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Abstract This paper considers a new model of individual displacement, based on fish motion, the
so-called Persistent Turning Walker (PTW) model, which involves an Ornstein-Uhlenbeck process
on the curvature of the particle trajectory. The goal is to show that its large time and space scale
dynamics is of diffusive type, and to provide an analytic expression of the diffusion coefficient. Two
methods are investigated. In the first one, we compute the large time asymptotics of the variance of
the individual stochastic trajectories. The second method is based on a diffusion approximation of the
kinetic formulation of these stochastic trajectories. The kinetic model is a Fokker-Planck type equation
posed in an extended phase-space involving the curvature among the kinetic variables. We show that
both methods lead to the same value of the diffusion constant. We present some numerical simulations
to illustrate the theoretical results.
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1 Introduction

This paper considers a new model of individual displacement, the so-called ’Persistent Turning Walker’
(PTW) model, which has recently been introduced to describe fish behavior [28]. The fish evolves with
a velocity of constant magnitude and its trajectory is subject to random turns (i.e. random changes of
curvature) on the one hand and to curvature relaxation to zero on the other hand. The random changes
of curvature can be interpreted as a way for the fish to explore its surroundings while relaxation to zero
curvature just expresses that the fish cannot sustain too strongly curved trajectories and that, when
the curvature becomes too large, the fish tries to return to a straight line trajectory. The combination
of these two antagonist behaviors gives rise to an Ornstein-Uhlenbeck process on the curvature. The
curvature is the time derivative of the director of the velocity, while the velocity itself is the time
derivative of position. The PTW process collects all these considerations into a system of stochastic
differential equations.
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This model is, to the knowledge of the authors, original, and has appeared for the first time in
the works by Gautrais, Theraulaz, and coworkers [28]. It has been deduced from a statistical analysis
of data issued from experiments run in La Réunion islands during years 2001 and 2002. The studied
species is a pelagic fish named Kuhlia Mugil. Its typical size ranges between 20 and 25 cm. The first
experiments have been made with a single fish in a basin of 4 meters diameter during two minutes.
A video records the positions of the fish every 12-th of a second (see figure 2.1 below). Then, after
a filtering of the oscillatory swimming motion of the fish, the trajectories have been fitted to model
trajectories.

The more classical process consisting of a fish moving along straight lines and undergoing random
changes of its velocity direction according to a Poisson process (like a photon in a diffusive medium)
has been discarded. Indeed, statistical tests have shown [28] that the befitting of the actual trajectory
of a fish to a broken line interpolating the trajectory at random points did not lead to a satisfactory
agreement. On the other hand, a better fitting was obtained when the trajectory was interpolated by a
sequence of circular arcs connected to each other with a continuous tangent. It was then observed that
the curvatures of these circles followed a process which can be viewed as a realization of an Ornstein-
Uhlenbeck process on the curvature. This was the starting point of the PTW process. The experiments
and the data analysis are reported in full detail in [28].

Then, the experiments were reproduced with 2, 5, 15 and 30 fish in the basin. The analyses of the
interactions among the fish population are still in progress. In the present work, we will concentrate on
the modeling of a single fish behaviour based on the PTW model and we will postpone the modeling
of interacting individuals to future time, when the analysis of the data will be available. However, we
will have in mind that the models issued from the analysis of a single fish behaviour must be easily
expanded to model large groups of interacting fish.

The present paper considers the large time and space scale dynamics of a two-dimensional particle
subject to this PTW process. It rigorously shows (in the mathematical sense) that, at large scales,
the dynamics of the particle can be described by a diffusion process and it provides a formula for the
diffusion coefficient. To prove this result, two methods are considered.

In the first method, the stochastic differential system itself is considered and the variance of the
position is shown to behave, at large times, like a linear function of time. The diffusion coefficient
is identified as the slope of this linear function. Because the curvature and the velocity angle can be
explicitly computed, an explicit formula for the diffusion coefficient, involving some special functions,
can be obtained.

The second method considers the forward Kolmogorov equation of the stochastic process. This
equation gives the evolution of the probability distribution function of the particle in the extended phase
space (position, velocity angle, curvature) as a function of time. It is a Fokker-Planck type equation. The
passage from the microscopic to the macroscopic scales relies on a rescaling of the Kolmogorov equation.
This rescaling depends on a small parameter ε ≪ 1, which describes the ratio of the typical microscopic
to macroscopic space units. After this rescaling, the problem has the typical form of the diffusion
approximation of a kinetic problem (see references below). The goal is then to study the behaviour of
the solution as ε → 0. It is shown that the solution converges to some ’thermodynamical equilibrium’
which is a Gaussian distribution of the curvature and a uniform distribution of the velocity angle. The
equilibrium depends parametrically on the density which satisfies a spatial diffusion equation.

Finally, the connection between the two methods is made by showing that the diffusion tensor in
the second approach can be represented by a formula involving the solution of the stochastic differential
equation of the first approach. Additionally, this representation leads to explicit computations which
show that the two formulas for the diffusion coefficient actually coincide. This seemingly innocuous
result is actually quite powerful. Indeed, the diffusion approximation method leads to a non-explicit
expression of the diffusion coefficient, involving the moments of a particular solution of a stationary
equation involving the leading order operator of the Fokker-Planck equation. That this non-explicit
formula is equivalent to the explicit formula given by the stochastic trajectory method is by far not
obvious. In this respect, the stochastic trajectory method is more powerful than the diffusion approx-
imation approach, because it directly leads to the most simple expression of the diffusion constant.

A third route could have been taken and has been dismissed. This third method would actually
use the stochastic differential equation itself to perform the diffusion approximation in the forward
Kolmogorov equation. We have preferred to use partial differential equation techniques. One reason
for this choice is that these techniques can be more easily extended to more complex situations. One
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typical example of these more complex situations are the nonlinear systems which are obtained when
interactions between individual are included. The inclusion of interactions between individuals within
the PTW model is actually work in progress.

From the biological viewpoint, one should not restrict the content of the paper to the sole expression
of the diffusion coefficient. Indeed, once interactions between individuals will be included in the PTW
model, it is not clear at all that the explicit computations which led to this expression will still be
tractable. In the absence of an explicit solution of the stochastic differential system, there is little
grasp to get information about the large scale behaviour of the system. By contrast, the diffusion
approximation approach gives a systematic tool to study the large scale behavior of such systems, in
all kinds of situations, be they linear or nonlinear. By its flexibility and its versatility, the diffusion
approximation approach is the method of choice to study these problems.

The ultimate goal of this work programme is the establishment of a macroscopic model for large
groups of fish. However, such a model must be based on a reliable model for the individual displace-
ments, since interactions lead to an alteration of the individual behaviour in the absence of interaction.
Therefore, the present work, which has a solid experimental basis, can be viewed as the first step to-
wards the establishment of such an experimentally based model.

One previously proposed models to describe fish behavior is the discrete Vicsek model (VM) [1,14,
31,51] (see also [2,10,25,27,39,42,43] for related models). For a large scale modeling of fish behavior,
it is efficient to look at continuum models, which use macroscopic variables such as mean density,
mean velocity and so on. Several such models based on phenomenological observations, exist (see e.g.
[26,38,49,50]). Several attempts to derive continuum models from the VM model are also reported in
the literature [36,46,47]. In [21,22], a derivation of a continuum model from a kinetic version of the
VM model is proposed. However, few Individual Based Models for fish have been validated against
experimental data with a comparable care as in [28] for the PTW process. As such, the continuum
model derived in this paper has a firm experimental basis, although further work needs certainly to be
done to fully validate its biological foundations. Additional references on swarm aggregation and fish
schooling can be found in [11]. Among other types of animal societies, insects, and in particular ants
[35,48] or cockroaches [34] have been the subject of a vast literature (see references therein).

The derivation of macroscopic models from particle behavior has been initiated by the seminal works
of Boltzmann, and later Hilbert, Chapman and Enskog. We refer to [13] for a mathematical perspective
and to [16] for an introduction to the subject from a modeling perspective. More recently, the derivation
of macroscopic models from microscopic behavior has been very productive in other context like traffic
[4,33] or supply-chains [3]. Diffusion approximation problems for kinetic equations have been widely
studied in the literature, in the context of neutron transport (see e.g. [6,8]), semiconductors [7,23,29,
45], plasmas [17,19,20] or polymeric fluids [18].

The outline of the paper is as follows : in section 2, the PTW process is introduced and the
main results are stated. In section 3 the diffusion coefficient is obtained by direct inspection of the
trajectories of the stochastic differential system. In section 4, the diffusion approximation of the forward
Kolmogorov equation of the stochastic process is performed. Section 5 is devoted to proving that the
trajectory method and the diffusion approximation method give rise to the same value of the diffusion
coefficient. In section 6, the theoretical results are illustrated by and complemented with some numerical
simulations. A conclusion is drawn in section 7. Several proofs of auxiliary results, which are inessential
for the main discussion are collected in three appendix (A, B and C).

2 The Persistent Turning Walker model: presentation and main results

The starting point of the present work is a new model of fish motion based on experimental data taken
from experiments run in La Réunion islands [28] (see a schematic description of the experiments in
the introduction). Figure 2.1 displays a typical trajectory of a fish as recorded during the experiment.
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Fig. 2.1 One trajectory of a Kuhlia Mugil fish

The statistical analysis of the data recorded during these experiments have led to the observation
that the trajectories are well described by the following systems of stochastic differential equations:

dx

dt
= cτ (θ), (2.1)

dθ

dt
= cκ, (2.2)

dκ = −aκ dt + b dBt, (2.3)

where x = (x1, x2) ∈ R
2 is the (two-dimensional) position vector of the (centroid of the) fish, τ (θ) =

(cos θ , sin θ) is the director of the velocity vector with the angle θ ∈ Π = R/2πZ measured from the
x1 direction, κ ∈ R is the curvature of the trajectory and dBt is the standard Brownian motion. The
magnitude of the velocity is constant and denoted by c > 0. The constant a is a relaxation frequency
and b quantifies the intensity of the random curvature jumps. b has the dimension of 1/(L

√
T ) where

L and T stand for the dimensions of length and time.
The κ-dynamics is a standard Ornstein-Uhlenbeck process. The term “b dBt” models a diffusion

process in curvature space while the term “−aK dt” expresses the tendency of the individual to return
to a straight line trajectory. The curvature cannot increase endlessly as a consequence of the diffusion
process, but rather, must relax to zero and the relaxation is stronger as the curvature gets larger. This
model has been called the Persistent Turning Walker model (PTW) because it allows large excursions
of the curvature towards positive or negative values, during which the spinning of the trajectory persists
for a certain time.

We stress the difference with more standard diffusion processes (such as those suffered by photons
in a diffusive medium), in which the Brownian motion acts on the velocity itself (or, in the case of a
velocity of constant magnitude, on the angle θ). In this case, the diffusion process acts on the second
derivative of the particle positions, and the associated kinetic equation is of Fokker-Planck type. This
model of photon diffusion is also relevant for a certain number of animal species [41].

In the PTW model, the diffusion process acts on the curvature, i.e. on the third derivative of
the position vector. An intuitive justification of the relevance of this model for animal behaviour is
by considering the non-differentiability of the Brownian motion. Because of this feature, the photon
diffusion process involves infinite second derivatives of the position, i.e. infinite forces. However, an
animal body can only exert finite forces and the muscles act only in such a way that the velocity angle
undergoes smooth variations. The PTW model precisely presents this feature of having smooth second
order derivatives, i.e. smooth forces.

Our goal in the present work is to study the large-scale dynamics of the stochastic differential
system (2.1)-(2.3). This is best done in scaled variables, where the dimensionless parameters of the
model are highlighted. We use t0 = a−1 as time unit, x0 = ca−1 as space unit, and κ0 = x−1

0 as
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curvature unit, and we introduce the dimensionless time, space and curvature as t′ = t/t0, x′ = x/x0

and κ′ = κ/κ0. For simplicity, we omit the primes. In scaled variables, the PTW model is written:

dx

dt
= τ (θ), (2.4)

dθ

dt
= κ, (2.5)

dκ = −κ dt +
√

2αdBt, (2.6)

where the only dimensionless parameter left is α such that

α2 =
b2c2

2a3
, (2.7)

The meaning of α2 is the following: b/
√

a is the amplitude of a curvature change during a relaxation
time a−1, while c/a is obviously the distance travelled by the particle during this time. The product of

these two quantities is dimensionless and is equal to
√

2α. It quantifies the strength of the curvature
jumps relative to the other phenomena.

The individual dynamics can be translated in terms of a probability distribution f(t,x, θ, κ) dx dθ dκ
of finding particles at times t with position in small neighborhoods dx dθ dκ of position x, velocity angle
θ and curvature κ. The link between the individual dynamics and the evolution of the probability
distribution f is given by the forward Kolmogorov equation :

∂tf + τ · ∇xf + κ∂θf − ∂κ(κf) − α2∂κ2f = 0. (2.8)

This equation is an exact transcription of the individual dynamics, where the initial value f0 at time
t = 0 is given by the probability distribution of the initial conditions of the stochastic differential
system (2.4)-(2.6). For more detailed considerations about the forward Kolmogorov equation and its
link with stochastic differential systems, we refer the reader to [40,5].

In order to capture the macroscopic dynamics, two possible routes can be taken, using either the
stochastic differential system (2.4)-(2.6) or the partial differential equation (2.8). In this work, we follow
both routes and verify that they lead to the same large-scale behaviour. The advantage of working
directly on the stochastic system is that it is simpler and it leads to explicit formulas. However, as
soon as the system gets more complicated, and in particular nonlinear, explicit solutions can no longer
be found and this methodology can hardly be pursued. On the other hand, the PDE approach, which,
in the present case is more complicated, is also more systematic and more general. In particular, it is
generally usable in the more complex nonlinear cases (see e.g. [21,22]). A particular important complex
situation is the case of many interacting fish. In future work, we plan to extend the PTW model to
populations of interacting fish and to use the PDE approach to extract the large-scale dynamics of the
system.

From the analysis of the individual trajectories, explicit exact expressions for κ and θ in terms
of stochastic integrals can be found. Unfortunately, there is no such explicit result for the position
x(t), but we can calculate the first two moments of the probability distribution of x(t) explicitly,
using the expressions of κ and θ. We show that the mean of the position vector stays at the origin:
E{x(t)} = (0, 0) (where E denotes the expectation over all sources of randomness, in the initial data
and in the stochastic process) and that the variance grows asymptotically linearly in time. More exactly,
we prove:

Theorem 2.1 Under assumptions on the initial conditions that will be specified later on (see (3.1)-
(3.4)), the solution of system (2.4)-(2.6) satisfies:

Var{x(t)} t→+∞∼ 2D t, with D =

∫ ∞

0

exp
(

−α2(−1 + s + e−s)
)

ds. (2.9)

The notation Var is for the variance over all sources of randomness. The asymptotic linear growth
of the variance (2.9) suggests that the dynamics of the system is of diffusive type at large times with
diffusion coefficient D. We can find an expression of D in terms of special functions. Indeed, we have
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Proposition 2.1 The following expression holds true:

D =
( e

α2

)α2

γ(α2, α2), (2.10)

where γ(z, u) is the incomplete gamma function:

γ(z, u) =

∫ u

0

e−t tz−1 dt. (2.11)

D has the following series representation:

D = eα2

∞
∑

n=0

(−1)nα2n

n! (n + α2)
. (2.12)

It is a decreasing function of α which has the following asymptotic behavior:

D ∼ 1

α2
as α → 0, D ∼

√

π

2

1

α
as α → ∞. (2.13)

To investigate the large scale dynamics of the solution of the kinetic equation (2.8) (the existence
of which can be easily proved, see proposition 4.2), we need to rescale the variables to the macroscopic
scale. Indeed, in eq. (2.8), all the coefficients are supposed to be of order unity. This means that the
time and space scales of the experiment are of the same order as the typical time and length scales
involved in the dynamics, such as, the relaxation time or the inverse of the typical random curvature
excursions. Of course, in most experiments, this is not true, since the duration of the experiment and
the size of the experimental region are large compared with the time and length scales involved in the
dynamics.

To translate this observation, we change the space unit x0 to a new space space unit x′
0 = x0/ε,

where ε ≪ 1 is a small parameter. This induces a change of variables x′ = εx. We make a similar
operation on the time unit t′0 = t0/η, t′ = ηt with η ≪ 1. Now, the question of linking η to ε is
a subtle one and is largely determined by the nature of the asymptotic regime which is achieved by
the system. In the present case, we expect that the asymptotic regime will be of diffusive nature, in
view of theorem 2.1 and so, we will investigate the so-called ’diffusion approximation’ which involves
a quadratic relationship between η and ε: η = ε2.

For this reason, we introduce the diffusive rescaling:

t′ = ε2t ; x′ = εx, (2.14)

and we make the following change of variable in the distribution f :

fε(t′,x′, θ, κ) =
1

ε2
f

(

t′

ε2
,
x′

ε
, θ, κ

)

.

The scaling of the magnitude of the distribution function is unnecessary, since the problem is linear.
However, it is chosen in order to preserve the total number of particles. Introducing (2.14) into (2.8)
leads to the following problem for fε:

ε∂tf
ε + τ · ∇xfε +

1

ε
[κ∂θf

ε − ∂κ(κfε) − α2∂κ2fε ] = 0 (2.15)

In order to analyze the large-scale dynamics of (2.15), we need to investigate the limit ε → 0. We show
that fε converges to an equilibrium distribution function (i.e. a function which cancels the O(ε−1) term
of (2.15)) f0 which depends parametrically on the particle density n0(x, t) and n0 evolves according
to a diffusion equation. More precisely, we prove:
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Theorem 2.2 Under hypothesis 4.1 on the initial data to be precised below, the solution fε of (2.15)
converge weakly in a Banach space also to be specified below, (see (4.21)) X:

fε ε→0
⇀ n0 M(κ)

2π
in X weak star, (2.16)

where M is a Gaussian distribution of the curvature with zero mean and variance α2 (see 4.4) and
n0 = n0(x, t) is the solution of the system:

∂tn
0 + ∇x · J0 = 0, (2.17)

J0 = −D∇xn0, (2.18)

where the initial datum n0
0 and the diffusion tensor D will be defined later on (see (4.31) and (4.28)

respectively).

The following theorem connects the two methods by showing that the tensor D is related to D
given by (2.9):

Theorem 2.3 The tensor D defined by (4.28) satisfies :

D =
D
2

Id, (2.19)

where D is given by (2.9) and Id denotes the 2 × 2 identity tensor.

This theorem confirms that the trajectory method and the asymptotic PDE method are equivalent.
The factor 2 between the two coefficients comes from the dimension of the problem. Indeed, D is the
average of |x|2 = |x1|2 + |x2|2 while D is the diffusion coefficient in a given direction.

The graphical representation of D is given in figure 2.2. The expression D0 of the diffusion coefficient
in ’physical’ variables is obtained by multiplying the dimensionless expression D by the appropriate
scaling units. The scaling unit for a diffusion coefficient is the square of the space scale divided by the
time scale. Therefore, in the present case, its value is c2/a. Therefore, we find:

D0 =
c2

a
D

(

b2c2

2a3

)

. (2.20)

Expression (2.20) and the fact that D(α) is a decreasing function of α shows that the diffusion
coefficient is decreasing with respect to b for fixed a and c. This is explained by the fact that, with
an increasing noise intensity, the trajectory has a larger probability to reach strong curvatures (in
magnitude). Therefore, the trajectory spins more, and the distance travelled in straight line is shorter.

On the other hand, the monotonicity of D0 with respect to a and c is unclear. Still, we can investigate
the asymptotic limits and find that for c → ∞ or b → ∞ or a → 0, (each limit being taken with the
other two parameters kept fixed), we have D0 ∼ √

π
√

a c/b. In particular, for large c or small a, the
diffusion increases with respect to both c and a. Conversely, if c → 0 or b → 0 or a → ∞, (again, each
limit being taken with the other two parameters kept fixed), we have D0 ∼ 2a2/b2. Here, the diffusion
is increasing with a but is independent of c.

The increase of D0 with a is easily explained: with a stronger relaxation parameter a, the curvature
is more likely to be small, and the trajectory resembles more a straight line.

On the other hand, the diffusion D0 is independent of the velocity c when c is small. This is some-
how paradoxical since one would expect that, as the particle moves faster, it travels larger distances.
However, as c increases, the spinning of the trajectory increases, because the particle moves along a
circle before undergoing a random change of curvature or a relaxation. Therefore, the average linear
distance from the origin does not increase so much when the velocity is increased, at least for small
velocities. For large velocities, the intuitive feeling that the diffusion should increase with the velocity
is actually true: the diffusion is asymptotically proportional c for large values of c.
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3 Large-scale dynamics of the PTW model by the trajectory method

In this section, we want to show theorem 2.1 and proposition 2.1. We first specify the initial conditions.
First, we fix the starting point of the particle at the origin :

x(t = 0) = (0, 0). (3.1)

We suppose that the initial velocity angle is uniformly distributed on the one-dimensional sphere, i.e.
:

dP{θ|t=0 = θ} =
dθ

2π
. (3.2)

For the curvature, we make the following observation: eq. (2.6) predicts that the process κ(t) converges
exponentially fast to its stationary state, which is a Gaussian distribution with zero mean and variance
equal to α2 [40]. We denote such a Gaussian distribution by N (0, α2). For this reason, we suppose:

dP{κ|t=0 = κ} = N (0, α2)(κ). (3.3)

The last hypothesis on the initial conditions is the following:

The processes θ(t = 0), κ(t = 0) and Bt are independents. (3.4)

We stress that this choice of initial conditions is for simplicity only. Completely arbitrary initial
conditions would lead to the same large time behaviour, but the computation would be slightly more
complicated. Since we are mainly interested in the explicit expression of D, a choice of initial conditions
which simplifies the calculations is legitimate.

We begin by proving the following proposition:

Proposition 3.1 The solution of the stochastic differential equation (2.4)-(2.6) with initial condition
given by (3.1)-(3.4) satisfies :

E{x(t)} = (0, 0) , ∀ t ≥ 0, (3.5)

Var{x(t)} = 2

∫ t

s=0

(t − s) exp
(

−α2
(

−1 + s + e−s
))

ds. (3.6)
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To prove this proposition, we first establish explicit formulae for the solutions of (2.5) and (2.6).
The proof is deferred to appendix A.

Lemma 3.1 The solution of the stochastic differential system (2.5), (2.6) with initial conditions (3.2)-
(3.4) is given by:

θ(t) = θ0 + κ0 − κ(t) +
√

2αBt, (3.7)

κ(t) = e−tκ0 +
√

2αe−t

∫ t

0

es dBs. (3.8)

Additionally,

θ(t) = θ0 + Kt
0, (3.9)

where Kt
0 is a Gaussian random variable independent of θ0 with zero mean and variance β2

t given by :

β2
t = Var{Kt

0} = 2α2(−1 + t + e−t). (3.10)

Proof of proposition 3.1: Using Lemma 3.1, we can compute the first two moments of x(t). Let us start
with the computation of the mean. If we write x(t) = (x1(t) , x2(t)), we have :

x1(t) =

∫ t

0

cos θ(s) ds , x2(t) =

∫ t

0

sin θ(s) ds,

and, computing the mean :

E{x1(t)} = E

{
∫ t

0

cos θ(s) ds

}

=

∫ t

0

E {cos θ(s)} ds.

Now, we can develop θ(s) using (3.9):

E {cos θ(s)} = E {cos(θ0 + Ks
0)} = E {cos θ0 cos Ks

0 − sin θ0 sinKs
0} .

By the independence of θ0 and Ks
0 we finally have:

E {cos θ(s)} = E{cos θ0}E{cos Ks
0} − E{sin θ0}E{sin Ks

0} = 0,

since the expectations of cos θ0 and sin θ0 over the uniform probability distribution on θ0 are zero.
Finally, we have E{x1(t)} = 0, and similarly for x2. This proves (3.5).

Now for the variance of x(t), we write:

Var{x(t)} = E{x2
1(t) + x2

2(t)} = 2E{x2
1(t)}. (3.11)

by the isotropy of the problem. Then,

E{x2
1(t)} = E

{

(
∫ t

0

cos θ(s) ds

)2
}

=

∫ t

0

∫ t

0

E{cos θ(s) cos θ(u)} dsdu

= 2

∫ t

0

du

∫ u

0

ds E{cos θ(s) cos θ(u)}.

Since u ≥ s, we can write θ(u) as follows :

θ(u) = θ0 +

∫ s

0

κ(z) dz +

∫ u

s

κ(z) dz = θ0 + Ks
0 + Ku

s ,
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where Ks
0 and Ku

s are Gaussian random variables independent of θ0 with zero mean and variances β2
s

and β2
u−s respectively, thanks to (3.10). Then, using standard identities for trigonometric functions,

we get

E{cos θ(s) cos θ(u)} = E{cos(θ0 + Ks
0) cos(θ0 + Ks

0 + Ku
s )}

=
1

2
(cos(2θ0 + 2Ks

0 + Ku
s ) + cos(−Ku

s )).

But since θ0 is independent of Ks
0 and Ku

s we have E{cos(2θ0 + 2Ks
0 + Ku

s )} = 0 since the mean of a
cos(θ0 + C) over the uniform distribution of θ0 is zero whatever the value of C. Then :

E{cos θ(s) cos θ(u)} =
1

2
E{cos (−Ku

s )}

=
1

2

∫

R

cos(y)
1√

2πβu−s

e
− y2

2β2

u−s dy

=
1

2
e−

1

2
β2

u−s .

Indeed, an elementary computation shows that for any Gaussian random variable Z with zero mean
and variance σ2, one has

E{cos(Z)} = exp(−σ2/2). (3.12)

Thus,

E{x1(t)
2} =

∫ t

u=0

∫ u

s=0

exp
(

−α2
(

−1 + |u − s| + e−|u−s|
))

dsdu.

Using the change of unknowns w = u − s and y = u and inverting the order of integration we find :

E{x1(t)
2} =

∫ t

w=0

(t − w) exp
(

−α2
(

−1 + w + e−w
))

dw.

Using (3.11), we finally find (3.6), which ends the proof of the proposition.

In order to prove 2.1, we investigate the behavior of the variance Var{x(t)} (given by (3.6)) when
t → +∞.

End of proof of Theorem 2.1: We write, thanks to (3.6):

Var{x(t)} − 2Dt = −2

∫ t

s=0

se−α2(−1+s+e−s) ds − 2

∫ ∞

s=t

te−α2(−1+s+es) ds.

We have to show that the difference is bounded independently of t. For the first term, we have:
∣

∣

∣

∣

∫ t

s=0

se−α2(−1+s+e−s) ds

∣

∣

∣

∣

≤
∫ t

0

eα2

se−α2s ds,

and integrating by parts, we find :
∣

∣

∣

∣

∫ t

s=0

se−α2(−1+s+es) ds

∣

∣

∣

∣

≤ eα2

α2

[

−te−α2t − e−α2t

α2
+

1

α2

]

≤ C1.

For the second term, we have:
∣

∣

∣

∣

∫ ∞

s=t

te−α2(−1+s+es) ds

∣

∣

∣

∣

≤ t

∫ ∞

t

eα2

e−α2s ds ≤ teα2 e−tα2

α2
≤ C2.

This proves that the difference is Var{x(t)} − 2Dt is bounded independently of t and completes the
proof.

We now prove Proposition 2.1 which gives an explicit approximation of the diffusion coefficient.
This approximation is useful for practical simulations.
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Proof of Proposition 2.1: The change of variables t = α2e−s in the integral (2.9) leads to (2.10).
The series representation (2.12) follows from a similar series representation of the incomplete gamma
function (see e.g. formula (8.354) of [30]). The series representation can also be found by expanding
the exponential in the integral (2.11) in power series (this point is left to the reader). That D is a
decreasing function of α follows from (2.9) and the fact that the function g(s) = −1 + s + exp(−s) is
non-negative for s ≥ 0. The behavior of D for α → 0 (first formula (2.13)) is obtained by keeping only
the zero-th order term in the series expansion (2.12). From (2.9), the behaviour of D for α → ∞ is
controled by the behaviour of g(s) near s = 0. Since g(s) ∼ s2/2, we find D ∼

∫ ∞

0
exp(−α2s2/2) ds,

which leads to the second formula (2.13), and ends the proof.

4 Large-scale dynamics of the PTW model through the diffusion approximation of the
associated kinetic equation

4.1 Formal asymptotics

In this section, for the reader’s convenience, we give a formal proof of theorem 2.2. We write (2.15) as
follows:

ε∂tf
ε + τ · ∇xfε +

1

ε
Afε = 0 (4.1)

where we define the operator A acting on functions u(θ, κ) as follows:

Au = κ∂θu − ∂κ(κu) − α2∂κ2u. (4.2)

The formal investigation of the limit ε → 0 usually starts by considering the Hilbert expansion (see
e.g. [16] for the general theory or [20] for an application in the context of Fokker-Planck equations):

fε = f0 + εf1 + O(ε2), (4.3)

with fk being independent of ε and inserting it into (4.1). Then, collecting all the the terms of com-
parable orders with respect to ε, we are led to a sequence of equations. The first one, corresponding
to the leading O(ε−1) term is Af0 = 0, which means that f0 lies in the kernel of A. In section 4.3,
we show that the kernel of A is composed of functions of the form f0(t,x, θ, κ) = n0(t,x)M(κ)/(2π)
where M(κ) is a normalized Gaussian with zero mean and variance α2:

M(κ) =
1√

2πα2
e−

κ2

2α2 , (4.4)

and n0(t,x) is a function still to be determined.
In order to determine n0, we first integrate (4.1) with respect to (θ, κ) ∈ Π × R and use that

∫

Au dθ dκ = 0. Defining the density nε(t,x) and the flux Jε(t,x) by

nε(t,x) =

∫

θ,κ

fε dκ dθ, Jε(t,x) =

∫

θ,κ

fε

ε
τ (θ) dκdθ, (4.5)

we find:

∂tn
ε + ∇x · Jε = 0. (4.6)

We note that this continuity equation is valid for all values of ε. Then, letting ε → 0, we formally have
nε → n0. If we prove that J0 given by (2.18) is the limit of Jε, as ε → 0, then, we can pass to the limit
in (4.6) and find (2.17).

System (2.17) and (2.18) is a diffusion system, which completely determines n0(t,x), given its
initial datum n0

0(x). Here, for simplicity, we assume that the initial datum for (4.1) is of the form
fε(0,x, θ, κ) = n0(x)M(κ)/(2π) and the resulting initial condition for n0 is therefore n0

0 = n0 (in this
formal convergence proof, we admit the functions and the convergences are as smooth as required).

So, the only points left in the proof are the existence of a limit for Jε and the validity of (2.18) for
J0. Note that the existence of a limit is not obvious because of the factor ε at the denominator of the
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integral (4.5) defining Jε. To prove that the limit exists, we use the Hilbert expansion (4.3) again and
compute f1. Since A is linear, collecting the terms of order O(ε0) leads to:

−Af1 =
M(κ)

2π
τ · ∇xn0 . (4.7)

Again using the linearity of A and the fact that it operates only with respect to the (θ, κ) variables,
we can write the solution of (4.7) as f1 = −χ · ∇xn0, where χ = (χ1, χ2) is a solution of the problem

Aχ =
M(κ)

2π
τ . (4.8)

This equation must be understood componentwise (i.e χ1 is associated with τ1 = cos θ and χ2 with
τ2 = sin θ). Since the right-hand side of (4.8) has zero average with respect to (θ, κ), proposition 4.3
below shows that it has a unique solution, up to an element of the kernel of A. We can single out a
unique solution by requesting that χ has zero average with respect to (θ, κ) as well. Then, all solutions
f1 to (4.7) can be written as

f1 = −χ · ∇xn0 + n1(t,x)
M(κ)

2π
, (4.9)

where the second term of (4.9) is an arbitrary element of the kernel of A. We shall see that the
determination of n1 is unnecessary.

Now, inserting the Hilbert expansion (4.3) into the integral (4.5) defining Jε, we find:

Jε(t,x) =
1

ε

∫

θ,κ

f0 τ (θ) dκdθ +

∫

θ,κ

f1 τ (θ) dκdθ + O(ε)

= 0 +

∫

θ,κ

f1 τ (θ) dκdθ + O(ε), (4.10)

because f0 is independent of θ and
∫

τ (θ) dθ = 0. Therefore, Jε has a limit when ε → 0 and this limit
is given by

J0(t,x) =

∫

θ,κ

f1 τ (θ) dκdθ. (4.11)

To compute J0 we insert expression (4.9) into (4.11) and find

J0(t,x) =

∫

θ,κ

(−χ · ∇xn0 + n1 M

2π
) τ (θ) dκdθ. (4.12)

The second term vanishes and the first one can be written

J0(t,x) = −
(

∫

θ,κ

τ ⊗ χ dθ dκ

)

∇xn0, (4.13)

which is nothing but formula (2.18) with the diffusivity tensor D given by (4.28).
This shows the formal convergence of the solution of the Fokker-Planck equation (2.15) to that of

the diffusion system (2.17), (2.18).
Now, to make this proof rigorous, we need to justify all the formal convergences. In the framework

of the Hilbert expansion, this requires to work out the regularity of the various terms of the expansion.
This is doable and actually leads to stronger convergences than the one we are going to prove, but this
is a bit technical (see e.g. [20]).

What we are going to do instead is proving a convergence result in a weaker topology without
using the Hilbert expansion technique. The method is close to the so-called moment method, which
consists in integrating the equation against suitable test functions. This convergence proof is developed
in section 4.3, but before that, we state an existence result for the original Fokker-Planck equation
(4.1).
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4.2 Functional setting and existence result

We define the differential operator D acting on smooth functions f(κ) by :

Df = ∂κ(κf) + α2∂κ2f. (4.14)

We state some properties of D, the proofs of which are easy and left to the reader. We recall that
M(κ) denotes the normalized Gaussian with zero mean and variance α2 (4.4).

Proposition 4.1 Let f and g be smooth functions decreasing at infinity. The following identities hold
true:

Df = α2 ∂

∂κ

(

M
∂

∂κ

f

M

)

, (4.15)

∫

R

Df g
dκ

M
= −α2

∫

R

M ∂κ

(

f

M

)

∂κ

( g

M

)

dκ =

∫

R

f Dg
dκ

M
, (4.16)

∫

R

Df f
dκ

M
= −α2

∫

R

M

∣

∣

∣

∣

∂κ

(

f

M

)∣

∣

∣

∣

2

dκ ≤ 0, (4.17)

Df = 0 ⇔ ∃c ∈ R, f = cM. (4.18)

The first identity translates the fact that M is the stationary measure of the Ornstein-Uhlenbeck
process. The second one that D is formally self-adjoint with respect to the measure dκ/M . The third
one shows that D is dissipative. The same inequality holds with any non-decreasing function η(f),
indeed,

∫

D(f) η(f)M−1 dκ ≤ 0. If η is the logarithm function, the corresponding quantity would be
the relative entropy dissipation of f with respect to M . Entropy plays an important role in kinetic
theory (see [13] for a review). Finally, the last quantity states that the kernel of D is one-dimensional
and spanned by M .

Proposition 4.1 shows that the natural L2 norm associated with this operator has a weight M−1 and
that the natural H1 semi-norm is given by the right-hand side of (4.17). This motivates the introduction
of the following functional spaces, endowed with their naturally associated Hilbert structures and
norms:

H = {u : Πθ × Rκ → R /

∫

θ,κ

|u(θ, κ)|2 dθdκ

M
< +∞}, (4.19)

V =

{

u ∈ H /

∫

Π,R

M
∣

∣

∣
∂κ

( u

M

)∣

∣

∣

2

dκdθ < +∞
}

, (4.20)

L2
M = L2(R2

x
,H), X = L2([0, T ] × R

2
x
, V ). (4.21)

Identifying H with its dual, with have a Hilbertian triple V ⊂ H ⊂ V ′, where V ′ is the dual of V
and all injections are continuous. They are not compact because V does not bring any regularity with
respect to θ.

The existence proof follows closely the existence proof of [15] (see appendix A of this reference)
and for this reason, is omitted (see also [20]). The proof relies on an existence theorem due to J. L.
Lions [37].

Proposition 4.2 Let ε > 0. We assume that f0 belongs to L2
M defined by (4.21). Then there exists a

unique solution fε to (2.15) with initial datum f0 in the class of functions Y defined by :

Y =
{

f ∈ X / ∂tf + ε−1τ · ∇xf + ε−2κ∂θf ∈ X ′
}

.

Moreover, we have the inequality for any T > 0:

||fε(T )||2L2

M
+

α2

ε2

∫ T

0

∫

x,θ,κ

M

∣

∣

∣

∣

∂κ

(

fε

M

)∣

∣

∣

∣

2

dκ dθ dx dt = ||fε(0)||2L2

M
. (4.22)

Estimate (4.22) is obtained via a Green and a trace formula for functions belonging to Y which
can be deduced from the one proved in [15].
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4.3 Rigorous asymptotics

We first study operator A given by (4.2), i.e. Af = κ∂θf − Df and state some properties which will
be proved in appendix B. We view A as an unbounded operator on the Hilbert space H with domain
D(A) given by:

D(A) = {u(θ, κ) ∈ V /Au ∈ H} .

Lemma 4.1 Operator A is maximal monotone. Moreover its kernel (or Null-space) is given by:

Ker(A) = {cM , c ∈ R}, (4.23)

with M defined by (4.4).

Lemma 4.2 The adjoint A∗ of A in H is given by A∗f = −κ∂θf − Df . It is a Maximal monotone
operator with domain D(A∗) = D(A) and Ker(A∗) = Ker(A).

Proposition 4.3 Let g ∈ H. Then, there exists u ∈ D(A) such that

Au = g, (4.24)

if and only if g satisfies the following solvability condition:
∫

θ,κ

g(θ, κ) dθdκ = 0. (4.25)

Moreover, the solution u is unique up to a constant times M . A unique solution can be singled out by
prescribing the condition

∫

θ,κ

u(θ, κ) dθdκ = 0. (4.26)

The same lemma applies to the equation A∗u = g.

As an application of this lemma, let χ be the solution of :

Aχ = τ (θ)
M

2π
, (4.27)

with τ (θ) = (cos θ , sin θ). Since τ has zero average over θ and κ, χ is well-defined and unique thanks
to Proposition 4.3. Then, we define the tensor D by:

D =

∫

θ,κ

τ (θ) ⊗ χ dθdκ. (4.28)

Note that, since
∫

θ,κ
τ (θ)M(κ) dθdκ = 0, it would not change the value of D to add any element of

Ker(A) to χ.

Lemma 4.3 Let R denote the reflection operator u(θ, κ) → Ru(θ, κ) = u(θ,−κ). Then, χ∗ = Rχ is
the unique solution (satisfying (4.26)) of

A∗χ∗ = τ (θ)
M

2π
, (4.29)

and we have

D =

∫

θ,κ

τ (θ) ⊗ χ∗ dθdκ. (4.30)
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Proof : Obviously, D commutes with R: DR = RD while κ∂θ anticommutes with R: κ∂θ(Ru) =
−R(κ∂θu). Therefore, RA = A∗R. Since the right-hand side of (4.27) is invariant by R, applying R
to both sides of (4.27) leads to (4.29). Then, the change of variables κ′ = −κ in the integral at the
right-hand side of (4.30) shows that it is equal to D.

To study the limit ε → 0, we make the following hypothesis on the initial conditions.

Hypothesis 4.1 We suppose that the initial condition fε
0 is uniformly bounded in L2

M and converges
weakly in L2

M to f0
0 as ε → 0.

We can now prove theorem 2.2. The initial datum for the diffusion system (2.17, (2.18) will be shown
to be:

n0
t=0 = n0

0 =

∫

θ,κ

f0
0 (x, θ, κ) dκdθ. (4.31)

Proof of theorem 2.2: By hypothesis 4.1 inequality (4.22) implies :

||fε(T )||2L2

M
+

α2

ε2

∫ T

0

∫

x,θ,κ

M

∣

∣

∣

∣

∂κ

(

fε

M

)
∣

∣

∣

∣

2

dκ dθ dx dt ≤ C , (4.32)

with C independent of ε. So (fε)ε is a bounded sequence in L∞(0, T, L2
M ) and satisfies

∫ T

0

∫

x,θ,κ

M

∣

∣

∣

∣

∂κ

(

fε

M

)
∣

∣

∣

∣

2

dκ dθ dx dt ≤ Cε2 , (4.33)

for any time interval T (by the diagonal process, we will eventually be able to take an increasing
sequence of times T tending to infinity, so that the result will be valid on the whole interval t ∈ (0,∞)).
Therefore, there exists f0 ∈ L∞(0, T, L2

M ) and a subsequence, still denoted by fε, satisfying :

fε ε→0
⇀ f0 in L∞(0, T, L2

M ) weak star .

Furthermore, with (4.33), we deduce that f0 = C(x, θ, t)M(κ). Then, letting ε → 0 in (2.15), we get
that Af0 = 0 in the distributional sense. This implies that C(x, θ, t) is independent of θ and we can
write

f0(t,x, θ, κ) = n0(t,x)
M(κ)

2π
, (4.34)

the quantity n0(t,x) =
∫

f0(t,x, θ, κ) dθ dκ being the density associated with f0.
Our next task is to show that n0 satisfies the diffusion model (2.17), (2.18) with initial condition

(4.31). We first note that fε is a week solution of (2.15) with initial condition fε
0 in the following sense:

fε satisfies:

∫ T

0

∫

x,θ,κ

fε(−ε∂tϕ − τ · ∇xϕ +
1

ε
A∗(ϕ))

dκdθdx

M
dt = ε

∫

x,θ,κ

fε
0ϕt=0

dκdθdx

M
, (4.35)

for all test functions ϕ in the space C2
c ([0, T ) × R

2
x
× Πθ × Rκ) of twice continuously differentiable

functions with compact support in [0, T ) × R
2
x
× Πθ × Rκ. Again, the trace at t = 0 has a meaning,

thanks to a trace formula for functions in Y which is proven in [15].
We recall the definition of the flux (4.5). We prove that Jε has a weak limit as ε → 0. To this aim,

in the weak formulation (4.35), we take as a test function ϕ = φ(t,x) · χ∗(θ, κ) with χ∗ the auxiliary
function defined as the solution to (4.29) and φ is a smooth compactly supported vector test function
of (x, t). Although ϕ does not have a compact support, a standard truncation argument (which is
omitted here) can be used to bypass this restriction. This allows us to write:

∫ T

0

∫

x,θ,κ

[fε(−ε∂t − (τ · ∇x))(φ · χ∗) +
1

ε
fετ

M

2π
· φ]

dκdθdx

M
dt = ε

∫

x,θ,κ

fε
0φt=0 · χ

dκdθdx

M
.
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Taking the limit ε → 0, we find :

lim
ε→0

∫ T

0

∫

x

Jε · φ dxdt = 2π

∫ T

0

∫

x,θ,κ

f0(τ · ∇x)(φ · χ∗)
dκdθdx

M
dt

=

∫ T

0

∫

x

n0 ∇x ·
(

(
∫

θ,κ

χ∗ ⊗ τ dκdθ

)T

φ

)

dxdt,

where the exponent T denotes the transpose of a matrix. Using (4.30) and taking the limit ε → 0
shows that Jε converges weakly (in the distributional sense) towards J0 satisfying

∫ T

0

∫

x

J0 · φ dxdt =

∫ T

0

∫

x

n0 ∇x ·
(

(D)T φ
)

dxdt.

This last equation is the weak form of eq. (2.18).
Finally, to prove (2.17), we apply the weak formulation (4.35) to a test function of the form

ϕ = φ(t,x)M(κ), where again, φ(x, t) is a scalar, smooth and compactly supported test function of
(x, t) in R

2 × [0, T ). This gives :

−
∫ T

0

∫

x,θ,κ

fε ((ε∂t + (τ · ∇x))ϕ) dκdθdxdt = ε

∫

x,θ,κ

fε
0φt=0 dκdθdx.

Dividing by ε and taking the limit ε → 0, we get :

−
∫ T

0

∫

x

(n0∂tϕ + J0 · ∇xφ) dxdt =

∫

x

n0
0φt=0 dx,

where n0
0 is defined by (4.31). This last equation is exactly the weak formulation of equation (2.17),

with initial datum n0
0. This concludes the proof.

5 Equivalence of the two methods

In this section, we show that both methods lead to the same value of the diffusion coefficient (theorem
2.3).

The first step is to show that we can approximate the solution of equation (4.24) by the solution
of the associated evolution equation. More precisely, in appendix C, we prove the following lemma :

Lemma 5.1 Let g in H satisfying (4.25) and u∞ in D(A) be the solution of (4.24) satisfying (4.26).
Let u0 ∈ D(A) satisfying (4.26). Then, the solution u(t) of the evolution problem:

∂tu = −Au + g , ut=0 = u0, (5.1)

weakly converges to u∞ in H as t tends to ∞.

With this lemma we can explicitly calculate the tensor D and prove the theorem 2.3 :

Proof of theorem 2.3: Let χ(t) be the solution of

∂tχ = −Aχ + τ (θ)
M(κ)

2π
, χ(t = 0) = 0. (5.2)

Thanks to Lemma 5.1, χ(t) weakly converges to χ in H when t → ∞. It follows that :

∫

κ,θ

χ(t) ⊗ τ dκdθ
t→+∞−→

∫

κ,θ

χ ⊗ τ dκdθ. (5.3)
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Let us consider the first component of χ(t), which we denote by u(t) and the integrals
∫

κ,θ
u(t) cos θ dκdθ and

∫

κ,θ
u(t) sin θ dκdθ . Because u satisfies (5.2), it admits the following represen-

tation (see the proof of lemma 5.1):

u(t) =

∫ t

0

Ts

(

cos θ
M(κ)

2π

)

ds,

where Tt is the semi-group generated by −A (see [44]). With this expression, we evaluate the integral
of u(t) against cos θ :

∫

κ,θ

u(t) cos θ dκdθ =

∫

κ,θ

∫ t

0

Ts

(

cos θ
M(κ)

2π

)

ds cos θ dκ dθ

=

∫ t

0

∫

κ,θ

cos θ
M(κ)

2π
T ∗

s (cos θ) dκ dθ ds,

where T ∗ is the adjoint operator of T in L2(θ, κ) generated by −A∗, where

A∗(f) = −κ∂θf + κ∂κf − α2∂κ2f.

Note that we are referring here to the adjoint in the standard L2 sense and not in the weighted space
H. This is why A∗ does not coincide with A∗ defined in Lemma 4.2. The semi-group T ∗

t admits a
probabilistic representation: for all regular functions f(θ, κ)

T ∗
t (f)(θ, κ) = E{f(θ(t), κ(t))|θ0 = θ, κ0 = κ},

where (κ(t), θ(t)) is the solution of the stochastic differential equation (2.5), (2.6). Using this represen-
tation, we have :

∫

κ

M(κ)T ∗
s (cos θ) dκ =

∫

κ

M(κ) E{cos θs|θ0 = θ, κ0 = κ} dκ

= E{cos θs|θ0 = θ, κ0 = Z},

where Z is a random variable independent of Bt with density M . Using lemma 3.1, we have :

E{cos θs|θ0 = θ, κ0 = Z} = E{cos(θ + Ys)},

with Ys a Gaussian random variable with zero mean and variance β2
s given by (3.10). Then:

E{cos(θ + Ys)} = E{cos θ cos Ys − sin θ sin Ys} cos θ E{cos Ys},

because the density of Ys is even and implies that E{sin Ys} = 0. Finally using (3.12), we have:
∫

κ

M(κ)T ∗
s (cos θ) dκ = cos θ e−

β2
s
2 .

Then, the first integral is given by:

∫

κ,θ

u(t) cos θ dκ dθ =

∫ t

0

∫

θ

cos θ

2π
cos θ e−

β2
s
2 dθ ds

∫ t

0

1

2
e−

β2
s
2 ds.

We can proceed similarly to evaluate the integral of u(t) against sin(t). This gives:

∫

κ,θ

u(t) sin θ dκdθ =

∫ t

0

∫

θ

cos θ sin θ

2π
E{cos Ys} dθds = 0.

It remains to evaluate the integrals involving the second component of vector χ(t) which we denote
by v(t). By the same method as for u(t), we get :

∫

κ,θ

v(t) cos θ dκ dθ = 0 and

∫

κ,θ

v(t) sin θ dκ dθ =

∫ t

0

1

2
e−

β2
s
2 dt.
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Collecting these formulae, we can write:
∫

κ,θ

χ(t) ⊗ τ dκdθ =
D(t)

2
Id,

with D(t) =
∫ t

0
e−α2(−1+u+e−u) du. Taking the limit t → +∞ and using equation (5.3), shows that

(2.19) holds true and completes the proof of the theorem.

6 Numerical simulation

We simulate individual trajectories satisfying equation (2.4)-(2.6) with initial conditions given by (3.1)-
(3.4). If we fix a time step ∆t, using (3.7), (3.8), we have :

{

κ(n+1)∆t = γκn∆t + G(n+1)

θ(n+1)∆t = θ0 + κ0 − κ(n+1)∆t +
√

2αB(n+1)∆t

with γ = e−∆t and G(n+1) a Gaussian random variable with zero mean and variance 2α2
(

1 − e−2∆t
)

independent of κn∆t. With this formula, we can simulate recursively the process (κn∆t, θn∆t)n exactly
(in the sense that it has the same law as the exact solution). To generate the Brownian motion, we
just compute the increments B(n+1)∆t − Bn∆t since they are Gaussian and independent of Bn∆t. On
the other hand, these increments are not independent of G(n+1). Fortunately, we can compute the
covariance matrix of the Gaussian vector (G(n+1), B(n+1)∆t − Bn∆t) :

(

G(n+1)

B(n+1)∆t − Bn∆t

)

∼ N (0, C)

where N (0, C) is a two-dimensional Gaussian vector with zero mean and covariance matrix C given
by:

C =

[

2α2
(

1 − e−2∆t
) √

2α(1 − e−∆t)√
2α(1 − e−∆t) ∆t

]

.

Knowing this covariance matrix, we can simulate the Gaussian vector (G(n+1), B(n+1)∆t − Bn∆t) us-
ing the Cholesky method : we generate (X1,X2) a vector of two independent normal law, and take√

C(X1,X2)
T as realization of the Gaussian vector.

Now for the position x, since we do not have any explicit expression, we use a discrete approximation
scheme of order O((∆t)2). For example, the first component x1 of x is approximated by:

x1((n + 1)∆t) = x1(n∆t) +

∫ (n+1)∆t

n∆t

cos θ(s) ds

≈ x1(n∆t) +
∆t

2
(cos θ(n∆t) + cos θ((n + 1)∆t)).

We present four trajectories obtained with different values of the parameter α in figure 6.1. As the
parameter α increases, the excursions towards large positive or negative curvatures become larger. As
a consequence, the spinning of the trajectory around itself increases and, from almost a straight line
when α = 0.1, the trajectory shrinks and looks closer and closer to a wool ball. In this way, we can
visualize the decay of D with respect to α.

To illustrate theorem 2.1, we use a Monte-Carlo method to simulate the variance of the process x.
We simulate N independent trajectories and we compute the variance of the sample at each time step.
In figure (6.2), we compare the result obtained with N = 2000 and the theoretical prediction given
by the (3.6). The figure shows an excellent agreement between the computation and the theoretical
prediction. Additionally, after an initial transient, the growth of the variance is linear, in accordance
with the theoretical result (2.9). We can use the slope of the asymptotically linear part of the curve to
give a numerical estimate of the diffusion coefficient D. Fro this purpose, we fit a straight line (in the
mean-square sense) between times T/2 and T . We remove the data between 0 and T/2 because the
initial transient is not linear and including them would deteriorate the accuracy of the measurement.
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Fig. 6.1 Four trajectories simulated with different value of α: α = 0.1 (top left), α = 0.5 (top right), α = 1.
(bottom left) and α = 2. (bottom right). The simulation is run during 120 time units with a time step dt = 0.05
time unit
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Fig. 6.2 Variance of the process x(t): comparison between the numerical simulation (points) and the theoret-
ical prediction (solid line) for two values of α : α = 0.1 (left) and α = 2 (right).

We compare the slope of the fitted line with the theoretical value (2.9). We report the result of this
comparison for two values of α (α = 0.1 and α = 2., with T = 1200 time units in Table 6.1). The
approximation is quite good, with an error comprised between 2 and 3%, which can be attributed
to numerical noise and to an unsufficient approximation of the asymptotic state. To illustrate the
influence of the initial transient, we take T = 120 time units in the case α = 0.1 and report the result
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D simulation D theoretical relative error
α = 0.1 98.5 101 2.5 %
α = 2 0.708 0.725 2.4 %

Table 6.1 Diffusion coefficient: comparison of the numerical estimate obtained by fitting the numerical values
with a straight line over the time interval [T/2, T ] with the theoretical prediction (2.9). T = 1200 units of time.

D simulation D theoretical relative error
α = 0.1 58.8 101 72 %

Table 6.2 Same as Table 6.1 but with T = 120 units of time. The agreement is poor because the asymptotic
state is not reached.

in Table 6.2. There, the approximation is quite poor, because the asymptotic state has not yet been
reached.

In order to illustrate theorem 2.2, we plot the spatial density n(t,x) of the distribution f(t,x, θ, κ)
using a Monte-Carlo algorithm for α = 2 and T = 30 time units on figure 6.3. We see that the density
has the Gaussian shape of the solution of a diffusion equation, in accordance with the prediction of
the theorem. To make a more quantitative comparison, we compare it with the asymptotic prediction,
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−30
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Fig. 6.3 The spatial distribution n for α = 2 at time T = 30 time units.

i.e. the solution of the diffusion equation (2.17), (2.18), by computing the difference in L1 norm. The
results are reported in figure 6.4. We plot the L1 norm of the difference for α = 1. and for four values of
the parameter ε : 1, 1

2
1
5 and 1

10 . As expected, the agreement is better as ε is smaller. However, at large
times, all solutions are eventually close to the solution of the diffusion equation. Roughly speaking, the
time at which the solution of the diffusion equation starts to be a good approximation of the solution
of the kinetic equation scales like ε. This means that, after an initial transient the duration of which
may depend on ε, the solution is close to that of the diffusion equation, no matter the value of ε.
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Fig. 6.4 L1 norm of the difference between nε(t, ) =
∫

fε(t, ·, θ, κ) dθ dκ and its asymptotic limit n0(t) as a

function of time t, with α = 1 and N = 104 simulation particles.

7 Conclusion

In this paper, the large-scale dynamics of the ’Persistent Turning Walker’ (PTW) model of fish behavior
has been analyzed. It has been shown, by two different methods, that the large scale limit of this model
is of diffusion type, and an explicit formula for the diffusion coefficient has been provided. While the
direct analysis of the stochastic trajectories provides a direct route to the value of the diffusion constant,
the diffusion approximation of the associated forward Kolmogorov equation, which is of Fokker-Planck
type, gives a more systematic way to extend the theory to more complex nonlinear cases. Such a
nonlinear situation will be encountered when, in the near future, the nonlinear interactions between
the individuals will be introduced within the PTW model (when the experimental data concerning
the interactions among groups of fish will be analyzed). We expect that, in this context, the diffusion
approximation methodology will have to be exploited thoroughly to allow access to the large scale
behaviour of the system.
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Appendix A : Proofs of section 3.

Proof of Lemma 3.1: Formula (3.8) is standard in the theory of Ornstein-Uhlenbeck processes [40]. To
obtain (3.7), we integrate κ(t) with respect to time:

∫ t

0

κ(s) ds = (1 − e−t)κ0 +
√

2α

∫ t

0

∫ s

0

e−seu dBuds.

Interchanging the order of integrations and integrating with respect to s, we deduce:

∫ t

0

κ(s) ds = (1 − e−t)κ0 +
√

2α

∫ t

0

(1 − e−(t−u)) dBu.

Then we develop the integral :

∫ t

0

κ(s) ds = (1 − e−t)κ0 +
√

2αBt − (κ(t) − e−tκ0).

This formula can be rewritten:
∫ t

0

κ(s) ds = κ0 − κ(t) +
√

2αBt,

which easily leads to (3.7).

We now calculate the mean and the variance of Kt
0 =

∫ t

0
κ(s) ds. Since κ(s) is of zero mean, its

integral Kt
0 is also of zero mean: E{Kt

0} = 0. Now for the variance of Kt
0, we can write :

Var{Kt
0} = E

{

(

(1 − e−t)κ0 −
√

2αe−t

∫ t

0

es dBs +
√

2αBt

)2
}

.

Using that κ0 and Bs are independent, we can develop the square and get:

Var{Kt
0} = (1 − e−t)2E{κ2

0} + 2α2
E

{

(

−e−t

∫ t

0

es dBs + Bt

)2
}

.

Let us consider the second term. By Ito’s formula, we have

E

{

(

−e−t

∫ t

0

es dBs + Bt

)2
}

= e−2t
E

{

(
∫ t

0

es dBs

)2
}

− 2e−t
E

{

Bt

∫ t

0

es dBs

}

+ E
{

B2
t

}

= e−2t

∫ t

0

e2s ds − 2e−t
E

{

Bt(e
tBt −

∫ t

0

esBs ds)

}

+ t,

where the Ito correction term is zero due to the fact that exp s is a deterministic process. We can
simplify this expression again since E{BtBs} = min(t, s) and get:

E

{

(

−e−t

∫ t

0

es dBs + Bt

)2
}

=
1 − e−2t

2
− 2e−t

(

ett −
∫ t

0

ess ds

)

+ t

=
1 − e−2t

2
− 2

(

1 − e−t
)

+ t.

Using also that E{κ2
0} = α2, the variance of Kt

0 is written:

Var{Kt
0} = (1 − e−t)2α2 + 2α2

(

1 − e−2t

2
− 2

(

1 − e−t
)

+ t

)

.

Developing and simplifying the expression, we find (3.10), which ends the proof.
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Appendix B : Proofs of section 4.

Proof of Lemma 4.1: Let u ∈ D(A). Then, κ∂θu ∈ V ′ and Lemma A1 of [15] shows that the Green
formula for functions u ∈ V such that κ∂θu ∈ V ′ is legitimate. Therefore, taking the inner product of
A(u) against u, we find:

< A(u), u >H=

∫

θ,κ

α2M
∣

∣

∣
∂κ

( u

M

)∣

∣

∣

2

dθdκ ≥ 0. (7.1)

So, A is a monotone operator in H. To show that A is maximal monotone, we prove that for any
g ∈ H, there exists u ∈ D(A) such that :

u + Au = g. (7.2)

Taking the inner product of (7.2) against a test function ϕ in the space D(Πθ × Rκ) of infinitely
differentiable and compactly supported functions on Πθ × Rκ leads to the variational problem :

∫

κ,θ

[u (ϕ − κ∂θϕ)
1

M
+ M∂k

( u

M

)

∂k

( ϕ

M

)

] dθdκ =

∫

θ,κ

gϕ
dκdθ

M
. (7.3)

Again, the same theory as in the appendix A of [15] (based the result by J. L. Lions in [37]) applies to
prove the existence of a solution to (7.3) with u in V such that κ∂θu ∈ V ′. From there, it immediately
follows that u ∈ D(A).

It is immediate to see that any function of the form u(θ, κ) = CM(κ) for any constant C belongs
to the kernel of A. Conversely, suppose that u ∈ Ker A. Then, by (7.1), there exists a function C(θ) ∈
L2(Π) such that u(θ, κ) = C(θ)M(κ). But again, A(u) = 0 implies that κ ∂θC(θ)M = 0. So C(θ) is a
constant, which proves (4.23).

Proof of Proposition 4.3: The ’only if’ part of the theorem is obvious since, using Green’s formula
(again, obtained by adapting that of appendix B of [15], we have

∫

Au dθ dκ = 0).
To prove the ’if’ part, we borrow a method from (for instance) [12]. To find a solution to (4.24),

we look at a perturbed equation :
λu + Au = g, (7.4)

with λ > 0. Since A is maximal monotone in H (Lemma 4.1), eq. (7.4) admits a solution uλ for all
positive λ ([9]). To prove the existence of a solution to (4.24), we want to extract a subsequence, still
denoted by (uλ) which converges weakly in H. For this purpose, it is enough to show that there exists
a bounded subsequence.

We proceed by contradiction, supposing that the (full) sequence Nλ = ‖uλ‖H
λ→0→ +∞. We define

Uλ = uλ

Nλ
. Uλ satisfies ‖Uλ‖H = 1 for all λ and

λUλ + AUλ =
g

Nλ

. (7.5)

Since (Uλ)λ is a bounded sequence in H, we can extract a subsequence (still denoted by Uλ) such
that Uλ ⇀ U in H weak as λ → 0. Taking the limit λ → 0 in (7.5), gives A(U) = 0. If we take the
inner product of (7.5) with Uλ and then pass to the limit λ → 0, we also find that U belongs to V . So
Lemma 4.1 applies and gives U = cM with a constant c ∈ R. Using (4.25), we also have :

< λUλ + AUλ,M >H=<
g

Nλ

,M >H= 0.

So
∫

κ,θ
Uλ dθdκ = 0 for all λ. Taking the limit λ → 0 leads to

∫

κ,θ
U dθdκ =

∫

κ,θ
CM(κ) dθdκ =

2πC = 0, which implies U = 0. This proves:

Uλ ⇀ 0 in H weak . (7.6)

To get a contradiction, we now prove that the convergence is strong.
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To this aim, we introduce a decomposition of the space H into two orthogonal subspaces. Let L be
the closed subspace of H defined by :

L = {c(θ)M / c(θ) ∈ L2(Πθ)},

with M defined by (4.4). So H = L
⊥
⊕ L⊥. We also define the orthogonal projector P of H onto L such

that Pf =
(∫

κ
f(κ, θ) dκ

)

M . Using this projection, we decompose the sequence (Uλ)λ as follows:

Uλ = cλ(θ)M + vλ, (7.7)

with vλ ∈ L⊥, i.e.
∫

κ
vλ dκ = 0. To demonstrate that Uλ

λ→0−→ 0 in H strongly, we first demonstrate

that vλ
λ→0−→ 0 in H strongly.

Taking the inner product of the equation satisfied by Uλ (7.5) with Uλ gives :

λ‖Uλ‖2
H +

∫

θ,κ

M

∣

∣

∣

∣

∂κ

Uλ

M

∣

∣

∣

∣

2

dθdκ =
1

Nλ

< g,Uλ >H .

Since ∂κ
Uλ

M
= ∂κ

vλ

M
and ‖Uλ‖H = 1, we get by taking the limit λ → 0 :

∫

θ,κ

M
∣

∣

∣
∂κ

vλ

M

∣

∣

∣

2

dθdκ
λ→0−→ 0. (7.8)

Now Gross inequality [32] gives, for any v ∈ V :

α2

∫

R

∣

∣

∣

∣

∂κ

(

f

M

)∣

∣

∣

∣

2

M dκ ≥
∫

R

|f |2 dκ

M
−

(
∫

R

f dκ

)2

. (7.9)

Then, since
∫

κ
vλ dκ = 0, we deduce:

α2

∫

R

∣

∣

∣
∂κ

vλ

M

∣

∣

∣

2

M dκ ≥
∫

R

|vλ|2
M

dκ.

Integrating this inequality with respect to θ and using (7.8), we find:

‖vλ‖H
λ→0−→ 0, in H strong. (7.10)

To prove the convergence of cλ, we define the bounded operator T : H → L2(Πθ) such that Tf =
∫

κ
κf dκ. Having T acting on (7.5) and taking the limit λ → 0, leads to:

T AUλ
λ→0−→ 0 in L2(Πθ) strong. (7.11)

If we develop the left-hand side, we find:

T AUλ =

∫

κ

κ2∂θUλ dκ −
∫

κ

[

κ∂κ(κUλ) − α2κ∂κ2Uλ

]

dκ

=

∫

κ

κ2∂θUλ dκ +

∫

κ

κUλ dκ.

But using the decomposition Uλ = cλM + vλ (7.7), we have:

∥

∥

∥

∥

∫

κ

κUλ dκ

∥

∥

∥

∥

L2(θ)

=

∥

∥

∥

∥

∫

κ

κvλ dκ

∥

∥

∥

∥

L2(θ)

λ→0−→ 0.

So, (7.11) leads to :
∫

κ

κ2∂θUλ dκ
λ→0−→ 0 in L2(Πθ) strong. (7.12)
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If we define hλ(θ) =
∫

κ
κ2Uλ dκ, (7.12) is equivalent to saying that ‖∂θhλ‖L2(θ)

λ→0−→ 0. Using the
Poincare-Wirtinger inequality [9], there exists a constant C0 such that:

‖hλ − h̄λ‖L2(θ) ≤ C0‖∂θhλ‖L2(θ), (7.13)

with h̄λ = 1
2π

∫ 2π

0
hλ(θ) dθ. Then, we develop h̄λ. We get:

h̄λ =
1

2π

∫ 2π

0

∫

κ

κ2Uλ dκdθ =< Uλ,Mκ2 >H
λ→0−→ 0 in R,

since Uλ converges weakly to zero (see (7.6)). So, (7.13) leads to hλ
λ→0−→ 0 in L2(Πθ) strong. If we

develop hλ we find:

hλ(θ) =

∫

κ

κ2(cλ(θ)M + vλ) dκ = α2cλ(θ) +

∫

κ

κ2vλ dκ.

Now,
∫

κ
κ2vλ dκ converges to zero in L2(θ) strong because of (7.10) and we finally have :

cλ(θ)
λ→0−→ 0 in L2(θ) strong.

Using the convergence of cλ and vλ, we can now prove the strong convergence of Uλ to 0 in H:

‖Uλ‖2
H = ‖cλM‖2

H + ‖vλ‖2
H = ‖cλ‖2

L2(θ) + ‖vλ‖2
H

λ→0−→ 0,

which contradicts the fact that Uλ has unit norm in H. This shows that there exists a bounded
subsequence in the sequence uλ. In fact, since the same proof can be applied to any subsequence, this
shows that the whole sequence uλ is bounded, but this is useless for our purpose.

We conclude the proof of Proposition 4.3 as follows: there exists a subsequence uλ and a function
u in H such that uλ ⇀ u in H weak. Taking the limit of (7.4) as λ → 0, we deduce that Au = g in
the sense of distributions. However, since g ∈ H, eq. Au = g also holds in H. Moreover if we take the
inner product of (7.4) with uλ and pass to the limit λ → 0, we find that u belongs to V . So u belongs
to D(A), which ends the proof of the ’if’ part of the statement.

Finally, to prove uniqueness, we just remark that, two solutions of (4.24) differ from an element of
the kernel of A and we apply (4.23). This ends the proof.
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Appendix C : Proofs of section 5.

Proof of Lemma 5.1: The proof borrows some ideas from [24], but is simpler, due to the linear character
of the problem. The difficulty is getting some compactness in time. Here, instead of considering time
translates of the solution as in [24], we will consider time integrals over a fixed interval length ∆t.

Since operator A is maximal monotone on H (see Lemma 4.1), operator −A generates a semi-group
of contractions Tt on H. Moreover the solution of (5.1) is given by:

u(t) = Tt(u0) +

∫ t

0

Ts(g) ds.

We define f(t) = u(t) − u∞ which satisfies :

∂tf = −Af, ft=0 = f0, (7.14)

with f0 = u0−u∞ and
∫

κ
f0(κ) dκ = 0. To prove the weak convergence of u(t) to u∞, we have to prove

that f(t) converges to zero weakly in H.
To this aim, we make an orthogonal decomposition of f(t) as in the proof of Proposition 4.3:

f(t) = c(t)M + v(t), with c(t) ∈ L2(Πθ), v(t) ∈ H and
∫

κ
v(t) dκ = 0. Taking the inner product of

(7.14) with f , we get :

1

2
∂t‖f‖2

H = −
∫

κ,θ

α2M

[

∂κ

(

f

M

)]2

dκdθ.

Using the decomposition of f(t) and noticing that ∂κ

(

f
M

)

= ∂κ

(

v
M

)

, this equality becomes:

1

2
∂t

(

‖c(t)‖2
L2 + ‖v(t)‖2

H

)

= −
∫

κ,θ

α2M

[

∂κ

(

v(t)

M

)]2

dκdθ. (7.15)

If we apply the Gross inequality (7.9), we get:

1

2
∂t

(

‖c(t)‖2
L2 + ‖v(t)‖2

H

)

≤ −‖v(t)‖2
H .

Since c(t) is bounded by ‖f0‖2
H , by integrating with respect to time, we have :

1

2
‖v(t)‖2

H ≤ −
∫ t

0

‖v(s)‖2
H ds + C.

Using the Gronwall lemma, we deduce that v(t) decays exponentially fast to zero strongly in H:

v(t)
t→+∞−→ 0 in H strong.

It remains to prove the convergence of c(t) to zero. We integrate (7.14) with respect to κ. This
gives, using that

∫

κ
M(κ) dκ = 1 and

∫

κ
v(t) dκ = 0 :

∂tc(t) = ∂θ

∫

κ

κv(t) dκ. (7.16)

Now if we pre-multiply by κ before integrating with respect to κ, we obtain :

∂t

∫

κ

κv(t) dκ = α2∂θc(t) + ∂θ

∫

κ

κ2v(t) dκ −
∫

κ

κv(t) dκ. (7.17)

We fix a time interval ∆t and integrate (7.17) over this time interval. This leads to:

∫

κ

κ(v(t + ∆t) − v(t)) dκ = α2∂θ

∫ t+∆t

t

c(s) ds + ∂θ

∫

κ

κ2

∫ t+∆t

t

v(s) ds dκ

−
∫

κ

κ

∫ t+∆t

t

v(s) ds dκ.
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Since v(t) converges to zero in H, we have, in the sense of distributions:

α2∂θ

∫ t+∆t

t

c(s) ds
t→+∞

⇀ 0. (7.18)

Since c belongs to L∞((0,∞)t, L
2(Πθ)) (see (7.15)), we have

∫ t+∆t

t
c(s) ds which belongs to

L∞((0,∞)t, L
2(Πθ)). So there exists a subsequence such that

∫ t+∆t

t
c(s) ds is weakly convergent in

L2(Πθ). Actually, (7.18) implies that there exists a constant function with respect to θ, depending on
∆t and denoted by L(∆t) such that

∫ t+∆t

t

c(s) ds
t→+∞

⇀ L(∆t).

To deduce the convergence of c(t), we have to control the derivative of c(t) in time. For this purpose,
we rewrite :

∫ t+∆t

t

c(s) ds =

∫ ∆t

0

(

c(t) +

∫ s

0

∂tc(t + z) dz

)

ds

= ∆t c(t) +

∫ ∆t

0

∫ s

0

∂θ

∫

κ

κv(t + z) dκ dzds.

Using again the convergence of v(t) to zero, we find :

∆t c(t)
t→+∞

⇀ L(∆t),

or defining the constant C = L(∆t)
∆t

, we have c(t)
t→+∞

⇀ C in L2(Πθ) weak.
To complete the proof, it remains to prove that C is equal to zero. Now, since eq. (7.14) is mass

preserving i.e.:

∂t

∫

κ,θ

f(t) dκdθ = −
∫

κ,θ

Af(t) dκdθ = 0,

we have
∫

κ,θ
f(t) dκdθ =

∫

κ,θ
f(0) dκdθ = 0. Also :

∫

κ,θ

f(t) dκdθ =

∫

κ,θ

(c(t)M + v(t)) dκdθ
t→+∞

⇀

∫

θ

C dθ2πC.

So C = 0. This proves f(t)
t→+∞

⇀ 0 in H weak and completes the proof.
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51. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system
of self-driven particles, Phys. Rev. Lett., 75 (1995), pp. 1226–1229.


