the

speedup is about a factor of 300, even for the moderate value N = 32. When N = 64, the direct

method requires too much storage for precomputed weights to fit within the available memory; it

is therefore omitted. This restriction highlights the advantage of the proposed method in terms

of memory.

N direct spectral fast spectral M = 14

8 6.91e-04 7.33e-04

16 7.83e-05 7.63e-05

32 3.90e-08 3.90e-08

64 — 3.81e-08

Table 1: ‖Qnum(f)−Qext(f)‖L∞ evaluated at t = 6.5. N is the number of discretization points

in each velocity dimension. In the fast spectral method, N -point Gauss quadrature is used in

the radial direction and M = 14 Lebedev rule is used for the sphere integration. We set R = 6

(integration range), and L = (3 +
√
2)R/4 ≈ 6.62 (computational domain).

We next couple the fast collision solver with time discretization to numerically solve the

Boltzmann equation (4.3). A 4th-order Runge-Kutta method is used to ensure that the temporal

8



N direct spectral fast spectral M = 14

8 0.09s 0.14s

16 6.31s 0.26s

32 542.34s 1.78s

64 — 33.15s

Table 2: Average running time for one time evaluation of the collision operator. Same parameters

as in Table 1.

error does not pollute the spectral accuracy in velocity. The results are shown in Figure 1. The

fast method basically produces very similar results to the direct method. Other norms behave

similarly, but are omitted for brevity.

5.5 6 6.5 7 7.5 8 8.5
10

−8

10
−6

10
−4

10
−2

10
0

time

relative max norm error of f

 

 

direct N=16
direct N=32
fast N=16
fast N=32

Figure 1: Time evolution of ‖fnum− f ext‖L∞/‖f ext‖L∞ . RK4 with ∆t = 0.1 for time discretiza-

tion. Other parameters are the same as in Table 1.

4.2 Maxwell molecules – moments

Consider again the constant collision kernel B = 1/(4π). For the initial condition

f(0, v) =
1

2(2π)3/2

{

exp

(

− (v − u1)
2

2

)

+ exp

(

− (v − u2)
2

2

)}

, (4.6)

with u1 = (−2, 2, 0) and u2 = (2, 0, 0), the exact formulas for the non-zero components of P and

q (cf. (4.1) and (4.2)) are given by

P11 =
7

3
exp

(

− t

2

)

+
8

3
, P22 = −2

3
exp

(

− t

2

)

+
11

3
,

P33 = −5

3
exp

(

− t

2

)

+
8

3
, P12 = −2 exp

(

− t

2

)

, (4.7)

and

q1 = −2 exp

(

− t

2

)

, q2 = −2

3
exp

(

− t

2

)

+
43

6
. (4.8)
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In Figure 2, we compare the results of the fast method with the formulas above. Because

the solution is anisotropic in v, we need a larger value of M than before to obtain reasonable

accuracy. We find that M = 74, which is still much less than N2 = 1024, is sufficient to obtain

roughly three digits of accuracy for moments. In Figure 3, we plot differences in the solution

of the distribution function computed with the fast method and the direct method for different

values of M . (Since the exact distribution function is not known, we use the solution of the

direct method as a reference.) We observe that the error decreases quickly as M increases.

4.3 Hard sphere molecules – moments

We next consider the same example as in the previous subsection, but for hard sphere

molecules. That is, the collision kernel (1.5) is assumed to be

B =
1

4π
|v − v∗|. (4.9)

In this case, there is no exact formula for either the distribution function or its higher order

moments. Therefore, we use the direct spectral method as a reference solution and compare it

with the new fast method. The results are plotted in Figure 4, from which we again observe

roughly three digits of accuracy for moments.

4.4 Angularly dependent collision kernel

Our final numerical test involves the variable soft sphere (VSS) model [18], which is widely

used in DSMC calculations. The model has a collision kernel with both velocity and angular

dependence:

B = bγ,η|v − v∗|γ(1 + cos θ)η, (4.10)

where bγ,η is a positive constant and cos θ is given in (1.4). Setting γ = 0.38, η = 0.4, and

bγ,η = 1/(4π), we perform the same test as in Section 4.2 using the same set of discretization

parameters.4 In Figure 5, we plot the results for the fast method. Similar results for the direct

method are omitted because the time it takes to precompute the weights G(l,m) for this model

is prohibitive. For the fast method, this step takes only a few hours.

5 Conclusion

A simple, fast spectral method for the Boltzmann collision operator has been proposed in

this paper. The method is designed to accelerate the direct method and to relieve the memory

bottleneck in its precomputation stage. Through a series of examples, we have demonstrated

that the proposed method can be orders of magnitude faster than the direct method while

maintaining a comparable level of accuracy. Furthermore, unlike existing fast spectral methods

that can treat only hard sphere molecules, the proposed method is applicable to general collision

4The choice of γ and η corresponds to argon gas [3] while the choice of bγ,η , which has no effect on the efficiency

of the algorithm, is simply a matter of convenience. In general, these values are composite parameters [30] that

are used to tune the kernel in order to reproduce experimentally measured values for viscosity and diffusion. A

careful comparison of our method with DSMC for various benchmark examples will be the subject of future work

(for which all physical parameters and spatial discretization will need to be included).
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Figure 2: Maxwell molecules. Time evolution for higher order moments. In each figure, the

left scale shows the result by the fast spectral method, and the right scale shows its difference

from the exact solution. RK4 with ∆t = 0.3 for time discretization. N = 32 in each velocity

dimension. In the fast method, N = 32 in radial direction and M = 74 for sphere integration.

R = 10, L = (3 +
√
2)R/4 ≈ 11.04.
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Figure 4: Hard sphere molecules. Time evolution for higher order moments. In each figure, the

left scale shows the result by the fast spectral method, and the right scale shows the difference

between the fast and the direct method. RK4 with ∆t = 0.3 for time discretization. N = 32 in

each velocity dimension. In the fast method, N = 32 in radial direction and M = 74 for sphere

integration. R = 10, L = (3 +
√
2)R/4 ≈ 11.04.
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kernels with both velocity and angular dependence. Ongoing work includes a more careful

analysis of spherical quadratures errors and the development of adaptive quadratures to further

improve the method.
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