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Abstract
There has been much investigation of higher order nonlinear degenerate
equations of the form ht = (

M(h)
(

δH
δh

)
x

)
x
, where M is a specified function and

H is the quadratic first order energy functional 1
2

∫
h2

x dx. The energy functional
arises in many physical models, but is not universal among higher order
parabolic equations. Recent investigations have motivated the study of other
energy functionals, such as Hp = ∫

(h2
x)

p/2 dx for p �= 2. We undertake such
a study here, proving the existence of weak solutions for appropriate boundary
conditions, nonnegativity and positivity properties of solutions. Moreover, an
entropy dissipation–entropy estimate for solutions of this equation is obtained.
Support properties and long time behaviour of solutions are also discussed for
various cases.

Mathematics Subject Classification: 35B40, 35K25, 35K45, 35K55, 35K65

1. Introduction

Diffusion processes are modelled by a parabolic evolution equation of the form

ht =
(

M(h)

(
δH

δh

)
x

)
x

. (1.1)

Here M(h) is called the mobility term and H is an energy functional, so that δH
δh

is the chemical
potential.

The simplest example arises when M(h) ≡ 1 and H(h) = 1
2

∫
h2 dx, which gives us the

linear heat equation.
More recently a first order energy functional of the form

H2(h) := 1

2

∫
h2

x dx (1.2)
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has been employed. For example, the following equation

ht = −(M(h)hxxx)x , −a � x � a, (1.3)

with either periodic or ‘no flux’ boundary conditions, i.e. hx(t, ±a) = hxxx(t, ±a) = 0, is
called the thin-film equation and here the mobility term is given by M(h) = hn and the energy
functional is given by (1.2). This is because in the classical derivation of the thin-film equation
the local energy density for the given interface profile h(t, x) is given by

1
2 |hx |2,

for some constant. From this one can easily get the energy functional (sometimes called the
effective interface Hamiltonian) (1.2).

It is worth noting that the effective interface Hamiltonian taken in the derivations of the
thin-film equation is an approximation. In the physical problem we are interested in the two-
dimensional cross section � of the fluid which is given by the area between the graph of a
function y = h(x) � 0 and by y = 0. Hence, � = {(x, y) : 0 < y < h(x)}. Note that in this
framework, the surface energy can be written as

Hs =
∫

{h>0}

√
1 + h2

x dx, (1.4)

where we neglected the multiplicative factor. See [16]. From this, the approximate energy
functional (1.2) is obtained. This is because in the classical lubrication approximation the
basic assumption is that the typical length scale in the vertical direction is negligible compared
with the typical horizontal length scale. We also remark that we neglected the constant term
as, when we plug the interface energy H into (1.1), the constant term disappears.

In a more general setting of the thin-film equation the mobility is of the form

M(h) = h3 + hn, n ∈ (0, 3).

Here n accounts for different forms of the slip condition at the liquid–solid interface. Also it
is worth noting that the theory can be generalized to the case

M ∈ C([0, ∞)), increasing, M(h) ∼ hn as h ↘ 0, for some n ∈ (0, 3).

Different mobility terms represent different physical situations. For instance in (1.3),
when n = 1, or equivalently M(h) = h, the equation describes the evolution of the thickness
of a thin bridge between two masses of fluid in a Hele–Show cell. M(h) = h3 case is used in
the modelling of capillary driven flow. More precisely, here h is the thickness of a fluid film
on a substrate where the film is evolving under the influence of the surface tension, but not the
gravity. Finally, when M(h) = h2, it is used for the presence of the slip length to allow the
contact line to move at the fluid–substrate interface. See the papers [6,7,9,13,15,16] for more
information and derivations for the thin-film equation.

We also remark here that the thin-film equation is a special case (p = 2 case) of the so-
called ‘doubly nonlinear thin film equation’ considered in [1]. The equation reads as follows:

ht + [|h|n|hxxx |p−2hxxx]x = 0, (1.5)

where n > 0 and p � 2 are real constants. Equation (1.5) describes the evolution of the
height h(x, t) of a surface-tension driven thin liquid film on a solid surface in a lubrication
approximation [1, 15, 21]. The p = 2 case in (1.5) corresponds to a Newtonian fluid, and
p �= 2 occurs when considering ‘power-law’ liquids. In [1] the authors prove the existence
of solutions to the problem (1.5) and obtain sharp upper bounds for the propagation of their
support. They also derive a necessary condition for the occurrence of waiting-time phenomena.
The techniques we use in this paper are closely related to the techniques used in [1].
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On the other hand, another example is the problem of relaxation of axisymmetric crystal
surfaces with a single facet below the roughening transition. In [14] (also the references therein)
this problem is analysed via a continuum approach that accounts for step energy g1 and step–
step interaction energy g2 > 0. We point out that the evolution of the surface morphology here
is caused by the motion of steps. The energy functional used for this problem is

H3(h) :=
∫

g0 + g1|∇h| +
1

3
g2|∇h|3 dx, (1.6)

where the g0 term represents the surface free energy of the reference plane, g1 is the step energy
and g2 includes entropic repulsions due to fluctuations at the step edges and pairwise energetic
interactions between adjacent steps. We will omit details and moreover we will not analyse
the equation obtained closely. We mention this problem to show that there are situations in
which different power-law surface energy functionals are used. Readers who are interested in
this problem may see [14] and the references therein.

With this background as motivation, we now turn to the study of (1.1) for H = Hp, where
Hp is given by (1.7) with p > 0,

Hp(h(t, x)) := 1

p

∫
|hx(t, x)|p dx. (1.7)

We begin by formally writing down the equation. A simple set of calculations yields that

δHp

δh
= −(p − 1)(h2

x)
p

2 −1hxx,

and differentiating this with respect to x yields(
δHp

δh

)
x

= −(p − 1)(p − 2)(h2
x)

p

2 −2hxh
2
xx − (p − 1)(h2

x)
p

2 −1hxxx.

Plugging this back into (1.1) (choosing M(h) = hn) yields the following equation:

ht = −[hn((p − 1)(p − 2)(h2
x)

p

2 −2hxh
2
xx + (p − 1)(h2

x)
p

2 −1hxxx)]x. (1.8)

Therefore, the initial boundary value problem we consider here is

ht = −[hn[(p − 1)(h2
x)

p

2 −1hxx]x]x, (1.9)

in QT := (0, T ) × �, where T > 0 and � is the bounded interval

� = {−a < x < a},
with initial conditions

h(0, x) = h0(x), h0 ∈ Hp(�) (1.10)

and with no-flux boundary conditions

hx = hxx = hxxx = 0 for x ∈ {−a, a}. (1.11)

Note that in (1.9) we write an alternate form of the equation (1.8) because this is useful in
making certain calculations.

Although having some similarities to second order parabolic equations, fourth order
parabolic equations do not have a maximum principle. Nonetheless, as in Bernis and
Friedman’s investigation of the p = 2 case [6], we shall prove

initial data � 0 ⇒ the solution � 0.

Clearly this is wrong for the linear fourth order equation ht + hxxxx = 0. Due to the lack of
a maximum principle, one must rely on proving dissipation results for nonlinear entropies.
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Singularity formation of the form h → 0 is therefore an interesting question for the fourth
order nonlinear degenerate parabolic equations.

A main objective of this paper is to provide a range of dissipated entropy functionals that
are useful for nonnegativity, positivity and long time behaviour of solutions. To be more precise
and make the reading easier, we briefly describe our main results and their proof techniques
concerning the problem (1.9), (1.10) and (1.11).

I. Nonnegativity. Using the ideas of Bernis and Friedman [6] we seek zeroth order Lyapunov
functionals which may be useful for proving nonnegativity of solutions to the equation (1.9),
combined with the initial and boundary conditions (1.10) and (1.11), respectively. To this end,
we define

E0[h(t, x)] :=
∫

�

�(h(t, x)) dx, where �
′′
(s) = 1

sn
, (1.12)

and prove that E0 satisfies

E0[h(t, x)] + (p − 1)

∫ t

0

∫
�

(h2
x)

p/2−1h2
xx dx dt = E0[h0(x)] dx. (1.13)

Conclusion of these calculations is that

h(t, x) > 0 for n � 2 +
p

p − 1
.

II. Regularization. Analogous to the thin-film equation case, we define

Pε(h) := h
(2+ p

(p−1)
)
hn

εhn + h
(2+ p

(p−1)
)

(1.14)

and consider the equation

ht = −(p − 1)[Pε(h)[(h2
x)

p/2−1hx]xx]x. (1.15)

The initial condition of the problem is also modified; indeed we define

h0ε(x) = h0(x) + εθ , 0 < θ < 2/5. (1.16)

Finally, the boundary conditions (1.11) are kept unchanged. We prove the following theorem,
which states the properties of a weak solution obtained by a uniform limit as ε → 0 of solutions
hε of the regularized problems.

Theorem 1 (Properties of positively approximated solution). Any function h obtained by
letting ε → 0 so that hεk

→ h in Cloc(Q̄) as k → ∞, where {hε} is a sequence of solutions to
the regularized problem (1.15), (1.16) and (1.11), satisfies

h ∈ C(Q̄T ), actually h ∈ C
β,1/p′
t,x (Q̄T ) (uniformly in x), (1.17)

where 1
p

+ 1
p′ = 1 and β = p−1

5p−2 .

ht , hx, hxx, hxxx, hxxxx ∈ C(P ), (1.18)

where P = Q̄T − ({h = 0} ∪ {t = 0}), and

Pε(h)[(h2
x)

p/2−1hxx]x ∈ L2(P ), (1.19)

h satisfies (1.15) in the following sense:∫ ∫
QT

hφt dx dt + (p − 1)

∫ ∫
P

hn[(h2
x)

p/2−1hxx]xφx dx dt = 0, (1.20)
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for all φ that is Lipschitz in Q̄T , and φ = 0 near t = 0 and near t = T ,

h(0, x) = h0(x), x ∈ �̄, (1.21)

hx(t, .) → h0x strongly in Lp(�) as t → 0, (1.22)

and finally h satisfies the boundary conditions (1.11) at all points of the lateral boundary where
h �= 0.

This kind of regularization is also useful for improving the result of singularity formation.
Indeed we deduce that

for n � 2 + p′ − 1

p′ , where p′ = p

p − 1
, singularity formation1is not possible.

Remark. There is also another regularization which is somewhat standard in the theory of
nonlinear degenerate parabolic equations. This regularization, first introduced by Bernis and
Friedman in [6] for the thin-film equation, reads as follows:

hεt = −(p − 1)
(
(hn

ε + ε)[(h2
εx + ε)

p

2 −1hεx]xx

)
x
, ε > 0. (1.23)

Using this kind of a regularization one can show the existence of a weak solution which is a
uniform limit as ε → 0 of solutions to (1.23). Since our main results follow from the first
regularization considered above we do not give the details of this standard regularization here.
The details of this regularization can be found in the author’s thesis [19].

III. Entropy dissipation–entropy estimate. We prove that the functional Kq(h(t, x)) :=∫
�

h2
x

hq dx is an entropy functional for positive smooth solutions of (1.1) with p = 3 and
n = 2. that is, we prove that we can bound the rate of decrease of Kq in terms of itself along
any smooth positive solution of (1.1) with p = 3 and n = 2. More precisely, we prove that
there exists a constant C > 0 such that

Kq(t) �
[

2

5(Ct + 2
5 [Kq(0)]−5/2)

]2/5

. (1.24)

This clearly gives an initial polynomial decay( like t−2/5) of positive smooth solutions to
the equilibrium and once Kq(h) is small enough we can then use linearization to obtain an
exponential decay.

We also note that numerical calculations suggest that an inequality of the form (1.24) can
be proved for a wider range of n values(and also a wider range of p values) but we leave such
a study for an upcoming paper.

IV. Support properties. We prove the following result related to the support properties of
solutions.

Theorem 2 (Support properties). Let h0 satisfy

n ∈ (0, ∞), 0 � h0 ∈ Hp(�), h0 �≡ 0 in [−a, a] (1.25)

and let hε be the solution of the equation (1.15) with initial condition

h0ε(x) = h0(x) + δ(ε), (1.26)

1 As singularity formation we mean h → 0 throughout this paper.
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and boundary conditions (1.11), where Pε(s) is given by (1.14). Let h be a solution of the
problems (1.9), (1.10) and (1.11), obtained by

hεk
→ h in Cloc(Q̄) as εk → 0. (1.27)

Then, one has the following conclusions.

(i) If n � 1 + (p−1)

p
, then

supp h(t0, .) ⊆ supp h(t, .) for t > t0.

(ii) If n >
p

p−1 then

h(t0, x0) > 0 ⇒ h(t, x0) > 0 for almost every t > t0.

(iii) If n � 1 + (p−1)

p
+ p

(p−1)

h(t0, x0) > 0 ⇒ h(t, x0) > 0 for all t > t0.

V. Asymptotic behaviour of nonnegative solutions. Using the usual energy functional (1.7)
we deduce the long time behaviour of both the smooth and the weak solutions. The strategy,
same as the one in [17], is to try to control the rate of decrease of the functional (1.7) in terms
of itself. The following result, which is a generalization of one of the results of [17], is quite
useful for this purpose.

Lemma 7.2 (A useful inequality). For any measurable function ψ : [0, ∞) → [0, ∞) and
for any 0 � u ∈ H 3(�) with ux(±a) = 0, we have that(∫

�

u2

ψ(u)
dx

)1/2 (∫
�

ψ(u)[(u2
x)

p/2−1uxx]2
x dx

)1/2

� CHp(u), (1.28)

where C is a finite constant depending on a and p. Using this lemma we deduce the following
proposition, which is useful for obtaining the long time behaviour result for nonnegative smooth
solutions.

Proposition 7.3 (Energy dissipation bound). Suppose that 0 < n < ∞ and h is a nonnegative
smooth solution (i.e. classical solution) of the equation (1.9) with initial and boundary
conditions (1.10) and (1.11). Moreover, suppose that the initial condition h0 ∈ H 1(�) has
finite mass. Then, we have the following.

(i) If 0 < n < 2, then there exists a constant 0 < C = C(||h0x ||Lp(�), p, a, n) such that∫
�

hn(t, x)[(h2
x)

p/2−1hxx]x dx � C[Hp(h(t, x))]2, ∀t > 0. (1.29)

(ii) If n = 2 then (1.29) holds with C = C(p, a). that is, C is now independent of ||h0x ||Lp(�).

(iii) If n > 2 and
∫
�

h2−n
0 (x) dx < ∞, then there exists a constant 0 < C =

C(
∫
�

h2−n
0 (x) dx, p, a) such that (1.29) holds.

By the proposition we deduce that

Hp[h(t, x)] � [Hp[h0]−1 + Ct]−1, t > 0. (1.30)

Hence, from this, Hp(h) becomes sufficiently small after some finite time and so h(t, x)

becomes uniformly bounded from below away from 0. From this point on we can then deduce
from linearization that there is an exponential decay.

Note that we could not deduce the long time behaviour of weak solutions using entropy
dissipation–entropy estimate section. However, using the usual energy it is possible to prove
the following result.
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Proposition 7.4 (Energy dissipation for weak solutions). Assume that n ∈ (0, 1) ∩ (2, ∞)

and h0 ∈ H 1(�) satisfies
∫
�

h2−n
0 dx < ∞, n > 2 and has finite mass. Then, there exists a

constant C = C(
∫
�

h2−n
0 dx, p, a, n) > 0 such that

dHp[h(t, x)]

dt
� −C(Hp[h(t, x)])2, ∀t > 0. (1.31)

where h(t, x) is a weak solution of the equation (1.9) with initial and boundary conditions
(1.10) and (1.11).

Clearly the proposition yields that

Hp[h(t, x)] � Hp[h0]
(
1 + τ1Hp[h0]t

)−1
, τ1 > 0. (1.32)

This implies that whenever Hp[h(t, x)] is small enough h(t, x) becomes bounded below away
from 0, and after this point on we have exponential decay by linearization. The remaining
case for n is left for the upcoming paper.

We now provide the details of our analysis.

2. Nonnegativity and positivity of solutions

Let E0 be defined by (1.12). Multiplying the equation (1.9) formally by �′ and integrating we
have that

d

dt
E0[h(t, x)] = (p − 1)(p − 2)

∫ ∫
QT

(h2
x)

p

2 −1h2
xx dx dt + (p − 1)

×
∫ ∫

QT

(h2
x)

p

2 −1hxhxxx dx dt. (2.1)

Here we used the fact that �′′ = 1
hn . From (2.1) one deduces that (1.13) is satisfied and this

clearly implies that E0 dissipates whenever p � 1. Thus, by using the Hölder continuity2 of
h(t, x) in x, we deduce that for n � 2 + p

(p−1)
there cannot be singularity formation. Note that

this was proved by Bernis and Friedman in [6] for the p = 2 case.

3. Approximation by positive hε

The above calculations suggest the following regularization of the problem. Let Pε(h) be given
by (1.14) and consider the regularized problem (1.15). The initial condition of the problem is
also modified; indeed we define h0ε(x) by (1.16).

Since lims→0
Pε(s)

s
2+ p

(p−1)

= 1
ε

if 1 � n < 2+ p

(p−1)
and if n � 2+ p

(p−1)
then lims→0

Pε(s)

s
2+ p

(p−1)

= 0

and h0ε > 0, there exists a unique, positive smooth solution hε of the problem (1.15) combined
with the initial condition (1.16) and with no-flux boundary conditions (1.11). We can modify
the calculations done in [19] to deduce that there exists a limit function h such that hε → h

uniformly. Moreover, we will show that this limit function is a weak solution of the problem
(1.9), (1.10) and (1.11).

Proof of theorem 1. Take φ as indicated. One can easily obtain that

||Pε(h)[(h2
x)

p/2−1hxx]x ||L2(QT ) � A,

2 One can show that |h(t, x) − h(t, y)| < C|x − y|(p−1)/p, ∀x, y ∈ �, ∀t > 0. We refer to [19] for details.
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where A is independent of ε and T . Let Zε := Pε(h)[(h2
x)

p/2−1hxx]x. Then, for a subsequence
such that Zε → Z weakly in L2(QT ). By regularity theory of uniformly parabolic equations
and uniform Hölder continuity of hε we deduce that

hεt , hεx, hεxx, hεxxx, hεxxxx

are uniformly convergent in any compact subset of P = Q̄T − ({h = 0} ∪ {t = 0}). Hence,
hn[(h2

x)
p/2−1hxx]x = Z, on P. Hence,

ht , hx, hxx, hxxx, hxxxx ∈ C(P )

and

hn[(h2
x)

p/2−1hxx]x ∈ L2(P ).

Hence, we also see that h solves the problem (1.9) in the weak sense. For any δ > 0 one
has that

(p − 1)

∫ ∫
{|h|>δ}

Pε(hε)[(h
2
εx)

p/2−1hεxx]xφx dx dt → (p − 1)

×
∫ ∫

{|h|>δ}
hn[(h2

x)
p/2−1hxx]xφx dx dt.

On the other hand, if ε is small enough(depending on δ), then by the Cauchy–Schwartz
inequality

|(p − 1)

∫ ∫
{|h|�δ}

Pε(hε)[(h
2
εx)

p/2−1hεxx]xφx dx dt | � C|(p − 1)|δn/2 → 0 as δ → 0.

(3.1)

Recall also that we have∫
�

|hεx |p(t, x) dz �
∫

�

|h0εx |p dx,

and hε0 → h0 in Hp(�). Combining these we deduce that

lim supt→0

∫
�

|hx |p(t, x) dx �
∫

�

|h0x(x)|p dx

and

hx(t, .) → h0x weakly in Lp(�) as t → 0.

We see a weakly convergent sequence which is bounded. In fact, in this case the sequence
converges strongly to the same limit.

Taking ε → 0, since δ > 0 is arbitrary, we conclude that (1.20) is satisfied. This completes
the proof of the theorem. �

We now use this regularization scheme to improve the result of singularity formation. To
this end, define the natural entropy by

Hε(h) :=
∫

�

Gε(h(t, x)) dx, (3.2)

where Gε satisfies

Gε(h(t, x))
′′
Pε(h(t, x)) = hβ(t, x), β < 0. (3.3)

The more negative the β, the better the result we obtain for the singularity formation. We
can easily determine Gε(h(t, x)) using (3.3), where we choose the constant of the integration
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so that
∫
�

Gε(h(t, x)) dx � 0. Multiplying the equation (1.9) formally by G′(h(x, t)) and
applying integration by parts we obtain that∫

�

G′
ε(h)ht dx = −(p − 1)2

∫
�

hβ(h2
x)

p/2−1h2
xx dx

+
β(β − 1)(p − 1)2

(p + 1)

∫
�

hβ−2(h2
x)

p/2−1h4
x dx.

=: −c1J1(h(t, x)) + c2J2(h(t, x)). (3.4)

To proceed further we need the following lemma.

Lemma 6.2 (Negative term beats in (3.4)). One has the following inequality for 0 � h ∈
H 3(�) and hx(±a) = 0

J1(h(t, x)) � CJ2(h(t, x)), (3.5)

where

C := (1 − β)2

(p + 1)2
.

Proof. Inequality (3.5) can be verified easily by considering that, for any constant A > 0,

0 �
∫

�

[hβ/2((h2
x)

p/2−1)1/2hxx − Ahβ/2−1((h2
x)

p/2−1)1/2h2
x]2 dx. (3.6)

By employing integration by parts we see that (3.6) is equivalent to

J1(h(t, x)) +

(
A2 − 2A(1 − β)

(p + 1)

)
J2(h(t, x)) � 0. (3.7)

Optimizing over A, in (3.7) we obtain (3.5). �

Using (3.5) we finally have that

d

dt
Hε(h(t, x)) � CβJ2(h(t, x)), (3.8)

where

Cβ := − (p − 1)2(1 − β)2

(p + 1)2
+

β(β − 1)(p − 1)2

(p + 1)
.

Note that Cβ is nonpositive if and only if β � − 1
p
. Using the definition of Gε and the

Hölder continuity of h(t, x) in x we deduce that there is no singularity formation of the form
h → 0 if

n � 2 + p′ − 1

p
,

where p′ = p

p−1 . Note that this obeys the p = 2 case where n � 7/2 implies no singularity
formation in this case. Moreover, when p = 3 this shows that n � 3.1666... implies no
singularity formation in this case.
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4. An entropy dissipation–entropy estimate for (1.8)

The term ‘entropy’ is frequently used for a Lyapunov functional whose rate of decrease can
be bounded in terms of itself. That is, if H(f ) is some functional of f, and along the flow of
some evolution we have

d

dt
H(f ) � −�(H(f )), (4.1)

with � some continuous strictly monotone increasing function on R+, then the functional
H(f ) is called an entropy, and the inequality (4.1) is called an entropy dissipation–entropy
inequality. The point is that (4.1) can be used to quantitatively estimate the rate of decay of
H(f ).

Consider again a smooth solution of (1.9) with p = 3 and n = 2 and define the functional
Kq(h(t, x)) by

Kq(h(t, x)) :=
∫

�

h2
x

hq
dx. (4.2)

We note that this functional has been discovered by Laugesen [12] for the thin-film equation.
Laugesen showed that Kq is a Lyapunov functional for the thin-film equation provided that
q ∈ [0, 1/2]. Moreover, Kq was used in [10] to prove an entropy dissipation–entropy estimate
for the same equation. Recently, the author did the same thing for the following equation

ht = −(hnhxxx)x + (hm)xx, n > 0, 1 < m < 2 (4.3)

with periodic boundary conditions [18].
Differentiating Kq along a smooth positive solution of (1.8) with p = 3 and n = 2 and

applying integration by parts whenever necessary we obtain, after some algebra, that

dKq(h)

dt
= −4

∫
(h2

x)
1
2 h2

xxx

hq−n
dx − 2q(q + 1)

∫
(h2

x)
1
2 h3

xhxxx

hq−n+2
dx

− 4

5
(4q + 1)

∫
(h2

x)
1
2 h2

xh
2
xx

hq−n+2
dx +

4

3
(q − 2)

∫
(h2

x)
1
2 hxhxxhxxx

hq−n+1
dx. (4.4)

We note that using the notation in (4.9) and (4.10) below, we can rewrite (4.4) as

dKq(h)

dt
= −4I1 +

4

3
(q − 2)J12 − 2q(q + 1)J13 − 4

5
(4q + 1)I2. (4.5)

Step 1. We will show that

dKq(h)

dt
� −CqI3, (4.6)

where Cq is a positive constant which depends on q and I3 is given in (4.9).

Proof of step 1. To show that the right-hand side of (4.4) is negative, we will try to write it as
a sum of negative squares, which is the same strategy used in [10, 12, 18]. To do this, define
the nonnegative quantity A by

A :=
∫ [

αhxxx + β
hxhxx

h
+ γ

h3
x

h2

]2

(h2
x)

1
2 hq−n dx, (4.7)

where the numbers α, β and γ will be chosen below. Equation (4.7) can be written as

A = α2I1 + β2I2 + γ 2I3 + 2αβJ12 + 2αγ J13 + 2βγ J23, (4.8)
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where

I1 =
∫

(h2
x)

1/2 h2
xxx

hq−n
dx, I2 =

∫
(h2

x)
1/2 h2

xh
2
xx

hq−n+2
dx, I3 =

∫
(h2

x)
1/2 h6

x

hq−n+4
dx,

(4.9)

J12 =
∫

(h2
x)

1/2 hxhxxhxxx

hq−n+1
dx, J13 =

∫
(h2

x)
1/2 h3

xhxxx

hq−n+2
dx,

J23 =
∫

(h2
x)

1/2 h4
xhxx

hq−n+3
dx. (4.10)

Lemma 4.1. Integration by parts yields the following relations:

I2 = −1

4
J13 +

q

4
J23, (4.11)

J23 =
(

q + 1

6

)
I3. (4.12)

Proof. This is a straightforward computation. �
There is no useful integration by parts identity relating J12 to the other integrals in the lists

(4.9) and (4.10)—integrating by parts in J12, no matter how it is done, would introduce other
integrals into the game. Since there is no useful integration by parts identities for I1 and J12,

we use the definition of A appropriately to eliminate these terms from the right-hand side of
(4.5). We have that

− 4I1 +
4

3
(q − 2)J12 = −A +

(
2 − q

3

)2

I2 + γ 2I3 + 4γ J13 + 2

(
2 − q

3

)
γ J23. (4.13)

Using the relation (4.13) and the integration by parts relations (4.11) and (4.12) we obtain,
after some algebra, that

dKq(h)

dt
� S(q, γ )J13 +

[
γ 2 +

(
q + 1

6

)
R(q, γ )

]
I3 (4.14)

where

L(q) :=
(

2 − q

3

)2

+
2

5
(5q + 2)(q − 1) − 2q(q + 1),

S(q, γ ) := 4γ − 2q(q + 1) − 1
4L(q, n)

and

R(q, γ ) := 2
(2 − q)

3
γ +

q

4
L(q).

Since J13 can have either sign we choose γ so that the multiple of J13 vanishes. This leads to
the following choice for γ :

γ = 2q(q + 1) + 1
4L(q)

4
. (4.15)

Plugging (4.15) into (4.14) yields that

dKq(h)

dt
� C∗

q I3, (4.16)
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Figure 1. Graph of C∗
q as a function of q.

(This figure is in colour only in the electronic version)

where C∗
q is given by

C∗
q :=


(

2q(q + 1) + 1
4L(q)

4

)2

+ 2

(
2 − q

3

) (
2q(q + 1) + 1

4L(q)

4

)
+

q

4


 (

q + 1

6

)
.

(4.17)

From figure 1 it is clear that C∗
q < 0 for q ∈ (0, q∗), where q∗ is the critical value close

to 0.046.

Thus, for q ∈ (0, q∗), we can define C∗
q =: −Cq, where Cq > 0. With this choice we

have

dKq(h)

dt
� −CqI3. (4.18)

Step 2. Now, we show that

I3(h(t, x)) � NqK
7/2
q (h(t, x)), (4.19)

where Nq is a positive constant.

Proof of step 2. Notice that

I3 �
∫ |hx |7

hq−n+4
dx =

∫ (
h2

x

hq

)7/2
1

hr
dx.

Letting u = h2
x

hq , and letting v = h, we have that

I3 �
∫

u7/2v−r dx. (4.20)
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The function (v, s) → v7/2s−r is jointly convex if r � 5/2, so that by Jensen’s inequality

1

2a

∫ a

−a

u7/2v−r dx �
(

1

2a

∫ a

−a

u dx

)7/2 (
1

2a

∫ a

−a

v dx

)−r

= 1

2a(
∫ a

−a
h0(x) dx)r

(Kq(h))7/2. (4.21)

Combination of (4.20) and (4.21) proves (4.19).

Step 3. Consequence. Combining the inequalities (4.6) and (4.19) we deduce that there exists
a constant C > 0 such that

Kq �
[

2

5(Ct + 2
5 [Kq(0)]−5/2)

]2/5

. (4.22)

This clearly gives an initial polynomial decay( like t−2/5) of solutions to the equilibrium
and once Kq(h) is small enough we can then use linearization to obtain an exponential decay.

Remark 1. For the p = 3 case numerical calculations strongly suggest that one can obtain an
entropy dissipation–entropy estimate for a wider range of n values.

Remark 2. Consider the general case. By a similar kind of calculations we may obtain,
as in [11], an algebraic decision problem for the parameters p, q and n. In other words, the
parameters p, n and q should satisfy certain inequalities. We leave such a study to an upcoming
paper [20].

Remark 3. We note that for the thin film equation and for the equation (4.3) one obtains t−1/2

initial decay towards the equilibrium [10, 18]. This is different from our decay rate(of the
particular case p = 3 and n = 2).

Remark 4. For the modified thin film equation [3, 4, 5, 8, 18], i.e.

ht = −hnhxxxx, n > 0, (4.23)

one can try similar calculations for the energy Iq := ∫ h2
xx

hq dx, but not for Kq. This is because
I0 is dissipated but K0 is not. This work is in progress.

5. Integral estimates

Proposition 5.1 (Integral estimate for hε). Let h0 satisfy (1.25), Pε be defined by (1.14) and
let hε be the solution of the regularized problem (1.15) with the initial condition

h(0, x) = h0ε(x), x ∈ �,

and with boundary conditions (1.11).
Suppose that

h0ε ∈ C∞([−a, a]), h0ε > 0, for x ∈ [−a, a], h0ε → h0 in Hp((−a, a)) as ε → 0

(5.1)

and moreover suppose that h0ε satisfies the corresponding boundary conditions (1.11).
Let α �= 0 be a real number such that

p − 1

p
� α + n � 2, (5.2)



U l u s o y ,  S u l e y m a n / p r e p r i n t 2 / 2 0 0 7 - 0 5 - 0 3

698 S Ulusoy

let T > 0 and let ζ ∈ C4(�) be a nonnegative function with support in (−a, a). Assume either

h0 > 0 in supp(ζ ) (5.3)

or h0ε satisfies

h0ε(x) � h0(x) + εθ , 0 < θ � 2
5 , (5.4)

and h0 satisfies∫
�

ζ 4hα+1
0 (x) dx < ∞, α �= −1, (5.5)

∫
�

ζ 4| ln(h0(x))| dx < ∞, α = −1. (5.6)

Then, there exist constants C∗
1 and C∗

2 which are independent of ε such that∫
�

ζ 4hα+1
ε (t, x) dx � C∗

1 , 0 < t � T , α �= −1, (5.7)

∫
�

ζ 4| ln(hε(t, x)| dx � C∗
2 , 0 < t � T , α = −1. (5.8)

If γ is a real number satisfying

γ1 � γ � γ2, (5.9)

where

γ1 := (α + n + p − 1) − √
(α + n − 2)(p − 1 − p(α + n))

(p + 1)
(5.10)

and

γ2 := (α + n + p − 1) +
√

(α + n − 2)(p − 1 − p(α + n))

(p + 1)
, (5.11)

then ∫ t

0

∫
�

ζ 4hα+n−2γ +1
ε (hγ

ε )2
xx(h

2
εx)

p/2−1 dx dt � C∗
3 , (5.12)

and if
p − 1

p
< α + n < 2,

then ∫ t

0

∫
�

ζ 4hα+n−3
ε h4

εx(h
2
εx)

p/2−1 dx dt � C∗
4 , (5.13)

where C∗
3 and C∗

4 are positive constants independent of ε.

Remark 1. If the conditions of the proposition are satisfied and h is a solution of the
corresponding limiting case where ε → 0, then, by Fatou’s lemma, one deduces that∫

�

ζ 4hα+1(t, x) dx < ∞, t > 0, α �= −1, (5.14)

∫
�

ζ 4| ln(h(t, x))| dx < ∞, t > 0, α = −1. (5.15)
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Remark 2. The inequality (5.12) becomes∫ t

0

∫
�

ζ 4h1/p
ε (h(p−1)/p

ε )2
xx dx dt � C∗

3 (5.16)

if α + n = p−1
p

, γ = p−1
p

and n �= p−1
p

(i.e. α �= 0), and it becomes∫ t

0

∫
�

ζ 4hεh
2
εxx dx dt � C∗

3 (5.17)

if α + n = 2, γ = 1 and n �= 2(i.e. α �= 0).

Proof. Define the following function

gε(s) := −
∫

αrα+n−1

Pε(r)
dr = c1s

c2 + sα − c1A
c2 − Aα, (5.18)

where the constants c1 and c2 are given by

c1 := αε

n + α − 2 − p

(p−1)

, c2 := n + α − 2 − p

(p − 1)
.

Now define

Gε(s) := −
∫ A

s

gε(r) dr, (5.19)

where A > max hε and 0 < s < A. As hε > 0 the functions gε and Gε are well defined.
Let α �= −1. Multiplying the equation (1.15) by ζ 4gε(h) and integrating by parts, for any

t ∈ (0, T ], one has that(note that we represent the solution of (1.15) by h to simplify notation;
at the end of the proof we will return to the original notation)

1

α

∫
�

ζ 4Gε(h(t, x)) dx − 1

α

∫
�

ζ 4Gε(h0ε(x)) dx

= (p − 1)

∫ t

0

∫
�

ζ 4hα+n−1hx[(h2
x)

p/2−1hxx]x dx +
(p − 1)

α

×
∫ t

0

∫
�

(ζ 4)xgε(h)Pε(h)[(h2
x)

p/2−1hxx]x dx

=: L1 + L2. (5.20)

We can integrate by parts and write L1 as

L1 = − (p − 1)

∫ t

0

∫
�

(ζ 4)xh
α+n−1(h2

x)
p/2−1hxhxx dx dt

− (p − 1)(α + n − 1)

∫ t

0

∫
�

ζ 4hα+n−2(h2
x)

p/2−1h2
xhxx dx dt

− (p − 1)

∫ t

0

∫
�

ζ 4hα+n−1(h2
x)

p/2−1h2
xx dx dt

=: −c1L1,1 − c2L1,2 − c1L1,c. (5.21)

To benefit fully from the sign of the term L1,c in (5.21) we use the following substitution,
which was used in [2],

h2
xx = 1

γ 2
h2−2γ (hγ )2

xx − (γ − 1)2h−2h4
x − 2(γ − 1)h−1h2

xhxx, (5.22)

where γ is a positive constant.
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Using (5.22) in (5.21) and collecting the likely terms together we obtain that

L1 = − c1L1,1 − c1(α + n − 2γ + 1)L1,2

− (p − 1)

γ 2

∫ t

0

∫
�

ζ 4hα+n−2γ +1(h2
x)

p/2−1(hγ )2
xx dx dt

+ (p − 1)(γ − 1)2
∫ t

0

∫
�

ζ 4hα+n−3(h2
x)

p/2−1h4
x dx dt

=: −c1L1,1 − c3L1,2 − c4L1,3 + c5L1,4, (5.23)

where in (5.23) we define the quantities on the right-hand side according to the occurrence of
the quantities on the left-hand side.

Before proceeding further we prove the following result.

Lemma 5.2. One has the following integration by parts relations:

L1,2 = − (α + n − 2)

(p + 1)
L1,4 − 1

(p + 1)

∫ t

0

∫
�

(ζ 4)xh
α+n−2(h2

x)
p/2−1h3

x dx dt

=: −c6L1,4 − c7L1,5, (5.24)

L1,1 = (α + n − 1)

p
L1,5 − 1

p

∫ t

0

∫
�

(ζ 4)xxh
α+n−1(h2

x)
p/2−1h2

x dx dt

=: −c8L1,5 − 1

p
L1,6. (5.25)

Proof. This is a straightforward calculation. �

Using (5.24) and (5.25) and also collecting the likely terms together we finally obtain that

L1 = −c4L1,3 − c(α + n, γ )L1,4 + R1. (5.26)

Here,

c(α + n, γ ) := −
[
(p − 1)(γ − 1)2 +

(p − 1)

(p + 1)
(α + n − 2γ + 1)(α + n − 2)

]
(5.27)

and

R1 = K1L1,5 +

(
p − 1

p

)
L1,6, (5.28)

where

K1 := (p − 1)

p
(α + n − 1) − (p − 1)

(p + 1)
(2γ − 1 − (α + n)). (5.29)

One can easily obtain that

c(α + n, γ ) = 0 ⇔ γ = γ1 or γ = γ2, (5.30)

where γ1 and γ2 are given by (5.10) and (5.11), respectively. Moreover,

c(α + n, γ ) � 0 ⇐⇒ γ1 � γ � γ2. (5.31)

Now we start estimating L2. For this purpose we write

1

α
Pε(h)gε(h) = m(h) + cεPε(h), (5.32)
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where

m(h) := 1

α
Pε(h)

[
αε

(α + n − 2 − p/(p − 1))
h(α+n−2−p/(p−1)) + hα

]
(5.33)

and

cε := − 1

α
Aα − ε

(α + n − 2 − p/(p − 1))
A(α+n−2−p/(p−1)). (5.34)

Using these we can rewrite L2 as

L2 =
∫ t

0

∫
�

(ζ 4)xm(h)[(h2
x)

p/2−1hxx]x dx dt + cε

∫ t

0

∫
�

(ζ 4)xPε(h)[(h2
x)

p/2−1hxx]x dx dt

=: L2,1 + cεL2,2. (5.35)

One keeps the second term and integrates by parts the first term to obtain

L2 = cεL2,2 −
∫ t

0

∫
�

[(ζ 4)xm(h)]x[(h2
x)

p/2−1hxx] dx dt =: cεL2,2 − L2,3. (5.36)

To proceed further we need to prove the following result.

Lemma 5.3. One has the following integration by parts relation:

− L2,3 = 1

(p − 1)

∫ t

0

∫
�

(ζ 4)xxxm(h)(h2
x)

p/2−1hx dx dt

+
2p − 1

p(p − 1)

∫ t

0

∫
�

(ζ 4)xxm
′(h)(h2

x)
p/2−1h2

x dx dt

+
1

p

∫ t

0

∫
�

(ζ 4)xm
′′(h)(h2

x)
p/2−1h3

x dx dt

=: c4L2,4 + c5L2,5 + c6L2,6. (5.37)

Proof. This is a straightforward calculation. �

Using (5.37) and also collecting the likely terms together, we finally deduce that

L2 = cεL2,2 + c5L2,5 + c6L2,6 − 1

(p − 1)

∫ t

0

∫
�

(ζ 4)xxxx(h
2
x)

p/2−1M1(h) dx dt

− (p − 2)

(p − 1)

∫ t

0

∫
�

(ζ 4)xxx(h
2
x)

p/2−2hxhxxM1(h) dx dt

=: cεL2,2 + c5L2,5 + c6L2,6 − c7L2,7 − c8L2,8, (5.38)

where

M1(h) :=
∫ h

0
m(r) dr.

Let s ∈ (0, A); by considering the definitions of m(h) and Pε, we can deduce the following
estimates

|m(s)| � K2s
n+α, |m′(s)| � K3s

n+α−1, (5.39)

|m′′(s)| � K4s
n+α−2, |M1(s)| � K5s

n+α+1. (5.40)

Using these estimates we will bound R1 + L2. But first we state the following result.
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Lemma 5.4. One has the following integration by parts relation:

L2,8 = − 1

(p − 2)
L2,7 − 1

(p − 2)

∫ t

0

∫
�

(ζ 4)xxx(h
2
x)

p/2−2m(h)h3
x dx dt

=: − 1

(p − 2)

(
L2,7 + L2,9

)
. (5.41)

Proof. This is a straightforward calculation. �
Using these, together with the smoothness of ζ, we obtain that

|R1 + L2| � |cε |
∫ t

0

∫
�

(ζ 4)xPε(h)[(h2
x)

p/2−1hxx]x dx dt

+ C2

∫ t

0

∫
�

ζ 2hα+n−1(h2
x)

p/2−1h2
x dx dt + C3

∫ t

0

∫
�

ζ 3hα+n−2(h2
x)

p/2−1|h3
x | dx dt

+ C4

∫ t

0

∫
�

hα+n+1(h2
x)

p/2−1 dx dt + C5

∫ t

0

∫
�

ζhα+n(h2
x)

p/2−1|hx | dx dt

=: |cε |L2,r,1 + C2L2,r,2 + C3L2,r,3 + C4L2,r,4 + C5L2,r,5. (5.42)

The first term in (5.42) is uniformly bounded by the dissipation result and uniform
boundedness of the terms cε and Pε(h). Indeed, by the Hölder’s inequality we have that

|cε |L2,r,1 � |cε |
(∫ t

0

∫
�

Pε(h)([(h2
x)

p/2−1hxx]x)
2 dx dt

)1/2 (∫ t

0

∫
�

|(ζ 4)x |2Pε(h) dx dt

)1/2

� C ′|cε |
(∫ t

0

∫
�

|(ζ 4)x |2Pε(h) dx dt

)1/2

� C ′′, (5.43)

where we have used the dissipation result and the uniform boundedness of cε, Pε(h) and |(ζ 4)x |.
Now, we will show that the last two terms in (5.42) are uniformly bounded. Indeed, by

the Hölder’s inequality we have that

C4L2,r,4 � C4

(∫ t

0

∫
�

(h2
x)

p/2 dx dt

)(p−2)/p (∫ t

0

∫
�

h
p

2 (α+n+1) dx dt

)2/p

� C, (5.44)

where we have used the energy dissipation and the fact that p

2 (α + n + 1) > 0.

Similarly, we have that

C5L2,r,5 � C5

(∫ t

0

∫
�

(h2
x)

p/2 dx dt

)(p−1)/p (∫ t

0

∫
�

ζhp(α+n) dx dt

)1/p

� C, (5.45)

where again we used the energy dissipation and the fact that p(α + n) > 0. Collecting these
results together and using the fact that ζ is a smooth bounded function and hε is a smooth
positive function(so that it is bounded from below), we deduce from (5.42) that

|R1 + L2| � C ′
1 + c6

∫ t

0

∫
�

(h2
x)

p/2−1h2
x dx dt + c7

∫ t

0

∫
�

(h2
x)

p/2−1|h3
x | dx dt

=: C ′
1 + c6L2,r,6 + c7L2,r,7, (5.46)

where C ′
1, c6, c7 are constants. To bound the last two terms in (5.46), we let β = 0 in (3.3)

and we deduce that∫ t

0

∫
�

[(h2
x)

p/4
x ]2 dx dt < ∞. (5.47)
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Using this we obtain that∫ t

0
||hx ||pL∞ dt =

∫ t

0
||(h2

x)
p/2||2L∞ dt � c

∫ t

0

∫
�

[(h2
x)

p/4
x ]2 dx dt � C. (5.48)

Now, rewriting the second term in (5.46) we have that

|c6|L2,r,6 = |c6|
∫ t

0

∫
�

|hx |p dx dt � |c6|
∫ t

0

∫
�

||hx ||pL∞ dx dt � 2aC. (5.49)

Similarly, the last term in (5.46) can be bounded by

|c7|L2,r,7 =
∫ t

0

∫
�

|hx |p+1 dx dt �
∫ t

0
||hx ||L∞(

∫
�

|hx |p dx) dt � C

∫ t

0
||hx ||L∞ dt � C1.

(5.50)

Collecting what we have obtained so far we finally deduce that

1

α

∫
�

ζ 4Gε(h(x, t)) dx + c4L1,3 + c(α + n, γ )L1,4 � 1

α

∫ a

−a

ζ 4Gε(h0ε(x)) dx + K̄, (5.51)

where K̄ is a constant. Notice that by assumption

1

α

∫
�

ζ 4Gε(h0ε(x)) dx � K ′, (5.52)

where K ′ is a constant independent of ε. Finally using (5.52) in (5.51) and the definition of
Gε we deduce that(now we start using the original notation, etc)

c4L1,3 + c(α + n, γ )L1,4 +
ε

c∗(c∗ − 1)

∫
�

ζ 4hc∗
ε (t, x) dx � − 1

α(α + 1)

∫
�

ζ 4hα+1
ε (t, x) dx + K̃

⇐⇒
c4L1,3 + c(α + n, γ )L1,4 + c̃∗L̃ � −cαLα + K̃, (5.53)

where c∗ = α + n − p

(p−1)
− 1 and K̃ is a constant independent of ε. Note that Lα is uniformly

bounded if α + 1 > 0 and has a negative coefficient when α + 1 < 0; we then deduce that

c4L1,3 + c(α + n, γ )L1,4 + c̃∗L̃ + |cα|Lα � K∗, (5.54)

where K∗ is a constant independent of ε. Since the terms on the left-hand side of (5.54) are
nonnegative, we obtain that for t ∈ (0, T ]

Lα � C∗
1 , (5.55)

where C∗
1 is a constant independent of ε.

Moreover, we also obtain that

L1,3 � C∗
3 , (5.56)

where again C∗
3 is a constant independent of ε. Choosing α, n and γ so that c(α + n, γ ) > 0,

we finally deduce that

L1,4 � C∗
4 , (5.57)

where C∗
4 is a constant independent of ε.

One can modify the calculations for α �= 1 and obtain
∫
�

ζ 4| ln(hε(t, x))| � C∗
2 for

t ∈ (0, T ]. �
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Corollary 5.5 (A useful integral estimate). Let α �= 0 and γ be real numbers satisfying

p − 1

p
< α + n < 2,

α + n + p − 1 < 3γ < α + n + p − 1 +
√

(α + n − 2)(p − 1 − p(α + n)). (5.58)

Let T > 0 and assume that h0, h0ε, Pε, ζ satisfy the conditions of the proposition and let hε

be the solution of the regularized problem (1.15) with the initial condition

h(0, x) = h0ε(x), x ∈ �,

and with boundary conditions (1.11). Then, there exists a constant C, independent of ε, such
that ∫ t

0

∫
�

ζ 4|(|(hγ
ε )x |(4−q)/q)x |q(h2

εx)
p/2−1 dx dt � C, (5.59)

where

q = 4γ − 1 − n − α

γ
∈ (1, 2). (5.60)

Proof. By proposition 5.1 hε satisfies the integral estimates. We can rewrite (5.12) as∫ t

0

∫
�

ζ 4(hγ
ε )4

xh
α+n+1−4γ
ε (h2

εx)
p/2−1 dx dt � C∗

3 .

Note also that we write (5.59) in the given form as constants were worked out in [2]. This
simplifies some of the calculations below.

We will choose q ∈ (1, 2) and λ > 0 below and we set p∗ = 4−q

q
. We apply Hölder’s

inequality with exponents p′ = 2/q and q ′ = 2/(2 − q) to obtain that∫ t

0

∫
�

ζ 4|(|(hγ
ε )x |p∗

)x |q(h2
εx)

p/2−1 dx dt

� C

(∫ t

0

∫
�

ζ 4|(hγ
ε )xx |2h2γ /q

ε (h2
εx)

p/2−1 dx dt

)q/2

×
(∫ t

0

∫
�

ζ 4|(hγ
ε )x |4h−2γ /(2−q)

ε (h2
εx)

p/2−1 dx dt

)(2−q)/q

. (5.61)

Hence, to proceed further we need to show that we can choose λ > 0 and 1 < q < 2 such that

− λ
2

2 − q
� α + n + 1 − 4γ,

2λ

q
� α + n + 1 − 2γ. (5.62)

Setting q as in (5.60) and

λ = 2 − q

2
(4γ − 1 − n − α),

we see that in order to show that (5.62) is satisfied we need to assume (5.58). This completes
the proof. �

Corollary 5.6 (The case T = +∞). Let α �= 0 and n > 0 satisfy

p − 1

p
� α + n � 2
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and let γ satisfy

γ1 � γ � γ2, (5.63)

where γ1 and γ2 are given by (5.10) and (5.11) respectively.
Let h0, h0ε and Pε satisfy the conditions given in proposition 5.1, and let ζ = 1 in [−a, a].

If hε is the solution of (1.15) with no-flux boundary conditions then there exist constants C1, C2

which are independent of ε such that∫ ∞

0

∫
�

hα+n−2γ +1
ε (hγ

ε )2
xx(h

2
εx)

p/2−1 dx dt � C1, (5.64)

and if p−1
p

< α + n < 2, then∫ ∞

0

∫
�

hα+n−3
ε h4

εx(h
2
εx)

p/2−1 dx dt � C2. (5.65)

If α, n and γ satisfy (5.60), then there exists a constant C3, which is independent of ε such that∫ ∞

0

∫
�

|(|(hγ
ε )x |(4−q)/q)x |q(h2

εx)
p/2−1 dx dt � C3, (5.66)

where q is defined by (5.60).

Proof. The proof of proposition 5.1 and the proof of corollary 5.5 work if we take
Q = (0, ∞) × � instead of QT = (0, T ) × � and take ζ ≡ 1 in [−a, a]. �

6. Support properties of solutions

First of all, we prove the following lemma which says that we can pass to the limit ε → 0 in
some of the estimates of the previous section.

Lemma 6.1 (Integral estimates for h). Let α �= 0 and n > 0 satisfy

p − 1

p
< α + n < 2.

Let h0 satisfy the conditions of proposition 5.1 of the previous section with ζ ≡ 1 in [−a, a],
and let h be a solution of the problem (1.9), (1.10) and (1.11). Then∫ ∞

0

∫
�

hα+n−3h4
x(h

2
x)

p/2−1 dx dt < ∞, (6.1)

and for almost every t > 0 there exists a constant C(t) < ∞ such that

if h(t, y) = 0 for some y ∈ [−a, a], then

|h(t, x)| � C(t)|x − y|m, for x ∈ [−a, a], (6.2)

where

m := p + 1

α + n + p − 1
.

Moreover, if α, n and γ satisfy (5.58), then∫ ∞

0

∫
�

|(|(hγ )x |(4−q)/q)x |q(h2
x)

p/2−1 dx dt < ∞, (6.3)

where q is defined by (5.60).
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Proof. Notice that we write (6.3) in the above form because the constants are already worked
out in [2]. By (1.27) and (5.13), we deduce that

(hτ1
εk
)x → (hτ1)x, weakly in L

p+2
loc (Q̄) as εk → 0,

where

τ1 := α + n + p − 1

p + 2
. (6.4)

This shows that (6.1) holds.

Claim 1. We have the following convergence result:

(hτ
εk
)x → (hτ )x

strongly in L
p+2
loc (Q̄), as εk → 0 for any τ > τ1, where τ1 is given by (6.4).

Proof of claim 1. We have

|(hτ
εk
)x − (hτ )x | � |hτ−τ1

εk
− hτ−τ1 ||(hτ1

εk
)x | + hτ−τ1 |(hτ1

εk
)x − (hτ1)x |. (6.5)

Notice that (1.27) and (5.13) imply that the first term on the right-hand side of (6.5) converges
strongly to 0 in L

p+2
loc (Q̄).

For the second term we fix T and consider the sets

Q1
r := {(t, x) ∈ QT : 0 � h � r}

and

Q2
r := {(t, x) ∈ QT : h > r},

where r is an arbitrary positive number. Since τ > τ1 we deduce from (6.1) and (5.13) that∫ ∫
Q1

r

h(p+2)(τ−τ1)|(hτ1
εk
)x − (hτ1)x | dx dt → 0

uniformly in εk as r → 0. On the other hand, since the derivatives of hεk
converge uniformly

on compact subsets of the set Q2
r we deduce immediately that∫ ∫

Q2
r

h(p+2)(τ−τ1)|(hτ1
εk
)x − (hτ1)x | dx dt → 0 as εk → 0.

Hence, the proof of the claim is complete.
Now note that we can rewrite (6.3) as follows:∫ ∫

Q

|(((hr)x)
b)x |q dx dt � C < ∞, (6.6)

where

r := 1 +
(1 − 1

γ
)(α + n + 1)

p + 2 − q
, (6.7)

b := p + 2 − q

q
, (6.8)

and q is given by (5.60).
As γ > τ1 and 2+p−q

q
< p + 2, by claim 1 we deduce that (h

γ
εk
)x → (hγ )x strongly in

L
p+2−q

q

loc (Q̄) as εk → 0. Hence, we may pass to the limit as εk → 0 and deduce that (6.1) holds.
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Since p−1
p

< α + n < 2 there exists γ as assumed in the statement of lemma. Also ,
by (6.6) and the Sobolev embedding theorem, for almost every t > 0, there exists a constant
C1(t) < ∞ such that

||(hr)x |b(t, x) − |(hr)x |b(t, y)| � C1(t)|x − y| q−1
q , ∀x, y ∈ [−a, a],

where b and r are given by (6.8) and (6.7), respectively. Hence, assuming h(t, y) = 0 and
integrating this inequality yield (6.2). �

Proof of theorem 2.

(i) Let h0(x) > 0 in some interval (b, c) ⊂ (−a, a) and let ζ be a smooth nonnegative
function with support in (b, c). First assume that n > 1 + (p−1)

p
. Then, we can find an

α < −1 satisfying p−1
p

� α + n < 2 such that∫
�

ζ 4hα+1(t, x) dx < ∞, for t > 0. (6.9)

Since α < −1 we obtain the result in this case.
Now, if n = 1 + (p−1)

p
, then we choose α = −1 and we know that∫

�

ζ 4| ln(h(t, x))| dx for t > 0. (6.10)

But this implies the result.
(ii) Since h0(x0) > 0 and h0 is continuous there exists a δ > 0 such that h0(x) > 0 for

x ∈ (x0 − 2δ, x0 + 2δ). Let ζ(x) be a smooth nonnegative function with support in
(x0 − 2δ, x0 + 2δ) satisfying

0 � ζ � 1 in[−a, a], ζ ≡ 1 in [x0 − δ, x0 + δ]. (6.11)

Then h0 > 0 in the support of ζ and hence (6.9) holds for α �= −1. Since n >
p

p−1

we can choose p−1
p

− n < α < −1 such that p+1
α+n+p−1 (α + 1) � −1. By (6.2) we get a

contradiction and this proves the result.
(iii) Suppose that the assertion is not true, i.e. h(t, x0) = 0. Since n � 1 + (p−1)

p
+ p

(p−1)
we

can choose α > −1 such that p−1
p

< α < −1 such that p−1
p

(α + 1) � −1 and this yields
a contradiction to (6.9), by the uniform Hölder continuity of h(t, x) in x. �

7. Asymptotic behaviour of nonnegative solutions

In this section first we consider nonnegative smooth solutions and prove asymptotic decay and
then we do the same thing for nonnegative weak solutions. Some preliminary results proved
in the smooth case will also be useful for the weak solution case. The main idea is to control
the rate of decrease of the energy functional in terms of itself, which was the same motivation
in [17]. For certain reasons we divide this section into two parts.

Asymptotic behaviour of nonnegative smooth solutions

In this section we will use the energy functional Hp(f ), defined in (1.7), to obtain asymptotic
behaviour of the nonnegative smooth solutions of the equation (1.9) with initial and boundary
conditions (1.10) and (1.11).
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Note that
dHp

dt
= −(p − 1)2

∫
�

hn[(h2
x)

p/2−1hxx]2
x dx � 0.

Thus, Hp(h(t, x)) is a Lyapunov functional for nonnegative smooth solutions of (1.9).

Lemma 7.1 (A zeroth order dissipated energy). Let h be a nonnegative smooth solution of
the problem (1.9), (1.10) and (1.11) with p � 1. Then

t →
∫

�

h2−ndx, n � 2

is nonincreasing.

Proof. Indeed by differentiating and integrating by parts we have that, for simplicity we write
h = h(t, x),

d

dt

∫
�

h2−n dx = (2 − n)

∫
�

h1−nht dx

= −(n − 2)(n − 1)(p − 1)

∫
�

(h2
x)

p/2−1h2
xx dx � 0,

as n � 2 and p � 1. �

Proof of lemma 7.2. Note that an integration by parts yields that

pHp(u) = −(p − 1)

∫
�

u[(u2
x)

p/2−1uxx] dx.

Keeping this in mind we also note that for all x0, x ∈ � one has by the Cauchy–Schwartz
inequality that

−
∫ x

x0

u[(u2
x)

p/2−1uxx]x �
(∫

�

u2

ψ(u)
dx

)1/2 (∫
�

ψ(u)[(u2
x)

p/2−1uxx]2
x dx

)1/2

. (7.1)

On the other hand, by integration by parts we have

−
∫ x

x0

u[(u2
x)

p/2−1uxx]x dx = −u(x)[(u2
x)

p/2−1uxx](x) + u(x0)[(u
2
x)

p/2−1uxx](x0)

+
∫ x

x0

ux(u
2
x)

p/2−1uxx dx.

Thus, if we denote the right-hand side of (7.1) by A ∈ [0, ∞) we have, by assuming ux(x0) = 0,

A � −u(x)(u2
x)

p/2−1uxx(x) +
1

p
(u2

x)
p/2(x).

Now integrating this in x over � and applying integration by parts to the first integral we finally
deduce that

A � CHp(u),

where

C := 2p − 1

2ap(p − 1)
.

This immediately gives the result. �
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Proof of proposition 7.3.

(i) By the energy dissipation, we deduce that t → ||hx ||Lp(�) is nonincreasing. Moreover,
since the mass of h0 is finite there exists a constant K = K(p) such that

||h(t, x)||L∞(�) � K||h0x ||Lp =: R0.

Using lemma 7.2 with ψ(h) ≡ hn and u ≡ h we deduce that

E[h]D[h] � CH 2
p [h],

where

E[h] :=
∫

�

h2−n dx, (7.2)

D[h] :=
∫

�

hn[(h2
x)

p/2−1hxx]2
x dx (7.3)

and

C1 := 2p − 1

2pa(p − 1)
.

On the other hand, since 0 < n < 2 we have

E[h] � R2−n
0

∫
�

dx = 2aR2−n
0 .

Thus, we have that

D[h] � C[Hp(h)]2,

where

C :=
[

2p−1
2pa(p−1)

]2

2aR2−n
0

p2.

(ii) Note that the above proof works and C = [ 2p−1
2pa(p−1)

]2 p2

2a
.

(iii) By lemmas 7.1 and 7.2 we deduce that

D[h] � C2H
2
p [h],

where

C2 :=
[

2p−1
2pa(p−1)

]2

∫
�

h2−n
0 dx

.

This easily gives the result. Note that we can get the proof of (ii) from here as well.

�

By proposition 7.3 we deduce that

Hp[h(t, x)] � [Hp[h0]−1 + Ct]−1, t > 0. (7.4)

Hence, from this, Hp(h) becomes sufficiently small after some finite time and so h(t, x)

becomes uniformly bounded from below away from 0. From this point on we can then deduce
from linearization that there is an exponential decay.
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Asymptotic behaviour of nonnegative weak solutions

We now consider a weak solution of the problem (1.9), (1.10) and (1.11). We assume that∫
�

h0(x)2−n dx < ∞, n > 2, (7.5)

∫
�

| log(h0(x))| dx < ∞, n = 2 (7.6)

and also
∫
�

h0(x) dx =: M < ∞. These assumptions guarantee the existence of a weak
solution.

Recall also the entropy Hε defined by

Hε(h) =
∫

�

Gε(h) dx,

where

G′′
ε (h) = 1

Pε(h)
,

and Pε(h) is given by (1.14).

Case 0 < n < 1 or n > 2. In this case we have that

Hε[h] =
∫

�

ε

c(c − 1)
hc + cnh

2−n dx, (7.7)

where

c := 2 − (p + p/(p − 1)) (7.8)

and

cn := 1

(n − 1)(n − 2)
. (7.9)

Note also that both the terms appearing in (7.7) are positive and we have, by the dissipation of
the entropy Hε, that

Hε[h0ε] �




1

c(c − 1)

∫
�

[εhc + h2−n] dx if
1

c(c − 1)
> cn,

cn

∫
�

[εhc + h2−n] dx if cn >
1

c(c − 1)
.

Note also that it is not difficult to show

Hε[h0ε] �
∫

�

[Cpε(1−c)θ + cnh
2−n
0 ] dx,

where c and cn are given by (7.8) and (7.9), respectively, and Cp is a finite constant depending
on p. This clearly gives a uniform upper bound on Hε[hε] as ε ↘ 0.

Proof of proposition 7.4. Given t > 0, we first note that it is not difficult to show that Hε[h0ε]
is bounded from above and from below uniformly in ε as ε ↘ 0. Note also that

Hp[h0ε] = Hp[h0],

Hε[h0ε] → cnE[h0],
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where cn and E are given by (7.8) and (7.2), respectively. Applying lemma 7.2 with
u ≡ hε(t, x) and ψ ≡ Pε(hε(t, x)) and noticing that

h2
ε

Pε(hε)
= ε

hc
ε

+ h2−n
ε ,

where c is given by (7.8), we deduce that

cpnHε[h0ε]Dε[hε] � KpH 2
p [hε(t, x)], (7.10)

where cpn, Kp are positive constants which can be determined explicitly(we leave this for the
reader) and

Dε[hε] :=
∫

�

Pε(hε(t, x)){[(h2
εx)

p/2−1hεxx]x}2 dx. (7.11)

On the other hand, we have

d

dt
Hp[hε(t, x)] = −(p − 1)Dε[hε(t, x)], (7.12)

where Dε is given by (7.11). Combination of (7.10) and (7.12) and letting ε → 0 finishes the
proof. �

Clearly proposition 7.4 yields that

Hp[h(t, x)] � Hp[h0](1 + τ1Hp[h0]t)−1, τ1 > 0. (7.13)

This implies that whenever Hp[h(t, x)] is small enough h(t, x) becomes bounded below away
from 0, and after this point on we have exponential decay by linearization.

The remaining case for n is left for an upcoming paper [20].

Remark 1. We note that we obtain the same initial decay rates as in the thin-film equation
case [17], being t−1. But unlike [17], we do not try to obtain the exponential decay directly.

Remark 2. We note that this approach is also used in [18] for the modified thin-film equation
(4.23). But the energy considered there is I0 := ∫

h2
xx dx.

8. Final remarks and future research

We have obtained the existence of solutions for a nonlinear degenerate higher order parabolic
equation. We use the ideas employed in the analysis of the thin-film case, but we note that
most of the results we obtain here do not follow directly from that case. We also compare and
comment on the corresponding results for these two cases.

Some further research needs to be done for equation (1.9). We mention a few of them here.
First of all, we will extend the entropy dissipation–entropy estimate results to the general p

and n values. As in [11], this problem will be analysed by considering a decision problem for
polynomial systems. We note also that we have one more parameter in the problem, being p.

This makes the analysis more subtle. Currently, we are unable to deduce a regularity theorem
similar to theorem 3.1 of [2], which we think is true. The calculations are more tedious in
the case at hand so we postpone it for the moment. It is also worth noting that the long time
asymptotics for weak solutions in the case 1 � n � 2 will be considered in [20]. The analysis
here is harder due to the signs of the terms appearing in the definition of Hε. Moreover, as
in [1], one can try to prove results on the ‘finite speed of propagation’ and the ‘waiting-time
phenomena’ for the case at hand. These problems are being worked on [20].
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