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Abstract. We present a simplified model of data flow on processors in a high performance4
computing framework involving computations necessitating inter-processor communications. From5
this ordinary differential model, we take its asymptotic limit, resulting in a model which treats the6
computer as a continuum of processors and data flow as an Eulerian fluid governed by a conservation7
law. We derive a Hamilton-Jacobi equation associated with this conservation law for which the8
existence and uniqueness of solutions can be proven. We then present the results of numerical9
experiments for both discrete and continuum models; these show a qualitative agreement between10
the two and the effect of variations in the computing environment’s processing capabilities on the11
progress of the modeled computation.12
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1. Introduction. It has been well-established that current and future genera-16
tions of extreme scale computers have achieved and, for the foreseeable future, are17
expected to achieve increases in performance via greater levels of parallelism at multi-18
ple levels — e.g., within the processors as well as increasing the number of processors19
and nodes —as opposed to increases in clock speeds, which are expected to remain20
relatively flat. Additionally, extremely concurrent codes, involving dynamic parallel-21
ism and greater degrees of asynchronous parallel executions, are increasingly needed22
to leverage this large scale parallellism [15,29].23

As machine improvements depend on increasingly complex architectures and as24
additional constraints on system development and planning (such as power consump-25
tion [15]) arise, a need for predictive, quantitative models of computational perfor-26
mance will grow greater. Previously developed modeling tools such as LogP [12, 13]27
result in easily evaluated models which can prove difficult to extend and modify. Al-28
ternatively, PRAM models have been used as abstractions of codes; these however29
have scalability issues due to the complexity of simulating them [25]. Other modern30
tools [23,24] are similarly still limited to fine-grain simulations of at most a few dozen31
nodes, again due to their computational complexity during simulations.32

Core counts are now in the hundreds of thousands and millions on machines in33
the TOP500 list of supercomputers; node counts consistently are in the thousands [1].34
Such numbers mean that fine-grained simulation tools (such as those listed above) are35
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incapable of describing large-scale phenomena; essentially the simulation tools begin36
to require computational resources beyond those of the systems they are simulating.37
Alternative approaches have been proposed to address these issues: miniapp codes38
can mimic key features of the performance of exascale codes with a much smaller39
codebase [16]. Aspen, a framework for performance modeling [28, 31], uses a domain40
specific language which encodes both abstracted features of machines hardware and41
specific software applications to provide coarse-grained simulations. However, these42
suffer from the need to develop specialized simulation codes which can be problem43
dependent, resulting in possibly labor-intensive tools. A workflow modeling apporach,44
Pegasus, has been developed to model workflows using a graph-theoretic perspective45
to detect and manage anamolies in the computing environment [14].46

We propose developing a macroscopic model of extreme scale computers which47
views such computing environments in a continuum framework. Such a model has48
several potential benefits: in addition to being computationally tractable, it will open49
up the possibility of using the theoretical tools of partial differential equations to50
understand and control the performance of high-performance computing systems.51
Specifically, our goal is to derive a fluid-limit model of data flow — which can be52
described by a partial differential equation — from a simplified deterministic model53
of data processing and flow in an extreme scale computer with interprocessor com-54
munications and asynchronous executions. Fluid models, beyond their obvious utility55
in physical systems, have been used to model flows in networks, such as vehicular56
traffic flows [3], supply chains [2], and gas networks [4, 8]. In particular, as discussed57
in [22] and [2], such fluid models lie at the end of a hierarchy of models which begin58
with microscopic or discrete models. That is, similar to the derivation of physical59
fluid laws from many body physics, one may derive continuum-level flow equations60
from discrete-level models of the dynamics of agent interactions. With such a model,61
standard numerical simulation tools and analytical methods may be brought to bear62
for studying large-scale phenomena in extreme-scale computing.63

We begin in Section 2 with a microscopic model of a network of processors per-64
forming a multi-stage computational task which necessitates inter-processor commu-65
nications. In Section 3, we derive a formal asymptotic limit of this agent-based model66
as the scale of the system increases, resulting in an Eulerian fluid flow model. Along67
with the resulting nonlinear conservation law, we present a related Hamilton-Jacobi68
equation and establish the existence of solutions in Section 3. In Section 4, we pres-69
ent the results of numerical experiments to show agreement between the microscopic70
and fluid models and then illustrate the behavior of solutions under heterogeneous71
computing layouts.72

2. The discrete model. In this section, we introduce the microscopic model,73
which is based on a highly simplified, deterministic, semi-discrete ordinary differen-74
tial equation (ODE). We imagine the computer as a network of processors {Pi}i

max

i=175
that are arranged in a one-dimensional, periodic lattice. The computer is assigned a76
computational job involving a sequence of kmax tasks which are identical in the sense77
that each one takes the same effort to complete. This computational job is divided78
by distributing data amongst processors. We denote by qi,k(t) the amount of data in79
Pi that sits in stage k at time t.80

2.1. Conservation law. The dynamics of qi,k are given by a conservation law81
of the form82

(2.1) q̇i,k(t) = Fi,k−1(t)− Fi,k(t), k = 1, . . . , kmax, i = 1, . . . imax,83
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Fig. 1: Schematic of network of processors. Dashed lines denote inter-processor com-
munications

where Fi,k (i = 1, . . . , imax, k = 1, . . . , kmax−1) is the rate of data moving in processor84
i from stage k to k + 1, referred to as the throughput. At the first stage k = 1, Fi,085
(i = 1, . . . , imax) is the rate of data being loaded into processor i to be processed,86
referred to as the inflow, and at the final stage, Fi,kmax (i = 1, . . . , imax) is the rate of87
data completing the final stage of the job, referred to as the outflow. Equation (2.1)88
implies that the data in each processor is neither created or destroyed, only moved in89
and out of the processor or in between stages; that is,90

(2.2) d

dt

(
kmax∑
k=1

qi,k

)
= Fi,0 − Fi,kmax .91

A key aspect of the model is that it does not separately track data that moves between92
processors; instead the effects of communication delays will be incorporated directly93
into the definition of the throughputs.94

A fundamental quantity of interest in the discrete model is Qi,k(t), which is95
defined as the amount of data at time t that has gone through the first k − 1 stages96
of Pi. For each t ≥ 0,97

(2.3) Qi,k(t) =
( kmax∑

j=k

qi,j(t)
)
+

∫ t

0

Fi,kmax(s)ds.98

2.2. Processor throttling. We now turn to specifying the form of Fi,k. In the99
absence of throttling, each processor Pi moves data between stages at a rate ai ≥ 0,100
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which we refer to as the maximum throughput. For the purposes of the current paper,101
we assume that ai is given. In practice, it must be determined from experiments,102
fine-scale models, or a combination of both. It may also depend on k, although for103
simplicity, we assume here that it does not. Throttling is said to occur whenever104
Fi,k(t) < ai; this happens for one of two reasons.105

1. Self-throttling: Given an amount of data qi,k to be processed at stage k in106
processor Pi, we define the self-throttling function107

(2.4) v1(qi,k; q∗) = max

{
0,min

{
1,
qi,k
q∗

}}
.108

Clearly if no data is available to be processed, then Fi,k = 0. Furthermore,109
we assume that if the amount of data to be processed drops below a cer-110
tain threshold q∗ > 0, then Pi cannot maintain the throughput ai and the111
throughput is reduced.112

2. Neighbor throttling: As the computational task is not entirely parallel113
across processors, Pi requires sufficient information from its neighbors to114
perform task k at full throughput. The neighbor throttling function v2 models115
this dependence. It gives the amount of available data on Pi at stage k116

(2.5)

v2(qi,k,∆i+1,k,∆i−1,k;β) = min

{
qi,k,

1

β
max{∆i+1,k, 0},

1

β
max{∆i−1,k, 0}

}
.117

Here ∆i±1,k denotes the data on the right/left neighbor which is available118
to be used by Pi to process qi,k. The parameter β ∈ (0, 1] allows for the119
possibility that computations do not rely in a one-to-one fashion upon the120
availability of data from neighbors. If ∆i±1,k = 0 the processing of data stops121
due to the absence of a necessary component of the computational task and122
so Fi,k = 0. Alternatively, if both ∆i+1,k and ∆i−1,k exceed βqi,k, then Pi123
has sufficient data from its neighbors to process qi,k and no throttling occurs.124
The data from the left/right neighbor which is available for processing at125
stage k is given by126

(2.6) ∆i±1,k = Qi±1,k −Qi,k+1 = Qi±1,k − (Qi,k − qi,k).127

The data on each neighbor must have completed the same stage for it to be128
available; additionally, this data is not reused on Pi for the same stage. This129
means that the data available to be used from the neighbors can be written130
as above and so the amount of data available to be processed on Pi at stage131
k is given by132

(2.7) v2
(
qi,k, Qi+1,k −Qi,k + qi,k, Qi−1,k −Qi,k + qi,k;β

)
.133

The throughput Fi,k is a composition of the throttling functions v1 and v2:134

(2.8) Fi,k = aiv1

(
v2
(
qi,k, Qi+1,k −Qi,k + qi,k, Qi−1,k −Qi,k + qi,k;β

)
; q∗

)
.135

At first glance, this definition of Fi,k appears circular since it depends on Qi,k, which136
in turn depends on Fi,kmax . However, as a consequence of the conservation law (2.2),137

(2.9)
∫ t

0

Fi,kmax(s)ds =

∫ t

0

Fi,0(s)ds+

kmax∑
j=1

qi,j(0)−
kmax∑
j=1

qi,j(t)138
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Fig. 2: Throttling functions v1 and v2, defined in (2.4) and (2.5), respectively

Thus to complete the model, we need only prescribe initial data qi,k(0) and the inflow139
Fi,0. To prescribe the inflow, we specify qi,0 and then let Fi,0 be evaluated according140
to (2.8).141

Proposition 2.1. The system (2.1) with (i) throughput Fi,k defined in (2.8)142
for i = 1, . . . , imax and k = 1, . . . , kmax; (ii) prescribed initial data qi,k(0) for i =143
1, . . . , imax and k = 1, . . . , kmax; and (iii) prescribed inflow data Fi,0 for i = 1, . . . , imax144
and t ≥ 0 has a unique solution for all t ≥ 0. Moreover, if qi,k(0) ≥ 0 for all145
i = 1, . . . , imax and k = 1, . . . , kmax, then qi,k(t) ≥ 0 for all t ≥ 0 and i = 1, . . . , imax146
and k = 1, . . . , kmax.147

Proof. Since Fi,k is globally Lipschitz in its arguments for every i, k, standard148
ODE theory (see, for example Theorem III.VI of [32]) implies the existence of a149
unique solution. Moreover, it is clear from (2.8) that 0 ≤ Fi,k ≤ aiv1(qi,k; q∗). Hence150
according to (2.1),151

(2.10) q̇i,k(t) ≥ −aiv1(qi,k; q∗).152

Standard comparison results for ordinary differential equations imply then that q(t) ≥153
0. (See, for example, Lemma 1.2 of [30] and for comparison, use the zero function,154
which satisfies (2.10) as an equality.)155

3. The continuum model. In this section, we derive a continuous model that156
is formally accurate in the limit as imax and kmax tend to infinity. We assume, in157
taking this limit, that the job performed by the computer is fixed – that is, the total158
amount of work does not change. For given imax, kmax, we define the quantities:159

(3.1) δ := (kmax)−1, ε := (imax)−1, η :=
ε

δ
.160

Here, δ is the fraction of the work done in each stage and ε is the average amount of161
data in a processor. Finally, η is simply the ratio of kmax and imax which will be of162
use in the following analysis.163
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3.1. Formal Derivation. To derive a continuum model, we first express the164
ODE (2.1) in terms of the following O(1) quantities:165

r∗ :=
q∗
εδ
, ri,k :=

qi,k
εδ

, Ri,k :=
1

ε
Qi,k , D±

i,k := ±Ri±1,k −Ri,k

ε
, αi :=

ai
ε
.

(3.2)

166
167

In terms of these rescaled quantities, the neighbor throttling function as can be written168
as169

v2
(
qi,k,Qi+1,k −Qi,k + qi,k, Qi−1,k −Qi,k + qi,k;β

)(3.3)

170

= min
{
εδri,k,

1

β
max{εRi+1,k − εRi,k + εδri,k, 0},

1

β
max{εRi−1,k − εRi,k + εδri,k, 0}

}
171

= εmin
{
δri,k,

1

β
max{Ri+1,k −Ri,k + δri,k, 0},

1

β
max{Ri−1,k −Ri,k + δri,k, 0}

}
172

= εδmin
{
ri,k,

1

β
max{ηD+

i,k + ri,k, 0},
1

β
max{−ηD−

i,k + ri,k, 0}
}
.173174

Therefore,175
176

(3.4) v1

(
v2(qi,k, v2(q,Qi+1,k −Qi,k + qi,k, Qi−1,k −Qi,k + qi,k)); q∗

)
177

= min

1,
min

{
ri,k,

1
β max{ηD+

i,k + ri,k, 0}, 1
β max{−ηD−

i,k + ri,k, 0}
}

r∗

 .178

179

With (3.4) in mind, we define the rescaled throttling functions180

w1(r, r∗) = max

{
0,min

{
1,
r

r∗

}}
.(3.5a)181

w2

(
r,D−, D+; η, β

)
= min

{
r,

1

β
max{ηD+ + r, 0}, 1

β
max{ηD− + r, 0}

}
(3.5b)182

183

and the composite function184

(3.6) w
(
r,D−, D+; r∗, α, η, β

)
:= αw1

(
w2(r,D

−, D+; η, β); r∗
)
.185

The dynamics in (2.8) can now be re-expressed in terms of the O(1) quantities in186
(3.2), thereby obtaining a evolution formula for ri,k:187

(3.7) ṙi,k(t) =
fi,k−1(t)− fi,k(t)

δ
188

for i = 1, . . . , imax and k = 1, . . . , kmax, where189

(3.8) fi,k(t) = w
(
ri,k(t),−D−

i,k(t), D
+
i,k(t); r∗, αi, η, β

)
190

for i = 1, . . . , imax, k = 0, . . . , kmax, and ri,0 is prescribed for i = 1, . . . , imax191
The next step is to interpret (3.7) as a conservative finite-difference formula for a192

sufficiently smooth function ρ = ρ(x, y, t), defined on [0, 1)× [0, 1]× [0,∞), such that193

(3.9) ρ(xi, zk, t) = ri,k(t),194
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on grid points195

(3.10) xi = (i− 0.5) ε and zk = kδ,196

for i = 1, . . . , imax and k = 0, . . . , kmax. We also let α = α(x) be a continuous function197
such that α(xi) = αi.198

Let ψ = ψ(x, z, t) be a smooth test function with compact support on [0, 1) ×199
[0, 1]× [0,∞) and set ψi,k(t) = ψ(xi, zk, t). From (3.7),200

δ

kmax∑
k=1

ψi,k(t)ṙi,k(t) =

kmax−1∑
k=0

[ψi,k+1(t)− ψi,k(t)]fi,k(t)(3.11)201

+ ψi,0(t)fi,0(t)− ψi,kmax(t)fi,kmax(t).(3.12)202203

Let the function φ = φ(x, z, t) interpolate the fluxes on the grid:204

(3.13) φ(xi, zk, t) = fi,k(t),205

for i = 1, . . . , imax, k = 1, . . . , kmax, t ≥ 0. Then (3.11) can be interpreted formally as206
the weak formulation (with respect to z) of a conservation law for ρ with flux φ:207 ∫ 1

0

ψ(x, ξ, t)∂tρ(x, ξ, t)dξ =

∫ 1

0

∂zψ(x, ξ, t)φ(x, ξ, t)dξ208

+ ψ(x, 0, t)φ(x, 0, t)− ψ(x, 1, t)φ(x, 1, t) +O(δ).(3.14)209210

To derive a closed model from (3.14), we approximate φ in terms of ρ. Such an211
approximation depends on D±

i,k via the formula for fi,k in (3.8). From the definition212
of Qi,k in (2.3) and the scalings in (3.2), it follows that213

(3.15) Ri,k(t) = δ

kmax∑
j=k

ri,j(t) +

∫ t

0

fi,kmax(s)ds214

and, moreover, that for any finite t > 0,215

±D±
i,k(t) =

δ

ε

kmax∑
j=k

[ri±1,j − ri,j(t)] +
1

ε

∫ t

0

[fi±1,kmax(s)− fi,kmax(s)] ds(3.16)216

= δ

kmax∑
j=k

[
±∂xρ(xi, zj , t) +

ε

2
∂2xρ(xi, zj , t) +O(ε2)

]
(3.17)217

+

∫ t

0

[
±∂xφ(xi, 1, s) +

ε

2
∂2xφ(xi, 1, t) +O(ε2)

]
ds218

= ±∂xP (xi, zk, t) +
ε

2
∂2xP (xi, zk, t) +O(ε2) +O(δ)(3.18)219

220

where P is given by221

P (x, z, t) =

∫ 1

z

ρ(x, ξ, t)dξ +

∫ t

0

φ(x, 1, s)ds(3.19)222
223

Motivated by the above calculation, we approximate φ by one of two flux functions:224
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Φ(0) (ρ, ∂xP ; r∗, α, η, β) = w (ρ,−∂xP, ∂xP ; r∗, α, η, β)(3.20a)225

Φ(1)
(
ρ, ∂xP, ∂

2
xP ; r∗, α, η, β

)
= w

(
ρ,−∂xP +

ε

2
∂2xP, ∂xP +

ε

2
∂2xP ; r∗, α, η, β

)
.

(3.20b)
226
227

Using (3.18) and the Lipschitz continuity of w with respect to D±, we conclude that228

w(ri,k(t), D
−
i,k(t), D

+
i,k(t); r∗, αi, η, β)(3.21)229

= Φ(1)(ρ(xi, zk, t), ∂xP (xi, zk, t), ∂
2
xP (xi, zk, t); r∗, a, η, β) +O(ε2) +O(δ).230

= Φ(0)(ρ(xi, zk, t), ∂xP (xi, zk, t); r∗, a, η, β) +O(ε) +O(δ).231232

Thus for 0 � ε, δ � 1, with η ∈ (0,∞) fixed, (3.14) is formally consistent with the233
continuum model234

∂tρ+ ∂zΦ
(`)(ρ, ∂xP, ∂

2
xP ; r∗, a, η, β) = 0, (x, z, t) ∈ T1 × (0, 1)× (0,∞),(3.22a)235

ρ(x, 0, t) = ρbc(x, t), (x, t) ∈ T1 × (0,∞),(3.22b)236

ρ(x, z, 0) = ρ0(x, z), (x, z) ∈ T1 × (0, 1)(3.22c)237238

where239

P (x, z, t) =

∫ 1

z

ρ(x, ξ, t)dξ +

∫ t

0

φ(`)(x, 1, s)ds,(3.23a)240

φ(`)(x, z, t) = Φ(`)
(
ρ(x, z, t), ∂xP (x, z, t), ∂

2
xP (x, z, t); r∗, α, η, β

)
,(3.23b)241242

and Φ(`), ` ∈ {0, 1}, is given in (3.20). For the sake of compactness, we have slightly243
abused notation in (3.22a), as the definition of Φ(0) is independent of ∂2xP . Addition-244
ally, we have identified [0, 1) with the one-dimensional torus T1 in order to reflect the245
periodic layout of the processors.246

As in the discrete case, it may appear that the model in (3.22) is circular due to247
the definition of P in (3.23a). However, as with F in (2.9), Φ(`) can be unwrapped,248
this time using the conservation law (3.22a); that is249

(3.24)
∫ t

0

φ(`)(x, 1, s)ds =

∫ t

0

φ(x, 0, s)ds+

∫ 1

0

ρ0(x, ξ)dξ −
∫ 1

0

ρ(x, ξ, t)dξ250

Thus the continuum model is complete once initial condition ρ0 and inflow condition251
φbc := φ(·, 0, ·) are specified. In practice, ρbc is prescribed and then φbc is evaluated252
using (3.23b) and (3.20).253

We use the flux function Φ(0) for all of the numerical simulations in Section 4.254
This function is a piecewise constant that can be expressed in the following form:255

(3.25) Φ(0)(r,D; r∗, α, β) =



α (r,D) ∈ Ω1,
αr

r∗
(r,D) ∈ Ω2,

α(r + ηD)

βr∗
(r,D) ∈ Ω3,

α(r − ηD)

βr∗
(r,D) ∈ Ω4,

256

where the subdomains Ωi are depicted in Figure 3.257
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Fig. 3: Flux Φ(0) defined in (3.25)

3.2. A Hamilton-Jacobi formulation. To our knowledge, there are no imme-258
diate conclusions available from the literature regarding the existence or uniqueness259
of solutions to (3.22). However, we may consider instead a related Hamilton-Jacobi260
equation which in turn opens up the extensive theory of viscosity solutions. For back-261
ground, we refer to [6, 11, 20]. We are interested primarily in obtaining, for regular262
inputs α, φbc, and ρ0, the existence and uniqueness of P . It is possible that for more263
general inputs such results are available in the extensive viscosity solution literature264
(e.g. [5, 10,21]).265

Integrating (3.22a) with respect to z gives266

(3.26) ∂t

∫ 1

z

ρ(x, ξ, t)dξ +Φ(`)(x, 1, t)− Φ(`)(x, z, t) = 0267

Meanwhile, differentiating (3.23a) gives268

(3.27) ∂tP (x, z, t) = ∂t

∫ 1

z

ρ(x, ξ, t)dξ +Φ(`)(x, 1, t)269

Combining (3.26) and (3.27) and using the fact that ρ = −∂zP gives a closed270
Hamilton-Jacobi equation for P with initial and boundary conditions that are de-271
rived by applying the definition of P in (3.23a) to (3.22c) and (3.22b), respectively.272
The complete model is, for some T > 0,273

∂tP − Φ(`)(−∂zP, ∂xP, ∂2xP ; r∗, α, η, β) = 0, (x, z, t) ∈ T1 × (0, 1)× (0, T ),(3.28a)274

P (x, 0, t)−
∫ 1

0

ρ0(x, ξ)dξ −
∫ t

0

φbc(x, s)ds = 0, (x, t) ∈ T1 × (0, T ),

(3.28b)

275

P (x, z, 0)−
∫ 1

z

ρ0(x, ξ)dξ = 0, (x, z) ∈ T1 × (0, 1),(3.28c)276
277

where (3.28b) is derived by integrating (3.22b) over z ∈ (0, 1) and applying (3.24).278

Theorem 3.1. Assume that α and ρ0 are (i) non-negative, (ii) uniformly Lip-279
schitz in their arguments, and (iii) periodic in x (that is, α(0) = α(1) and ρbc(0, t) =280
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ρbc(1, t) for all t ∈ [0, T ]). Further, assume that there is an M where
∫ T

0
φbc(x, s)ds ≤281

M for all x ∈ T1. Then there exists a unique, continuous, viscosity solution (in the282
sense of [11]) to (3.28).283

Proof. We show that Lemma A.6 applies by first modifying the domain in (3.28).284
We extend α, ρ0, ρbc, and φbc as functions of x from T1 to all of R by tiling; for285
simplicity, in the remainder of the proof we still refer to these extensions by the same286
name. The assumption that α(0) = α(1) means that the extended version of α is287
uniformly Lipschitz on R. We then consider (3.28) defined on Ω := R× (0, 1)× (0, T ),288
and to more closely align with the results in the appendix, let289

(3.29) H(`)(x, z, t, P,∇P,∇2P ) = −Φ(`)(−∂zP, ∂xP, ∂2xP ; r∗, α(x), η, β)290

for ` ∈ {0, 1}, where ∇ = (∂x, ∂z). By the hypothesis on α, both H(0) and H(1) are291
uniformly Lipschitz on all of Ω × R × R2 × S2, where Sn is the space of all n × n292
symmetric matrices. Moreover, H(`) is nonnegative, bounded by α, and independent293
of the argument P . This means that it immediately satisfies Hypotheses 1 and 3-8 of294
Lemma A.6. Thus the only condition of Lemma A.6 left to be verified is Hypothesis295
2, which is the degenerate ellipticity condition on H(`). Verifying this condition can296
be done in a sequence of simple steps, starting with the definitions of w1 and w2.297

w1 is non-decreasing WRT r and w2 is non-decreasing WRT D+, D− (see (3.5))298

=⇒ w is non-decreasing WRT D+, D− (see (3.6))299

=⇒ Φ(`) is non-decreasing WRT ∂2xP (see (3.20))300

=⇒ H(`) is degenerate elliptic (see (3.29))301302

Finally, to invoke Theorem A.8, we must establish the existence of subsolutions303
and supersolutions as defined in (A.2) and (A.3), respectively. This is done by the304
usual construction found in, for instance, [20, Section 2.3.2.1]. Let305

(3.30) P±(x, z, t) :=

∫ 1

z

ρ0(x, ξ)dξ ±M ± t · sup
x
α(x).306

Clearly ∂tP± = ± supα(x) and since |Φ`| ≤ |α(x)|, it follows that307

(3.31) ± [∂tP
± − Φ(`)(−∂zP±, ∂xP

±, ∂2xP
±; r∗, α, η, β)] ≥ 0.308

Thus P± satisfy the interior conditions in (A.3a) and (A.2a), respectively. Next309
write (3.28b) and (3.28c) in the form h(t, x, P,∇P ) = 0. Then it is straight-forward310
to verify that ±h(t, x, P±,∇P±) ≥ 0. Hence P± satifies the parabolic boundary311
conditions in (A.3a) and (A.2a), respectively. Therefore P− is a subsolution and P+312
is a supersolution for (3.28). This completes the proof.313

Remark 3.2. In general, results regarding the regularity of solutions to (3.28)314
using Φ(0) (no such results are known by the authors for Φ(1)) require additional315
smoothness of (and possibly convexification of) Φ(0) as well as other technical condi-316
tions (see [26], [7], [9]). Therefore obtaining the existence of a L1 function ρ solving317
(3.22) (in some generalized sense) via the existence of P solving (3.28) is still an open318
problem.319

3.3. Higher Dimensional Models. Both the discrete and continuum models320
above can be readily extended to systems of processors arranged in an n-dimensional321
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periodic lattice. Assuming that processors only communicate with their nearest neigh-322
bors (i.e., no diagonal communication), the n-dimensional analog of the system formed323
by (2.1), (2.3), and (2.8) is:324

dqi,k
dt

= Fi,k−1 − Fi,k, Qi,k(t) =

kmax∑
j=k

qi,j(t)

+

∫ t

0

Fi,kmax(s)ds.(3.32)325

Fi,k = ai v1

(
min

1≤d≤n

{
v2 (qi,k, Qi−ed,k −Qi,k + qi,k, Qi+ed,k −Qi,k + qi,k;β)

}
; q∗

)(3.33)

326
327

where i = (i1, . . . , in) is a multi-index and (ed)i = δd,i. As in the one-dimensional case,328
v2 provides the amount of available data to process, after accounting for the throttling329
from neighbors over a given axis. The multidimensional discrete model then takes the330
minimum over all possible axes in order to determines what is available to be processed331
to the next stage. As in the one-dimensional case, self-throttling is computing use v1332
based on the amount of data available for processing.333

If imax
d denotes the number of processors along the d direction, we let εd =334

(imax
d )−1; the definition of δ is unchanged. For notational convenience, we set V :=335 ∏n
d=1 εd. We define w2,d by replacing η in the definition of w2 with ηd := εd/δ. Then336

we define the quantities analogous to those in (3.2)337

r∗ :=
q∗
δV

, α̂i :=
αi

V
, ri,k :=

qi,k
δV

, Ri,k :=
1

V
Qi,k , Dd,±

i,k := ±Ri±ed,k −Ri,k

εd
.

(3.34)

338
339

Continuing as in Section 3.1, we define340

(3.35) xi =
(
ε1(i1 + 0.5), . . . , εn(in + 0.5)

)
, zk = kδ341

and the smooth density function ρ(x, z, t) defined on [0, 1)n× (0, 1)× [0,∞) for which342
ρ(xi, zk, t) = ri,k(t). Arguments analogous to those used to obtain (3.16) and (3.18)343
give us that344

(3.36) ±Dd,±
i,k ≈ ±∂xd

P (xi, zk, t) +
εd
2
∂2xd

P (xi, zk, t).345

We assume that all of the imax
d are of the same order, so that the order of accuracy346

of the above approximation is consistent across all dimensions.347
As advection in the z-direction is unchanged, we have the continuum model348

∂tρ+ ∂zΦ
(`)(ρ,∇xP,∇2

xP ; r∗, α, ~η, β) = 0, (x, z, t) ∈ Tn × (0, 1)× (0,∞),(3.37a)349

ρ(x, 0, t) = ρbc(x, t), (x, t) ∈ Tn × (0,∞),(3.37b)350

ρ(x, z, 0) = ρ0(x, z), (x, z) ∈ Tn × (0, 1),(3.37c)351352

where Tn denotes the n-dimensional torus parameterized by [0, 1)n, P and φ(`) are353
defined as in (3.23a) and (3.23b), respectively, and the form of Φ(`), ` ∈ {0, 1} is a354
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slightly generalized version of (3.20).355

Φ(0)(ρ,∇xP,∇2
xP ; r∗, α, ~η, β) = αw1

(
min

1≤d≤n

([
w2(ρ, ∂xd

P,−∂xd
P ; ηd, β)

])
; r∗

)(3.38a)

356

Φ(1)(ρ,∇xP,∇2
xP ; r∗, α, ~η, β) =

(3.38b)
357

αw1

(
min

1≤d≤n

([
w2(ρ, ∂xd

P +
εd
2
∂2xd

P,−∂xd
P +

εd
2
∂2xd

P ; ηd, β)
])

; r∗

)(3.38c)

358
359

For notational convenience we have defined Φ(`) using the full tensor ∇2
xP ; how-360

ever, we note that the flux functions do not depend on mixed second derivatives. The361
procedure used in Section 3.2 to obtain a Hamilton-Jacobi equation for P can be362
repeated here; the only changes are (i) the multi-dimensional version of Φ(`) in (3.20)363
and (ii) the domain of the x variable. Verifying that these newly-defined flux functions364
satisfy the conditions of Theorem A.6 is essentially the same as before. Existence and365
uniqueness of viscosity solutions P then follow.366

4. Numerical Simulations. In this section, we perform numerical simulations367
of the one dimensional processor system in order to (i) test the ability of the macro-368
scopic model to approximate the discrete model when ε and δ are small and (ii)369
explore how model parameters affect the model output. All simulations are based on370
the flux Φ(0), although results with Φ(1) demonstrate similar. Problem data is speci-371
fied in terms continuum model of continuum models quantities. These quantities are372
translated back to discrete model quantities in order to implement ODE simulations.373

4.1. ODE Implementation. The explicit two-step Adams-Bashforth (Section374
III of [18]) is used to simulate the discrete model formed by (2.1), (2.3), and (2.8).375
Given η, values imax and kmax are chosen so that kmax/imax = η (cf. (3.1)). We then376
compute a solution to the discrete model as follows. Using (3.2) and (3.9), we convert377
r∗, a, ρ0, ρbc to their discrete counterparts:378

(4.1) q∗ = εδr∗, qi,k(0) = εδρ0(xi, zk), qi,0(t) = ρbc(x, t), ai = εα(xi).379

This discrete model data is used to set the time step:380

(4.2) ∆t =
q∗

2
(
maxi ai

)√
imaxkmax

.381

The outflow at Fi,kmax is tracked and accumulated over time in order to compute Qi,k382
from (2.3). At the final time T , the result of the explicit time stepping is converted383
back, via the formula in (3.2), i.e., ri,k(T ) = (εδ)−1qi,k(T ). In order to compare this384
against solutions to the continuum model (see below), we use these point-wise values385
to generate a piecewise constant function r over the cells Ci,k = (xi − .5ε, xi + .5ε)×386
(zk, zk + δ):387

(4.3) r(x, z) =
∑
i,k

ri,kχCi,k
(x, z).388

4.2. Hamilton-Jacobi Implementation. The Hamilton Jacobi equation (3.28)389
is solved numerically using a fifth-order WENO interpolation in x and z and the op-390
timal third-order SSP Runge-Kutta method for time integration. Details of these391
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algorithms can be found in Sections 3.2 and 6, respectively, of [27]. Once a numerical392
solution for P is computed, we again use WENO interpolation to approximate ρ via393
the relation ρ(x, z, t) = −∂zP (x, z, t).394

To condense the notation, let σ = ∂xP , τ = ∂zP and υ = ∂xxP . Then for fixed395
r∗, α, η, β, and `, let H(σ, τ, υ) = −Φ(`)(−τ, σ, υ; r∗, a, η, β). The numerical solution396
for P is computed on a grid {xn, zm} where397

xn = n∆x, n = 1, 2, . . . , N, ∆x = N−1,(4.4)398

zm = m∆z, m = 1, 2, . . . ,M, ∆z =M−1.(4.5)399400

The semi-discrete method for the grid function Pn,m(t) ≈ P (xn, zm, t) is401

(4.6) d

dt
Pn,m(t) = −Ĥ(σ−

n,m, σ
+
n,m, τ

−
n,m, τ

+
n,m; υn,m),402

where the numerical approximations σ±
n,m ≈ σ(x±n , zm) and τ±n,m ≈ τ(xn, z

±
m) are403

obtained via WENO interpolation and υn,m ≈ υ(xn, zm) is computed by central404
difference. The numerical flux function Ĥ, based on the global Lax-Friedrichs flux:405
(4.7)

Ĥ(σ−, σ+, τ−, τ+; υ) = H

(
σ− + σ+

2
,
τ− + τ+

2
, υ

)
− 1

2
λx(σ+−σ−)− 1

2
λz(τ+− τ−),406

where407

(4.8) λx = max
σ,τ

|Hσ| =
αη

βr∗
, λz = max

σ,τ
|Hτ | =

α

βr∗
.408

The time step for the SSP integrator is given by409

(4.9) ∆t

(
λx

∆x
+
λz

∆z

)
≤ 0.6.410

4.3. Experiments. We perform a sequence of exploratory experiments below,411
modifying the parameters η and β, as well as the throughput function α. In all cases,412
α, ρ0, and ρbc are periodic with respect to x and the parameter r∗ = 1. Results are413
presented as two-dimensional color maps or line-outs in the z direction. In all figures,414
the horizontal axis corresponds to the z-axis. Profiles of α for each experiment are415
depicted in Figure 4.416

Example 1 (Agreement between models). The purpose of this example is to417
demonstrate that the macroscopic model approximates the microscopic model when ε418
and δ are sufficiently small. We set β = 1 and consider η ∈ {0.2, 1, 5}. The initial419
condition, boundary condition, and processor speed are given by420
(4.10)
ρ0(x, z) = 1.5 (sin(2πz))

6
χ[0,0.5](z), ρbc(x, t) = 0, α(x) = 1− 0.4(sin(πx))2,421

respectively. Both models are simulated up to a final time t = 0.5.422
For this example, the Hamilton-Jacobi simulation is performed with a 1000×1000423

mesh and a time step chosen according to (4.9) in order to generate a highly resolved424
numerical solution of the macroscopic model. For the microscopic model, we use425
imax = 1000 and kmax = 200 when η = 0.2, imax = kmax = 500 when η = 1, and426
imax = 200 and kmax = 1000 when η = 5. These solutions to the microscopic model427
are then used to obtain the piecewise-constant function r on the 1000 × 1000 mesh428
from the Hamilton-Jacobi simulation.429
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(d) Example 5

Fig. 4: Profiles of the processor speed α used in the numerical experiments. The non-
standard orientation of the graphs is set to match the axes in the numerical results
that follow.

Numerical results for η = 0.2, η = 1.0, and η = 5.0 are shown in Figure 5,430
Figure 6, and Figure 7, respectively. While the results demonstrate general qualitative431
agreement between the models, discrepancies develop over time, especially for smaller432
values of η; see Figures 5i and 5l. For the worst case scenario (η = 0.2), we increase433
the size of the discrete model by a factor of 2.5 ( giving imax = 2500 and kmax = 500),434
at which point the discrepancy between models decreases noticeably; see Figure 8.435

For the remaining examples, the Hamilton-Jacobi simulations are performed on436
a coarser mesh of 100× 100.437

Example 2 (Variations in η). In this example, we examine the effect of η on438
solutions to the macroscopic model while β = 1.0 is fixed. The initial condition,439
boundary condition, and processor speed are given by440

(4.11) ρ0(x, z) = 1.5χz≤0.2(x, z) ρbc(x, t) = 0, α(x) = 1− 0.4(sin(πx))6,441

respectively. It is expected that the slower processor speed around x = 0.5 will slow442
down neighboring processors due to neighbor-based throttling, encoded in the definition443
of w2 in (3.5b). Moreover, the effect should become more global in x as η increases,444
since larger values of η correspond to a larger number of stages per processor. Indeed445
as the stages increase, interactions between neighbors begin to have a cumulative global446
effect. This trend can be observed by comparing results across the first three rows of447
Figure 9 and in the line-outs in the final row.448

Example 3 (Variations in β). In this example, we examine the effect of β on449
solutions to the macroscopic model, while holding η = 1.0 fixed. The initial condition,450
boundary condition, and processor speed are again given by (4.11).451

Based on the definition of the function w2 in (3.5b), the expectation is that smaller452
values of β will lead to reduced throttling effects. Such behavior is confirmed by the453
numerical results in Figure 10.454

Example 4 (Highly localized slowdown). In this example, we explore the effects455
of a highly localized slowdown in processor speed when η = β = 1. The initial456
and boundary conditions are given in (4.11), while the processor speed is given by457
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(a) r at t = 0.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

x

0

0.5

1

1.5

(b) r at t = 0.25
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(c) r at t = 0.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

x

0

0.5

1

1.5

(d) ρ at t = 0.1
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(e) ρ at t = 0.25
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(f) ρ at t = 0.5
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(g) ρ− r at t = 0.1
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(h) ρ− r at t = 0.25
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(i) ρ− r at t = 0.5
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(j) ρ,r at (x, t) = (0.3, 0.1)
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(l) ρ,r at (x, t) = (0.3, 0.5)

Fig. 5: Discrete solution r and continuum solution ρ when η = 0.2. From left to right,
columns correspond to solutions at t = 0.1, t = 0.25, and t = 0.5 Discrete solution
is computed with (imax, kmax) = (1000, 200). Continuum solution is computed on a
103 × 103 mesh.
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(b) r at t = 0.25

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

x

0

0.5

1

1.5

(c) r at t = 0.5
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(d) ρ at t = 0.1
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(e) ρ at t = 0.25
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(f) ρ at t = 0.5
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(g) ρ− r at t = 0.1
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(h) ρ− r at t = 0.25
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(i) ρ− r at t = 0.5
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(l) ρ,r at (x, t) = (0.3, 0.5)

Fig. 6: Discrete r and continuum ρ solutions when η = 1 case. From left to right,
column correspond to solutions at t = 0.1, t = 0.25, and t = 0.5 Discrete solution
is computed with (imax, kmax) = (500, 500). Continuum solution is computed on a
103 × 103 mesh.
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(b) r at t = 0.25
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(c) r at t = 0.5
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(d) ρ at t = 0.1
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(e) ρ at t = 0.25
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(f) ρ at t = 0.5
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(g) ρ− r at t = 0.1
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(h) ρ− r at t = 0.25

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

x

−0.2

0

0.2

(i) (ρ− r) at t = 0.50
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(j) ρ,r at (x, t) = (0.3, 0.1)
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(k) ρ,r at (x, t) = (0.3, 0.25)
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(l) ρ,r at (x, t) = (0.3, 0.5)

Fig. 7: Discrete r and continuum ρ solutions when η = 5 case. From left to right,
column correspond to solutions at t = 0.1, t = 0.25, and t = 0.5 Discrete solution
is computed with (imax, kmax) = (200, 1000). Continuum solution is computed on a
103 × 103 mesh.
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(a) r at t = 0.5
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(b) ρ− r at t = 0.5
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(c) ρ,r at (x, t) = (0.3, 0.5)

Fig. 8: Comparison of the discrete model with (imax, kmax) = (2500, 500) and the
continuum model for η = 0.2 at time t = 0.5. As expected, the discrete model
shows better agreement with the continuum model than the previous version with
only (imax, kmax) = (1000, 200) processors and stages; cf. Figure 5

α(x) = 1− 0.4c(x), where458

(4.12) c(x) =


0 |x− .5| > .05

40x− 18 x ∈ [.45, .475]

−40x+ 22 x ∈ [.525, .55]

1 |x− .5| < .025

.459

In particular, α 6= 1 only on the interval (0.45, 0.55). Simulation results from this460
example are shown in Figure 11. At early times, slower processors in the center461
of the x domain prohibit neighboring processors from moving data to later stages of462
the calculation (i.e. along the z-direction). The result is a buildup of data in the463
neighboring processors. As time progresses, the build-up of data spreads as throttled464
processors near the initial slowdown around x = 0.5 begin to effect neighbors further465
away. Eventually these buildups dissipate as the slower processors begin catch up with466
their throttled neighbors.467

Example 5 (Long-term behavior ). In previous examples, we have observed that468
under some conditions, solutions eventually resemble a traveling profile of the form469

(4.13) ρ∗(x, z, t) = χ[ζ0(x),ζ1(x)](z − st),470

where s is a positive constant and the profiles ξ0 and ξ1 are constant in time and471
satisfy ζ1(x) < ζ1(x) for all x ∈ [0, 1). Our intuition is that for a wide range of472
conditions, traveling profiles are of this type will arise after sufficiently long times, if473
the z domain is extended to (0,∞). Moreover the shape of ζ1 and ζ2 is closely related474
to the initial data and the shape of α. 1 Rather than make a precise conjecture at this475
point, we instead provide an example which further demonstrates our intuition. Initial476
and boundary conditions are given in (4.11). Because the domain in z is limited, we477
introduce relatively small variations in α, which allow the system to settle faster:478

(4.14) α(x) = 1 + 0.1 cos(4πx).479

1A more systematic study of such profiles in special case can be found in [19].
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(a) ρ(x, z, 0.1) when η = 0.2
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(b) ρ(x, z, 0.25) when η = 0.2
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(c) ρ(x, z, 0.5) when η = 0.2
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(d) ρ(x, z, 0.1) when η = 1.0
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(e) ρ(x, z, 0.25) when η = 1.0
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(f) ρ(x, z, 0.5) when η = 1.0
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(g) ρ(x, z, 0.1) when η = 5.0
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(h) ρ(x, z, 0.25) when η = 5.0
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(i) ρ(x, z, 0.5) when η = 5.0
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(j) ρ(0.3, z, 0.1)
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(k) ρ(0.3, z, 0.25)
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(l) ρ(0.3, z, 0.5)

Fig. 9: The effects on ρ due to variations in η. As η increases the throttling effect of
a local slowdown spreads more quickly, and data is not processed as quickly.
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(a) ρ(x, z, 0.1) with β = 0.1
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(b) ρ(x, z, 0.25) with β = 0.1
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(c) ρ(x, z, 0.5) with β = 0.1
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(d) ρ(x, z, 0.1) with β = 0.5
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(e) ρ(x, z, 0.25) with β = 0.5
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(f) ρ(x, z, 0.5) with β = 0.5
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(g) ρ(x, z, 0.1) with β = 1
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(h) ρ(x, z, 0.25) with β = 1
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(i) ρ(x, z, 0.5) with β = 1
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(k) ρ(0.3, z, 0.25)
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(l) ρ(0.3, z, 0.5)

Fig. 10: Plots of the solution ρ from Example 3 for different values of β. Larger values
of β lead to more throttling.

This manuscript is for review purposes only.



ASYNCHRONOUS DATA FLOW 21

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

x

0

0.5

1

1.5

(a) ρ(x, z, 0.1)
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(b) ρ(x, z, 0.25)
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(c) ρ(x, z, 0.5)

Fig. 11: The effect of a highly localized slowdown on ρ
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(a) ρ(x, z, 0.1)
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(b) ρ(x, z, 0.25)
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(c) ρ(x, z, 0.5)

Fig. 12: The effect of small variation in processor speed on ρ. After sufficiently time,
a profile emerges with the periodicity of α.

Simulation results for this example are presented in Figure 12. When t = 0.5, the480
solution has nearly settled to a profile of the form (4.13), with cusps that appear where481
the waves caused by throttling meet, at x = 0.5 and at the periodic boundary. In482
particular the solution has the periodicity of α.483

5. Conclusion. We have presented a simple discrete model of a network of484
processors in a high performance computing environment where the computational485
throughput depends on the on the availability of data from neighboring processors.486
This discrete, microscopic-level model has been then used to derive a continuum-level487
model which treats computational progress as an Eulerian fluid flow. Currently, the488
existence and uniqueness of solutions to the partial differential equation in this fluid489
model is open. However, a Hamilton-Jacobi model is available for which we can es-490
tablish the existence and uniqueness of continuous viscosity solutions; the solution for491
the governing equation corresponds to the total amount of data that has been pro-492
cessed through a particular stage in the computation. Numerical experiments have493
shown that this continuum model can capture the asymptotic behavior of the discrete494
model. Additionally, we have used these experiments to give an initial understanding495
of solutions’ dependence on parameters associated with the parallelism of the modeled496
computation as well as the effects heterogeneities in processing capacity.497

In future work, we intend to explore control strategies for α that can alleviate498
bottlenecks caused by local slowdowns in the processor speed. We will also extend499
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the model to allow for more complicated interactions, including stochastic effects, and500
explore strategies for optimal communication. Finally, we hope to tune the parameters501
of the model with data taken from processor components of a real supercomputer and502
then compare predictions of the macroscopic model with the real global behavior of503
the supercomputer.504

Appendix A. Hamilton-Jacobi Theory.505
We recall a few standard definitions from the theory of nonlinear second-order506

Hamilton-Jacobi equations as in, for instance, [6, 11]:507

Definition A.1 (Degenerately elliptic function). Let F : Rn × Rn × Sn → R be508
given, where Sn is the set of symmetric n×n matrices. Then we say F is degenerately509
elliptic if F (x, r, p,X) ≤ F (x, r, p, Y ) whenever Y ≤ X.510

Definition A.2 (Modulus function). We call a function σ : [0,∞) → [0,∞) a511
modulus function if σ(0) = 0 and it is nondecreasing.512

In contrast to the notational convention in Section 3, we follow in this appendix the513
convention of the viscosity literature and refer to time- and space-dependent functions514
as u(t, x).515

Definition A.3 (Parabolic boundary). If U = (0, T ] × D where D ⊂ Rn and516
T ≥ 0, then ∂PU := {0} ×D ∪ [0, T ]× ∂D is called the parabolic boundary of U .517

Definition A.4 (Semicontinuous envelope). The upper (respectively, lower) semi-518
continuous envelopes of a function u : V → [−∞,∞] are519

u∗(x) = lim
r↓0

sup{u(y) : y ∈ V, |y − x| ≤ r},520

u∗(x) = lim
r↓0

inf{u(y) : y ∈ V, |y − x| ≤ r}.521
522

They are, respectively, the smallest upper semicontinuous function greater than u and523
the largest lower semicontinuous function less than u.524

Definition A.5 (Viscosity solutions). Let f : U × R × Rn × Sn → R be given.525
An upper (resp. lower ) semicontinuous function u is a viscosity subsolution (resp.526
supersolution) of527

ut + f(t, x, u,∇xu,∇2
xu) = 0, (t, x) ∈ U,(A.1a)528

h(t, x, u,∇xu) = 0, (t, x) ∈ ∂PU,(A.1b)529530

on (0, T ] ×D if at every (t, x) ∈ (0, T ] ×D, when u − ψ is locally maximized (resp.531
minimized) at (t, x) and ψ is C2((0, T ]×D) we have532

ψt(t, x) + f(t, x, u,∇xψ(t, x),∇2
xψ(t, x)) ≤ 0, (t, x) ∈ U(A.2a)533

min{ψt(t, x) + f(t, x, u,∇xψ(t, x),∇2
xψ(t, x)),(A.2b)534

h(t, x, u(t, x),∇xψ(t, x))} ≤ 0, (t, x) ∈ ∂PU535536

(respectively,537

ψt(t, x) + f(t, x, u,∇xψ(t, x),∇2
xψ(t, x)) ≥ 0, (t, x) ∈ U(A.3a)538

max{ψt(t, x) + f(t, x, u,∇xψ(t, x),∇2
xψ(t, x)),(A.3b)539

h(t, x, u(t, x),∇xψ(t, x))} ≥ 0, (t, x) ∈ ∂PU.540541

A function u is a viscosity solution of (A.1) if its upper semicontinuous envelope is a542
viscosity subsolution and its lower semicontinuous envelope is a viscosity supersolution.543
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Next, we recall the following general comparison theorem, which is Theorem 4.1544
of [17].545

Lemma A.6 (Generalized comparison principle). Consider the system (A.1) on546
U = (0, T ) × Ω where Ω ⊆ Rn is a possibly unbounded domain and T > 0. Assume547
that f satisfies the following assumptions:548

1. f is continuous on U × R× (Rn \ {0})× Sn.549
2. f is degenerately elliptic.550
3. −∞ < f∗(t, x, r, 0, O) = f∗(t, x, r, 0, O) < ∞ for all (t, x, r) ∈ U × R, where551
O is the zero matrix.552

4. For every R > 0, we have553
(A.4)

sup{|f(t, x, r, p,X)| : |p|, |X| ≤ R, (t, x, r, p, S) ∈ U × R× (Rn \ {0})× Sn}554

is finite.555
5. For every H > 0, there is a constant c0 such that r 7→ f(t, x, r, p,X) + c0r is556

nondecreasing for all (t, x, r, p,X) ∈ U × R× (Rn \ {0})× Sn with |r| ≤ H.557
6. For every R > ρ > 0 there is a modulus function σRρ such that558

(A.5) |f(t, x, r, p,X)− f(t, x, r, q, Y )| ≤ σRρ(|p− q|+ |X − Y |)559

for (t, x, r) ∈ U × R, ρ ≤ |p|, |q| ≤ R, and |X|, |Y | ≤ R.560
7. There is a constant ρ0 > 0 and a modulus function σ1 such that561

f∗(t, x, r, p,X)− f∗(t, x, r, 0, O) ≤ σ1(|p|+ |X|)(A.6)562

f∗(t, x, r, p,X)− f∗(t, x, r, 0, O) ≥ −σ1(|p|+ |X|)(A.7)563564

for (t, x, r) ∈ U × R and |p|, |X| ≤ ρ0.565
8. There is a modulus function σ2 such that566

(A.8) |f(t, x, r, p,X)− f(t, y, r, p,X)| ≤ σ2(|x− y|(|p|+ 1))567

for any y ∈ Ω and (t, x, r, p,X) ∈ U × R× (Rn \ {0})× Sn.568
Then if u− and u+ are viscosity subsolutions and supersolutions of (A.1), respectively,569
such that for some K > 0 independent of t, x, y ∈ (0, T ]× Ω× Ω:570

• u−(t, x) ≤ K(|x|+ 1) and u+(t, x) ≥ −K(|x|+ 1);571
• (u−)∗(t, x)− (u+)∗(t, y) ≤ mT (|x− y|) on ∂p

(
(0, T ]× (Ω× Ω)

)
;572

• (u−)∗(t, x)− (u+)∗(t, y) ≤ K(|x− y|+ 1) on ∂p
(
(0, T ]× (Ω× Ω)

)
.573

Then there is a modulus function σ such that574

(A.9) (u−)∗(t, x)− (u+)∗(t, y) ≤ σ(|x− y|).575

This generalized comparison principle, coupled with an argument which uses the576
framework given in [11], known as Perron’s method, gives the existence and unique-577
ness of a viscosity solution to (3.28). Specifically, we note the parabolic version of578
this framework uses a result like the following, which is Lemma 2.3.15 from [20]579

Lemma A.7 (Perron process for parabolic equations). Consider (A.1) where f580
is degenerate elliptic and continuous. Assume that u+ and u− are viscosity superso-581
lutions and subsolutions, respectively. Then there exists a viscosity solution u such582
that u− ≤ u ≤ u+.583

The results above are summarized in the following theorem.584

This manuscript is for review purposes only.



24 R.C. BARNARD, C.D. HAUCK, K. HUANG

Theorem A.8 (Unique viscosity solution). Suppose that f satisfies the condi-585
tions of Lemma A.6 and Lemma A.7 and that there exists a viscosity supersolution586
u+ and a viscosity subsolution u− to (A.1). Then there exists a unique continuous587
viscosity solution to (A.1).588

Proof. According to Lemma A.7, there exists a viscosity solution u to (A.1). To589
show uniqueness and continuity, let v be another viscosity solution. By definition, u∗590
and v∗ are subsolutions and u∗ and v∗ are supersolutions. Then (A.9), combined with591
the properties of envelopes imply that592

(A.10) u∗ = (u∗)∗ ≤ (v∗)∗ = v∗ ≤ v∗ = (v∗)∗ ≤ (u∗)∗ = u∗ ≤ u∗.593

Thus u = v and u∗ = u∗ so that u is continuous.594

Acknowledgments. C.D.H and R.C.B. would like to thank Michael Herty for595
many helpful discussions.596
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