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Abstract

We are concerned with a coupled system describing the interaction between suspended particles
and a dense fluid. The particles are modeled by a kinetic equation of Vlasov-Fokker-Planck type,
and the fluid is described by the incompressible Navier-Stokes system, with variable density. The
systems are coupled through drag forces. High friction regimes lead to a purely hydrodynamic
description of the mixture. We design first and second order asymptotic-preserving (AP) schemes
suited to such regimes. We extend the method introduced in [10] to the case of variable density
in compressible flow. We check the accuracy and the AP property numerically. We set up a few
numerical experiments to demonstrate the ability of the scheme in capturing intricate interactions
between the two phases on a wide range of physical parameters and geometric situations.

Key words. Fluid–particles flows. Hydrodynamic regimes. Asymptotic Preserving Schemes.
Kinetic-fluid model. Variable density incompressible flow.

1 Introduction

This paper is devoted to the numerical study of a disperse two-phase flow. It includes the dilute
particles and the surrounding fluid in which the particles are suspended. The particles are modeled
at the mesoscopic level, therefore described by a kinetic equation, the unknown of which is the
distribution function f(t, x, v) defined in the phase space (x, v) ∈ R

N × R
N . The fluid is modeled

by the incompressible Navier-Stokes (INS) system, describing the evolution of the density ρ(t, x),
velocity field u(t, x) and pressure p(t, x) of the dense phase. By contrast to the particle distribution
function, these unknowns only depend on the time and space variables. The mathematical model
is based on the following assumptions:

• The fluid is viscous and incompressible, with variable density.

• Both the fluid and particle phases are isothermal with temperature T = 1.

• We consider a single specie of particles, with given and fixed mass density. We assume that
particles are spherically shaped with a given and fixed radius. We neglect any coagulation
and break–up phenomena.
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• There is no mass exchange between the phases. The volume fraction occupied by the particles
does not influence significantly the fluid density. Each phase exerts an influence on the other
phase through drag forces. The Stokes formula is used: the drag force depends linearly on
the relative velocity (v − u).

• Particles are subject to Brownian motion, which leads to diffusion with respect to the velocity
variable in the equation of the particle distribution function.

With these assumptions in hands, we can write down the equations for this system. The evolution
of the particle distribution function f obeys the Vlasov-Fokker-Planck type kinetic equation,

∂tf + v · ∇xf =
1

ε
Luf +∇xΦ · ∇vf, (1)

with the Fokker-Planck operator

Luf = ∇v ·
(

(v − u)f +∇vf) = ∇v ·
(

Mu∇v

( f

Mu

))

. (2)

Here and below, we denote

Mu(v) =
1

(2π)N/2
exp

(

−
|v − u|2

2

)

the (normalized) Maxwellian centered at u (that can be a function of t and x). The density ρ(t, x),
and velocity u(t, x) of the fluid are governed by the INS system











∂tρ+∇x · (ρu) = 0

∂t(ρu) +∇x · (ρu⊗ u) +∇xp−
1

Re
∆xu+ ρ∇xΨ =

κ

ε

∫

(v − u)f dv,

∇x · u = 0.

(3)

The pressure p(t, x) is determined by the divergence free condition. The readers are referred to [10]
and the references therein for the projection methods on variable density INS system.

In (3), Re > 0 is the fluid Reynolds number. The coupling parameter is defined by κ = φ̄ρP /ρF ,
where φ̄ is the (typical value of the) volume fraction of particles, ρF and ρP are the (typical) mass
densities of the fluid and the particles, respectively. For most applications, ρP is much bigger than
ρF , but φ̄ is very small under our assumptions and we can neglect the fluid volume change due to
the presence of particles. Thus, κ is the mass ratio between particles and fluid in a given reference
volume. We will assume that κ is O(1) so the influence from both phases to the other are significant.
The two phases are subject to external potentials Φ and Ψ. The external force might be different
for the two phases. For example in the case of gravity driven flows, the potentials are given by
Φ = ηP gez and Ψ = ηF gez, with ez the unit downward vector, g the gravitational acceleration. For
the particles, the coefficient ηP = (1 − ρF /ρP ) accounts for the gravity and buoyancy force. For
the fluid, the coefficient is just ηF = 1 due to the effect of gravity. Finally, the scaling parameter
0 < ε ≪ 1 is the ratio of the Stokes settling time to the observation time. The Stokes settling

time is given by τ =
2a2ρP
9µ

, with a the particle radius and µ the fluid viscosity. In a typical soot,

τ ≈ 10−8sec. We refer to [11] for details.

Flows described by such models typically arise in combustion theory [16, 20, 21, 27], for de-
scribing pollutant dispersion [23, 22], or the dynamics or sprays with e. g. biomedical applications
[1, 19]. Here the model belongs to the so–called thin sprays models [21]. As it is usual with mul-
tiphase flows, several modeling assumptions might be questionable; however, any modification can
drastically impact both the mathematical properties of the models and their numerical treatment,
as pointed out in [25]. As we shall see below, regimes with 0 < ε ≪ 1 introduce relaxation effects
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that drive the particle distribution function towards a Maxwellian state. In turn, the flow can be
described through macroscopic quantities depending only on time and space variables. We refer
to [3, 5, 6, 11] for details on the scaling issues and for further references on the analysis of such
asymptotic regimes.

Owing to the divergence free condition satisfied by u, we observe that the fluid density is
constant on the characteristic curves associated to the field u: as far as the velocity field is smooth
enough, let X(t, x) be the solution of

Ẋ(t, x) = u
(

t,X(t, x)
)

, X(0, x) = x

so that the mass conservation relation implies

d

dt
ρ
(

t,X(t, x)
)

= 0.

Consequently, assuming that the dense phase is initially homogeneous, it remains homogeneous
forever: if ρ

∣

∣

t=0
= ρ̄ > 0 is constant, then ρ(t, x) = ρ̄. This specific situation is investigated in

the companion paper [10]. However, the restriction to homogeneous fluid flows is unrealistic for
most of the applications of practical interest. For instance, inhomogeneities play a crucial role in
the comprehension of instabilities observed in fluidized beds, technical devices used in pebble bed
reactors and many other industrial processes. The problem combines several technical difficulties.
On the one hand, the Incompressible Navier-Stokes system couples transport and diffusion equations
in a very intricate way, together with the divergence free constraint. On the other hand, the coupling
with the particles should be incorporated consistently, taking into account the possible stiffness of
the coupling force terms. Addressing these difficulties is the object of the present work.

To start with, let us summarize a few remarkable properties of the system, and describe formally
the behavior as ε goes to 0. A key feature of the model relies on the following energy–entropy
dissipation property

d

dt

(

κ

∫

RN×RN

f
(

1 + Φ + v2/2 + ln(f)
)

dv dx+

∫

RN

ρ
(

1 + |u|2/2 + Ψ
)

dx

)

+
1

Re

∫

RN

|∇xu|
2 dx+

κ

ε

∫

RN×RN

∣

∣(v − u)
√

f + 2∇v

√

f
∣

∣

2
dv dx ≤ 0.

(4)

For completeness, we give the proof in the appendix. This relation also holds when the problem
is set on a bounded smooth domain Ω with suitable boundary conditions, for example assuming
no–slip of the fluid at the boundary

u
∣

∣

∣

∂Ω
= 0 (5)

and specular reflection of the particles

γ−f(t, x, v) = γ+f
(

t, x, v − 2v · ν̂(x)ν̂(x)
)

, (6)

where ν̂(x) is the unit outer normal vector at x ∈ ∂Ω and γ± are the trace operators on the set

{

(t, x, v) ∈ (0,∞)× ∂Ω× R
N , ±v · ν̂(x) > 0

}

.

We refer to further comments in [5, 6].

By taking the moments of (1), one obtains

∂tn+∇x · J = 0, (7)

∂tJ +∇xP+ n∇xΦ = −
1

ε
(J − nu) (8)
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where

n(t, x) =

∫

RN

f(t, x, v) dv,

J(t, x) =

∫

RN

vf(t, x, v) dv,

P(t, x) =

∫

RN

v ⊗ vf(t, x, v) dv

(9)

are the particle density, momentum and pressure tensor, respectively. Combined with (3) one
arrives at

∂t

(

ρu+ κJ
)

+∇x ·
(

ρu⊗ u+ κP
)

+∇xp+ κn∇xΦ+ ρ∇xΨ =
1

Re
∆xu. (10)

The hydrodynamic limit of this system can now be derived. As ε → 0, one can expect that Luf (and
the dissipation term in (4)) vanishes, which means that f approaches to the Maxwellian centered
at the fluid velocity

f(t, x, v) → n(t, x)Mu(t,x)(v), as ε → 0.

In this regime, the behavior of the particles is therefore described through the evolution of the
velocity u and the macroscopic density n. Accordingly, J and P are asymptotically defined by the
moments of the Maxwellian nMu,

J ≃ nu, P ≃ nu⊗ u+ nI.

Inserting this ansatz into (10) one arrives at the fluid limit


























∂tρ+∇x · (ρu) = 0,

∂tn+∇x · (nu) = 0,

∂t

((

ρ+ κn
)

u
)

+∇x ·
((

ρ+ κn
)

u⊗ u
)

+∇x

(

p+ κn
)

+ κn∇xΦ + ρ∇xΨ =
1

Re
∆xu,

∇x · u = 0.

(11)

Up to the force terms this system is the INS system for the composite variable density (ρ + κn).
Observe that, even if the dense phase is homogeneous, the asymptotic model involves a variable
density in the momentum equation. Note that in general the force term does not reduce to (ρ +
κn)∇xΨ. For example, for gravity driven flows a discrepancy appear due to the buoyancy force
which acts on the particles only.

In this paper we are interested in numerical approximation of the system (1)–(3). We will pay
particular attention to the scaling parameter ε: the scheme should work on a wide range of values of
the parameter, capturing the expected asymptotic behavior without introducing restrictions that
would make small ε’s simulations numerically prohibitive. This scheme consists in discretizing
implicitly the stiff terms within the equations, but it should be done as simply as possible because
the inversion of the corresponding discrete systems will be the main source of numerical cost. It
requires to adapt the ideas in [10] in order to incorporate correctly the treatment of the fluid density.
We mention that a rigorous justification of the asymptotic limit is not available yet. We refer to
[9] and [17, 18, 5] where related questions are discussed.

The scheme we develop can capture the fluid dynamic limit (11) automatically when ǫ → 0.
This is the so-called Asymptotic Preserving (AP) property, a term first introduced by Jin [12]. An
AP scheme is efficient in the fluid dynamic regime (ǫ ≪ 1) since it allows one to capture the fluid
dynamic limit (11) without numerically resolving the small scale ǫ. We refer to [13] for a recent
review on the AP schemes and their applications. Different from [10], here we need to develop the
scheme in the framework of projection method for variable density INS, which requires different
spatial discretization. The overall cost is comparable to solving one decoupled Vlasov-Fokker-Planck
equation, see [14], and an INS by the projection method independently.
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This work is organized as follows. The AP schemes for the coupling system (1)–(3) are intro-
duced in Section 2. In Section 3 we give the numerical verification of accuracy and the AP property,
as well as some relevant applications which bring out the inhomogeneities effects.

2 AP schemes for the fluid–particles system

2.1 A first order AP scheme

Following the first order scheme introduced in [10], the key principles to construct AP schemes can
be summarized as follows:

• Combine the implicit-explicit (IMEX) technique and the pressureless step to update the
macroscopic quantities n, J, ρ, u, p by solving directly simple linear systems.

• Split the stiff coupling terms (i.e. 1/ε terms) and distribute them to both the pressureless
step and the projection step.

• Solve the stiff terms fully implicitly.

• Apply the prediction–correction idea to update the distribution f , by solving implicitly the
Fokker–Planck operator.

We now give the details to update the numerical unknowns, having at hand ρk, uk, pk, fk and thus
nk =

∫

fk dv, Jk =
∫

vfk dv
Step 1: Advancing densities. Both the particles and fluid density are advanced by using

the following relations
1

∆t
(nk+1 − nk) = −

∫

v · ∇xf
k dv,

1

∆t
(ρk+1 − ρk) = −∇x · (ρkuk).

(12)

Step 2: Updating moments. The macroscopic current J and the velocity field u are advanced
by considering the system made of (8) and the second equation of (3). The projection method is
applied to account for the divergence free constraint. In order to ensure the AP property one needs
to impose the stiff coupling terms in both the pressureless and the projection steps. To this end
we introduce a parameter 0 < α < 1 and:

Step 2.1: Pressureless step. Obtaining u∗ and J∗ by solving

1

∆t
(J∗ − Jk) = −

∫

v ⊗ v∇xf
k dv − nk∇xΦ−

1− α

ε

(

J∗ − nk+1u∗
)

, (13a)

1

∆t
(ρk+1u∗ − ρkuk)−

1

Re
∆xu

∗ = −∇x · (ρkuk ⊗ uk) +
1− α

ε
κ
(

J∗ − nk+1u∗
)

. (13b)

One is thus led to solve the following variable coefficient Helmholtz equation for u∗

(

ρk+1

∆t
+

1− α

ε+ (1 − α)∆t
κnk+1 −

1

Re
∆x

)

u∗

=
ρkuk

∆t
−∇x · (ρkuk ⊗ uk) +

(1− α)κ

ε+ (1− α)∆t

(

Jk −∆t

∫

v ⊗ v∇xf
k dv −∆tnk∇xΦ

)

,

(14)

completed with the no–slip boundary condition

u∗
∣

∣

∣

∂Ω
= 0. (15)

The discrete Helmholtz operator gives a symmetric linear system which can be solved by the
Preconditioned Conjugate Gradient method, see [26]. Then J∗ is updated from (13a).
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Step 2.2: Projection step. Calculating J∗∗ and uk+1 by the relation

1

∆t
(J∗∗ − J∗) = −

α

ε

(

J∗∗ − nk+1uk+1
)

,

ρk+1

∆t
(uk+1 − u∗) +∇xp

k+1 =
α

ε
κ
(

J∗∗ − nk+1uk+1
)

.

(16)

Eliminating J∗∗ yields

uk+1 +
1
∆t +

α
ε

ρk+1

∆t + α
ε (ρ

k+1 + κnk+1)
∆t∇xp

k+1 =

(

1
∆t +

α
ε

)

ρk+1u∗ + α
ε κJ

∗

ρk+1

∆t + α
ε (ρ

k+1 + κnk+1)
. (17)

Taking the divergence on both sides, since uk+1 is divergence free, one arrives at

∇x ·

(

1

ρk+1
ε

∇xp
k+1

)

=
1

∆t
∇x ·

(

ρk+1

ρk+1
ε

u∗ +
α
ε

1
∆t +

α
ε

κ
J∗

ρk+1
ε

)

,
∂pk+1

∂ν̂

∣

∣

∣

∂Ω
= 0, (18)

where we have set

ρk+1
ε :=

ρk+1

∆t + α
ε (ρ

k+1 + κnk+1)
1
∆t +

α
ε

. (19)

The pressure pk+1 is obtained by solving the variable coefficient Poisson equation (18). Again its
discretization can be solved by the Conjugate Gradient method. Then uk+1 is obtained from (17)
and thus J∗∗ by (16).

As far as the first order method is concerned, α can be chosen arbitrarily in (0, 1); in practice
we set α = 1/2. As it is usual with variable density flows, pressure and velocity are obtained by
solving discrete Helmholtz or Poisson systems with variable coefficients. These matrices need to be
re-assembled at each time step.

Step 3: Kinetic equation. The particle distribution function fk+1 is calculated from the
kinetic equation (1), with a fully implicit treatment of the Fokker-Planck operator

fk+1 − fk

∆t
+ v · ∇xf

k −∇xΦ · ∇vf
k =

1

ε
Luk+1fk+1, (20)

where

Luk+1fk+1 = ∇v · ((v − uk+1)fk+1 +∇vf
k+1).

We apply the technique introduced in [14] to solve this system: it allows to write the discrete
version of the Fokker–Planck operator as a symmetric linear system, which can thus be solved with
efficient methods.

2.2 A second order scheme

The accuracy with respect to the time variable can be improved to second order using backward
differentiation formula (BDF), following the technique introduced in [10].

Let us now detail what the scheme for the fluid-particles system becomes. We shall use the
shorthand notation a† = 2ak − ak−1.

Step 1: Advancing densities. The densities nk+1 and ρk+1 are given by:

1

2∆t
(3nk+1 − 4nk + nk−1) = −

∫

v · ∇xf
† dv,

1

2∆t
(3ρk+1 − 4ρk + ρk−1) = −∇x · (ρu)†.

(21)
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Step 2: Updating moments. To ensure both the AP property and the second order accuracy,
we include the stiff terms in both the pressureless and the projection steps, but only O(∆t) of the
stiff terms are left to the projection step. We thus set

α =
∆t

tmax
,

where tmax is the final time of simulation.

Step 2.1: Pressureless step.

1

2∆t
(3J∗ − 4Jk + Jk−1) = −

∫

v ⊗ v∇xf
† dv − n†∇xΦ−

1− α

ε

(

J∗ − nk+1u∗
)

, (22a)

1

2∆t
(3ρk+1u∗ − 4ρkuk + ρk−1uk−1)−∆xu

∗ +∇xp
k = −∇x · (ρu⊗ u)† +

1− α

ε
κ
(

J∗ − nk+1u∗
)

.

(22b)

Step 2.2: Projection step. The pressure is obtained from the system

3

2∆t
(J∗∗ − J∗) = −

α

ε

(

J∗∗ − nk+1uk+1
)

,

3

2∆t
(ρk+1uk+1 − ρk+1u∗) +∇x(p

k+1 − pk) =
α

ε
κ
(

J∗∗ − nk+1uk+1
)

.

Step 3: Kinetic equation. Finally, solve

3fk+1 − 4fk + fk−1

2∆t
+ (v · ∇x −∇xΦ · ∇v)(2f

k − fk−1) =
1

ε
Luk+1fk+1, (23)

and, then the moments nk+1 and Jk+1 are obtained from definition (9).

We will check on numerical experiments the convergence order of the scheme (21)–(23) in
Section 3. This second order scheme is a multistep method. To compute the solutions at tk+1,
one needs the solutions from both tk and tk−1. Since the information is not available initially, one
should start at least for a single time step with the first order scheme.

2.3 The AP property

Following the same argument as in [10], one can obtain, as ε → 0, the following limit scheme from
the first order method (12)–(20):



































































1

∆t
(nk+1 − nk) = −∇x · (nkuk),

1

∆t
(ρk+1 − ρk) = −∇x · (ρkuk),

1

∆t

((

ρk+1 + κnk+1
)

u∗ −
(

ρk + κnk
)

uk
)

−∆xu
∗ =

−∇x ·
((

ρk+1 + κnk
)

uk ⊗ uk
)

− κ∇xn
k − κnk∇xΦ +O(ε),

uk+1 +
1

ρk+1 + κnk+1
∆t∇xp

k+1 = u∗,

∇x · uk+1 = 0.

(24)

It is exactly the first order projection step for the limiting system (11), which is mainly the INS
system with the space variable density (ρ+ κn).
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Similarly the limit of the second order scheme (21)–(23), as ε → 0, formally gives



































































1

2∆t
(3nk+1 − 4nk + nk−1) = −∇x · (nkuk)†,

1

2∆t
(3ρk+1 − 4ρk + ρk−1) = −∇x · (ρkuk)†,

1

2∆t

(

3
(

ρk+1 + κnk+1
)

u∗ − 4
(

ρk + κnk
)

uk +
(

ρk−1 + κnk−1
)

uk−1
)

−∆xu
∗ +∇xp

k =

−∇x · ((ρ+ κn)u⊗ u)
†
− κ∇xn

† − κn†∇xΦ,

3(uk+1 − u∗)

2∆t
+

1

ρk+1 + κnk+1
∇x(p

k+1 − pk) = 0,

∇x · uk+1 = 0,

(25)

which is a second order projection method for the limiting system (11).

Remark 2.1 The second order projection methods for the INS system with variable fluid density
have been studied in [2], which used a combination of midpoint method and Crank-Nicolson method
in time discretization. Here we derive a different method which is based on a BDF type discretiza-
tion in time. However both methods are natural generalizations of the projection method since
the problem is reformulated such that one only needs the Helmholtz solvers for u and a variable
coefficient Poisson solver for p.

2.4 Full discretization and general comments

We refer to the relevant sections in [10] for the details on space and velocity discretization, as well
as the inversion of the Fokker-Planck operator.

The mass conservation for the fluid (the first equation in (3)) is not included in [10]. In the
present situation it turns out to be natural to use a kinetic scheme, as we did in [11] when dealing
with compressible flows. A consequence of this is that, in the limit system the mass conservation
equations for the particles and the dense phase are discretized with the same method. Namely, we
solve

ρk+1 − ρk

∆t
= −

∫

RN

v · ∇x

(

ρke−|v−uk|2/2)
dv

(2π)N/2
,

and for space discretization we approximate the convection operator v ·∇x dimension-by-dimension
by upwind techniques (at first order or with second order MUSCL methods including slope limiters,
see [24]). The momentum equations for the fluid are solved by using a second order central difference
on the transport part. We can use a kinetic scheme as well for the convection terms of the fluid
momentum equation: the limiting scheme would be exactly the kinetic scheme for the limiting

system (11). In this case note that the second moment
∫

RN v v ·∇x

(

ρke|v−uk|2/2) dv
(2π)N/2 introduces

a pressure term, proportional to ρk.
We point out that, owing to the divergence free condition, the fluid density ρ (and the two

macroscopic densities n and ρ for the limit problem) fulfills the maximum principle: if 0 < ρ ≤
ρ(0, x) ≤ ρ̄ < ∞ initially, then 0 < ρ ≤ ρ(t, x) ≤ ρ̄ < ∞ holds for any positive time. Here, in the
Cartesian grids and we use Finite Difference approximation so that these standard techniques are
enough. However, working on general tessellations might require more refined methods in order
to preserve the natural estimates on the fluid density: for such intricate coupling, violating the
maximum principle on ρ might compromise the stability of the whole simulation, see for further
details [4] on these delicate issues.

The scheme can be interpreted as a predictor-corrector method: the momentum of particles is
first predicted by J∗ and J∗∗, then corrected to Jk+1 after fk+1 is solved. We point out that the
main computational cost consists precisely in updating fk+1 because the equation involves both x
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and v variables (one needs to invert a system in v at each x). With the prediction-correction trick
however, we determine first macroscopic quantities, and the Fokker-Planck system has to be solved
only once per time step. The remarkable feature of this multiphase scheme is the fact that the
overall cost corresponds to solving two single phase systems and even for the second order scheme
only need to invert once the single phase Fokker–Planck equation. The stability analysis of the
complete problem is beyond the scope of this paper. However, we can expect, and as confirmed by
our numerical observations, that the only constraint on the time step is the CFL condition coming
from the transport part of the kinetic equation (1), that is ∆t ≤ ∆x

max |v| , with ∆x the space mesh
size.

Remark 2.2 An alternative treatment of the Fokker-Planck operator is presented in [8, Chap. 12].
This scheme relies on a tricky combination of spectral analysis with a Well-Balanced treatment of
the convection term. It leads to a suitable definition of the numerical fluxes corresponding to v ·∇xf .
(Note that this step needs the inversion of a certain linear system.) In turn, an efficient scheme for
the Fokker-Planck equation is obtained, which is stable under the usual transport stability condition.
This idea is adapted in [8, Section 12.4] to deal with a simple 1D fluid-particle problem where the
fluid is supposed homogeneous, and the velocity obeys the Burgers equation. The well-balanced fluxes
are then obtained by decoupling the two phases. It would be interesting to discuss the ability of this
method to handle stiff drag forces, and to extend it to more complex multi-dimensional flows.

3 Numerical simulations

Let us now check the performances of the method through a set of numerical experiments. We
propose simulations on the two-dimensional setting: from now on, we denote x = (x, y) the position
variable, v = (v1, v2) the velocity variable, u = (u1, u2) the fluid velocity and up = (up1, up2) = J/n
the macroscopic particle velocity. Unless otherwise specified, simulations are performed under the
following numerical conditions:

• The computational domain is defined by x ∈ [0, 1]2. For the velocity variable we use the
truncated domain v ∈ [−vmax, vmax]

2, with vmax = 6. As in [10] we use a regular and
symmetric velocity grid. We work with Nx = 128 grid points in each space direction and
Nv = 32 grid points in each velocity direction.

• We make use of the following boundary conditions

Specular reflection for particles f ,
No-slip for the fluid velocity u,
Neumann boundary condition for the pressure p.

When necessary, a Neumann–like boundary condition is applied on the fluid density ρ.

• We apply the second order method described in Section 2.2. The van Leer type slope limiter
(see [15]) is applied on the discretization of the advection operators.

• The time step is determined by ∆t = ∆x
5vmax

, which guarantees the stability.

• The initial particle distribution function is defined by

f(0,x,v) = n(0,x)M
up(0,x),

with various expressions for the macroscopic density n(0, x). Notice that it is not an equilib-
rium state when up 6= u and thus Luf 6= 0 in (2).

• For the coupling parameter, we take κ = 2 throughout the simulations. We point out that
we made a couple of runs with far larger values of κ, without encountering any difficulty.

• The gravity is taken into account: it points downwards and we set g = 1. The Reynolds
number is set to Re = 1000.
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Figure 1: Convergence order of the second order method with the initial data (26): l1 errors (27) of
the particle distribution f (left), l2 errors of fluid density ρ (middle) and fluid velocity u (right) with
different ε.

The first question is to determine whether or not the treatment of fluid inhomogeneities degrades
the accuracy of the scheme reported for the homogeneous case and to check the AP property. Hence,
we work with initial data defined as in [10], up to fluid homogeneities (ρ(0, x) = 1 in [10]), namely

n(0,x) = 10−10 + exp
(

−80(x− 0.5)2 − 80(y − 0.5)2
)

,

up(0,x) =

(

sin2(πx) sin(2πy)
− sin2(πy) sin(2πx)

)

,

ρ(0,x) = 1 + exp
(

−40(x− 0.5)2 − 40(y − 0.5)2
)

,
u(0,x) = up(0,x).

(26)

We vary the mesh size: we set ∆x = 1
Nx

with Nx = 16, 32, 64, 128 respectively, and use Nv = 32.
Denote f∆x, ρ∆x and u∆x the corresponding numerical solution. Given a discrete quantity ϕ, at
the final time tmax = 0.025 we evaluate the relative error in ℓp norm

e∆x(ϕ) = max
t∈(0,tmax)

||ϕ∆x(t)− ϕ2∆x(t)||p
||ϕ2∆x(0)||p

. (27)

We bear in mind that the stability constraint imposes ∆t = O(∆x). We shall say that the numerical
scheme is of order k if e∆x ≤ C∆xk holds. Here simulations are performed with the Reynolds
number Re = 1 (higher values can not be resolved on the coarse grid Nx = 16). Evaluation of the
ℓ1 norm of the particle distribution f and of the ℓ2 norm of the fluid density ρ and velocity u is
reported in Figure 1. We obtain the second order accuracy: on the one hand the fluid density is
captured with the required accuracy, on the other hand, taking into account fluid inhomogeneities
does not affect the quality of the results in comparison to the constant case, reported in [10].

Next, we turn to the AP property, comparing simulations by varying the scaling parameter ε.
Again, we choose conditions similar to those of [10], by considering the following volcano like initial
data

n(0,x) = (0.5 + 100((x− 0.5)2 + (y − 0.5)2)) exp
(

−40(x− 0.5)2 − 40(y − 0.5)2
)

,

up(0,x) =

(

− sin(2π(y − 0.5))
sin(2π(x − 0.5))

)

exp
(

−20(x− 0.5)2 − 20(y − 0.5)2
)

,

u(0,x) = 0.

(28)

Now, the fluid density is assumed inhomogeneous intially

ρ(0,x) = 1.0 + exp
(

−40(x− 0.5)2 − 40(y − 0.5)2
)

The evolution of the norm ||f − nMu||1 where Mu is a Maxwellian centered at the fluid velocity u
is depicted in Figure 2. The result verifies the AP property f − nMu = O(ε) after one time step.
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Figure 2: Time evolution of ||f − nMu||1 with different ε, starting with the initial data (28).

3.1 Some Applications

In this section our schemes are extended to more complicated circumstances. We deal with a couple
of situations to demonstrate the ability of the method to reproduce desired physical phenomena.
We show that the model exhibits interesting structure formation, due to the interaction between
the two phases, with phenomena specifically related to fluid inhomogeneities.

3.1.1 Dust eruption

The first test is concerned with the simulation of dust eruption, a toy model for the eruption
of volcanic ash. Particles are injected from the bottom with constant velocity. The fluid is as-
sumed initially at rest and linearly stratified, with a density decaying as altitude increases. More
specifically, the initial conditions are given by

n(0,x) = 10−10,

ρ(0,x) =
3

2
−

y

2
,

up(0,x) = u(0,x) = 0.

(29)

The injection domain Γb is defined by

Γb = {(x, 0)|0.45 ≤ x ≤ 0.55},

and we modify the specular reflection law on Γb by imposing the following incoming flux

f(t,x,v) = 12≤v2≤3, if x ∈ Γb

where v2 is the second component of v. The system is simulated with several values of ε.
Figure 3(a) gives the time evolution of this system with ε = 1. The first column shows the

snapshots of the particle density at different time. The injected particles reach the top of the box
after a short time, then fall down and accumulate at the bottom due to the gravity effect. The third
column shows the snapshots of the fluid density. The heavier fluid, which stays near the ground at
beginning, goes up with the incoming particles, and falls down due to gravity, thus exhibiting the
typical mushroom shape, which is well captured by the scheme. The second and fourth columns
give the streamlines of particles and fluid, respectively. They are quite different since the drag force
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between the two phases is not significant. The behavior turns out to be significantly different as ε
decreases.

Figure 3(b) gives the time evolution of this system with ε = 10−2. In this case the drag force
is stronger. The injected particles are slowed down by the fluid. Most particles fall back to the
ground before reaching the top of the domain. The heavier fluid, which is blown away from the
ground, can hardly go higher. The discrepancies between the streamlines of the particles and fluid
are clearly reduced compared to the previous case.

Figure 3(c) gives the time evolution of this system with ε = 10−6. The incoming particles stop
moving up immediately due to the strong drag force and the gravity. A small portion of particles
spreads on the ground. The heavier fluid always stays near the ground. The streamlines of the
particles and fluid are quite similar to each other. We observe a clear splitting in the computational
domain, with recirculation effects on the bottom and flat streamlines on the top.

3.1.2 Dust eruption in mixing regime

One of the advantages of AP schemes is that they can capture the solution behaviors automatically
as ε varies in space. Using an example from [7], we consider a mixing regime problem, with an
x-dependent ε(x),

ε(x, y) = ε0+
1

2

(

tanh

(

10− 80

(

x−
1

2
−

1

4
sin(2πy)

))

+ tanh

(

10 + 80

(

x−
1

2
−

1

4
sin(2πy)

)))

.

(30)
Here ε0 ≪ 1 is a constant. ε(x) varies from ε0 to O(1) smoothly, as shown in Figure 4 with
ε0 = 10−5.

Now we study the dust problem in this mixing regime. We use exactly the same physical and
numerical parameters as in Section 3.1.1, except ε(x). Similar to [10], we only discuss (30) as an
evidence of feasibility, without diving into the discussion of the physical relevancy of working with
spatially variable ε’s.

Figure 5 shows several snapshots of the time evolution of the particle density, the fluid velocity
and the discrepancy of the two velocities |up − u|. Compared with Figure 3, the behaviors of both
phases are clearly influenced by the spatially variable ε(x). The difference of the velocities of two
phases |up −u| shows an S-shape profile which is consistent to ε(x) in Figure 4. This suggests that
the fluid limit of this two-phase system is achieved automatically in the strong interaction regime
where ε ≪ 1. While in the weak interaction regimes where ε = O(1) the two phases behave quite
differently. Besides, |up − u| decays as time evolves, which suggests that eventually the two-phase
system approaches the global equilibrium (except in the region close to the entrance).

3.1.3 Exhaust emission/Sewage outfall

In this simulation particles are injected from the center of the left boundary with constant velocity.
This can be seen as a toy model to simulate the exhaust emission from vehicles or the sewage outfall
into the river/lake/sea. Initial and boundary conditions are the same as in (29) except that the
boundary condition for the particles is now given by

f(t,x,v) = 12≤v1≤3, if x ∈ Γl, (31)

where v1 is the first component of v and the injection domain Γl is

Γl = {(0, y)|0.45 ≤ y ≤ 0.55}.

Figure 6(a) gives the time evolution of this system with ε = 1. The pictures from left to right
give the particle density, the streamlines of particles velocities, the fluid density and the streamlines
of velocities of fluid respectively. The injected particles reach the right end of the box after a short
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Figure 3: The time evolution of dust eruption. From left to right: the particle density; streamlines of
particles velocities; fluid density; streamlines of velocities of fluid. The Reynolds number is Re = 1000.
(a). ε = 1.
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Figure 3: (Cont’d). (b). ε = 10−2.
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Figure 3: (Cont’d). (c). ε = 10−6
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Figure 4: The x-dependent function ε(x) given by (30), with ε0 = 10−5.

time, then fall down and accumulate at the right corner on the bottom due to the gravity effect.
The circulation of the fluid is triggered. The upper half and lower half of the density evolves
separately, and behaves like a typical cavity problem in both domains. Again the streamlines of
particles and fluid are quite different since the drag force between them is weak.

Figure 6(b) gives the time evolution of this system with ε = 10−2. The incoming particles fall
on the ground shortly after entering the box and then march on the ground. The fluid near the
entrance moves together with the particles and later the fluid in the whole domain gets mixed.
Again, the streamlines of the particles and fluid are becoming similar.

Figure 6(c) gives the time evolution of this system with ε = 10−6. Now the drag force is very
strong. The incoming particles move much slower so that they cannot reach the right end easily.
The streamlines of the particles and fluid are almost the same.

In comparison to a similar test reported in [10], both the effect of gravity and the interplay
between phases inhomogeneities modify significantly the features of the flow.

3.1.4 The lid driven cavity problem

The last application is the lid driven cavity problem. The flow is driven by the lid, which moves to
the right with a constant velocity. More specifically, the initial and boundary conditions are given
by

n(0,x) = 10−10 + 10≤x≤0.5,0≤x≤0.5,

ρ(0,x) =
3

2
−

y

2
,

up(0,x) = u(0,x) = 0,

u(t,x) = 0, if x ∈ ∂Ω\Γu,

u(t,x) = (2, 0)T , if x ∈ Γu,

(32)

where Γu is the top–boundary

Γu = {(x, 1)}.

The specular boundary condition for f is applied. The system is also simulated with different ε.

Figure 7(a) gives the time evolution of this system with ε = 1. The particles spread to the right
end due to the gravity and cover the bottom in a short time. The fluid circulates in the box due
the moving lid. The interaction between the two phases are not significant. The streamlines of
particles and fluid are quite different.
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Figure 5: The time evolution of dust eruption problem in mixing regime. From left to right are the
particle density, the fluid density and the difference in their velocities |up − u|.
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Figure 6: The time evolution of exhaust emission problem. From left to right: the particle density;
streamlines of particles velocities; fluid density; streamlines of velocities of fluid. The Reynolds number
is Re = 1000. (a) ε = 1.
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Figure 6: (Cont’d). (b). ε = 10−2.

19



 t 
=

 0
.0

0
 t 

=
 1

.2
0

 t 
=

 2
.4

0
 t 

=
 3

.6
0

 t 
=

 4
.8

0

Figure 6: (Cont’d). (c). ε = 10−6.
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Figure 7(b) gives the time evolution of this system with ε = 10−8. The profiles of the two
phases are much more complicated, due to the strong drag force. The streamlines of particles and
fluid are exactly the same, suggesting that the two phases are moving together.

Appendix

Here we prove the entropy dissipation inequality (4). Multiplying (1) by 1 + Φ+ v2/2 + ln(f) and
integrating over RN × R

N , one obtains,

d

dt

(

κ

∫

RN×RN

f
(

1 + Φ + v2/2 + ln(f)
)

dv dx

)

+

∫

RN×RN

(

Φv · ∇xf −
v2

2
∇xΦ · ∇vf

)

dv dx

=
1

ε

∫

RN×RN

(

v2

2
+ ln f

)

Luf dv dx.

(33)
One can drop the second integration since

∫

RN×RN

(

Φv · ∇xf −
v2

2
∇xΦ · ∇vf

)

dv dx =

∫

RN×RN

(

∇x · (Φvf)−∇v ·

(

v2

2
∇xΦf

))

dv dx = 0.

Next, multiplying the mass equation in (3) by Ψ and integrating over RN , one obtains,

d

dt

∫

RN

ρΨdx−

∫

RN

∇xΨ · (ρu) dx = 0. (34)

Multiplying the momentum equation in (3) by u and integrating over RN , one obtains,

d

dt

∫

RN

1

2
ρ|u|2 dx+

1

Re

∫

RN

|∇xu|
2 dx +

∫

RN

∇xΨ · (ρu) dx

=
κ

ε

∫

RN×RN

u
√

f
(

(v − u)
√

f + 2∇v

√

f
)

dv dx,

(35)

where we have applied the incompressibility property of u.
Note that the Fokker-Planck operator (2) can be rewritten as

Luf = ∇v ·
(

√

f
(

(v − u)
√

f + 2∇v

√

f
))

.

With integration by parts, one has

∫

RN

v2

2
Luf dv =

∫

RN

−v
√

f
(

(v − u)
√

f + 2∇v

√

f
)

dv,

∫

RN

ln fLuf dv =

∫

RN

−
∇vf

f

√

f
(

(v − u)
√

f + 2∇v

√

f
)

dv

=

∫

RN

−2∇v

√

f
(

(v − u)
√

f + 2∇v

√

f
)

dv.

(36)

Then (4) is proved by adding up (33)-(36).
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