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Abstract. We consider the n-dimensional space homogeneous Boltzmann equation for
elastic collisions for variable hard potentials with Grad (angular) cutoff. We prove sharp
moment inequalities, the propagation of L

1-Maxwellian weighted estimates, and conse-
quently, the propagation L

∞-Maxwellian weighted estimates to all derivatives of the initial
value problem associated to the afore mentioned equation.

More specifically, we extend to all derivatives of the initial value problem associated to
this class of Boltzmann equations corresponding sharp moment (Povzner) inequalities and
time propagation of L

1-Maxwellian weighted estimates as originally developed Bobylev [2]
in the case of hard spheres in 3 dimensions. To achieve this goal we implement the program
presented in Bobylev-Gamba-Panferov [3], which includes a full analysis of the moments
by means of sharp moment inequalities and the control of L

1-exponential bounds, in the
case of stationary states for different inelastic Boltzmann related problems with ‘heating’
sources where high energy tail decay rates depend on the inelasticity coefficient and the
type of ‘heating’ source. More recently, this work was extended to variable hard poten-
tials with angular cutoff by Gamba-Panferov-Villani [5] in the elastic case collision case
where the L

1-Maxwellian weighted norm was shown to propagate if initial states have such
property. In addition, we also extend to all derivatives the propagation of L

∞-Maxwellian
weighted estimates, proven in [5], to solutions of the initial value problem to the Boltzmann
equations for elastic collisions for variable hard potentials with Grad (angular) cutoff.

Résumé: Nous considerons l’équation de Boltzmann homogène en espace, en dimension n

en vitesse, avec potentiels durs variables et troncature angulaire de Grad. Nous montrons
des estimations fines sur les moments et sur la propagation en temps de normes L

1 à poids
maxwelliens. Ceci nous permet de déduire la propagation en temps de normes L

∞ à poids
maxwelliens pour toutes les dérivées de la solution du problème de Cauchy.
En particulier, Nous étendons à toutes les dérivées les estimations fines de moments
(inégalités de Pozner) et les résultats de propagation en temps de normes L

1 à poids
maxwelliens obtenus précédement par Bobylev [2] dans le cas des spères dures en dimen-
sion 3. Ce résultat utilise des techniques développées par Bobylev-Gamba-Panferov [3]
pour étudier, dans une classe plus générale de sections angulaires et de contrôle L

1 à
poids maxwelliens, les états stationnaires de l’équation de Boltzmann avec interactions
inélastiques et chauffage. Ceci correspond à des situations où le taux de décroissance
des queues d’énergie dépend du coefficient d’inélasticité et du type de chauffage. Nous
généralisons aux cas des potentiels durs variables avec cutoff angulaire, le résultat de
Gamba-Panferov-Villani [5] pour les collisions élastiques qui montre la propagation en
temps de normes L

1 à poids maxwelliens. Enfin, toujours dans le cas élastique, nous
généralisons les résultats de propagation de [5] à toutes les dérivees avec des normes L

∞

à poids maxwelliens.
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1. Introduction

The study of propagation of L1-Maxwellian weighted estimates to solutions of the initial
value for the n-dimensional space homogeneous Boltzmann equation for elastic collisions
for variable hard potentials with Grad (angular) cutoff entices the study of summability
properties of a corresponding series of the solution moments to all orders. This problem
was addressed for the first time by Bobylev in [2] in the case of 3 dimension for the hard
sphere problem, i.e. for constant angular cross section in the collision kernel.

Previously, the behavior of time propagating properties for the moments of the solution
to the initial value problem for the elastic Boltzmann transport equation, in the space homo-
geneous regime for hard spheres and variable hard potentials and integrable angular cross
sections (Grad cutoff assumption) had been extensively studied, but not their summability
properties. In fact, the study of Povzner estimates and propagation of moments of the
solution to the of variable hard potentials with Grad cutoff assumption, was progressively
understood in the work of Desvillettes [4] and Wennberg [14], where the Povzner estimates,
a crucial tool for the moments control in the case of variable hard spheres with the Grad
cutoff assumption, where based on pointwise estimates on the difference between pre and
post-collisional velocities of convex, isotropic weights functions of the velocity in oreder to
control their integral on the n − 1 dimensional sphere, and consequently, and not sharp
enough to obtain summability of moments.

A significant leap was developed by Bobylev [2] where the first proof of summability
properties of moments was established, in the case of hard spheres in 3 dimensions, showing
that L1-Maxwellian weighted estimates propagates if the initial data is in within that class.
Among several new crucial techniques that were developed in that fundamental paper, the
is a significant improvement of the Pozvner estimates based on the averaging (integrals)
on the n − 1 dimensional sphere of convex, isotropic weights functions of the velocity, for
the case of variable hard potentials with the Grad cutoff assumption. As a consequence it
is possible to established that, in the case of three dimensions velocity, for hard spheres,
the moments of the gain operator will decay proportional to the order of the moment with
respect to the loss term uniformly in time, by means of infinity evolution inequalities in
terms of moments. That key estimate yields summability of a moments series, uniformly
in time. Later, Bobylev, Gamba and Panferov [3], establish the sharpest version of the
Povzner inequality for elastic or inelastic collisions, using the approach of [2], by a somehow
reduced argument, under the conditions that both the convex, isotropic weights functions
of the velocity and the angular part of the angular cross section are non-decreasing. The
two main ideas are to pass to the center of mass relative velocity variables and to use
the angular integration in to obtain more precise constants in the corresponding inequali-
ties. The summability property, which in the work of Bobylev [3], was done only for hard
spheres in three dimensions whose the angular cross section is constant, was extended, in
[2], to the case of bounded angular section. In addition, the problem of stationary states
to Boltzmann equations for inelastic interaction problems with ‘heating’ sources, such as
random heat bath, shear flow or self-similar transformed problems, was addressed in [3],
where L1-exponential bounds with decay rates depending of the inelasticity coefficient and
the the type of ‘heating’ source were shown as well. In these cases the authors showed
L1-exponential weighted decay bounds with slower decay than Maxwellian (i.e. s < 2).

In an interesting application of these moments summability formulas, estimates and tech-
niques, Mouhot [9], was able to establish (for the elastic case) a result that proves the
instantaneous ‘generation’, of L1-exponential bounds uniformly in time, with only L1

2 ∩  L2

initial data, where the exponential rate is half of the variable hard sphere exponent, under
the same assumptions on the angular function as in [3].
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However, still for the elastic case, of variable hard potentials and Grad cutoff assumption,
neither [2] nor [3], addressed the propagation of L1-Maxwellian weighted bounds, uniform
in time to solutions of the corresponding initial value problem in n-dimensions with more
realistic intramolecular potentials. In a recent manuscript by Gamba, Panferov and Vil-
lani [5], showed the L1-Maxwellian weighted propagation estimates and the provided a
proof to the open problem of propagation of L∞-Maxwellian weighted bounds, uniformly
in time. The Grad cutoff assumption was still assumed (integrability of the angular part
of the collision kernel) without the boundedness condition, but a growth rate assumption
on the angular singularity, depending only on the velocity space dimension, that still keeps
integrability. The propagation of L∞-Maxwellian weighted bounds combines the classical
Carleman representation of the gain operator with the L1-Maxwellian bounds.

More specifically, the behavior for large velocities is commonly called ”high energy tails”.
Under precise conditions, described in [2] and [5]), it is known that for a solution this
asymptotic behavior is comparable in some way to exp(−r|ξ|s) with r, s positive numbers.
In the case of elastic interactions, it is known that s = 2, provided the initial state also
has that behavior, i.e. it decays as a Maxwellian. This is a revealing fact that says that a
solution of the elastic initial value problem for the n-dimensional Boltzmann equation, with
variable hard potential kernels and singular integrable angular cross section, decays like a
Maxwellian for all times as long as the initial state does it as well.

In this present manuscript, we extend the results of [5] to show both propagation of of L1-
Maxwellian and L∞-Maxwellian weighted estimates to all derivatives of the solution to the
initial value problem to the space homogeneous Boltzmann equations for elastic collisions
for variable hard potentials with an integrable angular singularity condition as in [5].

We first note that sharp Povzner inequalities ([2]-[3]-[5]) are, indeed, the main tool for the
study of the solution’s moments for the variable hard potential models. They control the
decay of the moments of the gain collision operator with respect to the moments of the loss
collision operator. This technique yields a control of the time derivative of any higher order
moment using the lower order ones. In particular, one uses the Boltzmann equation, in
order to build an infinite system of sharp Povzner inequalities for each moments which can
be used, by arguing inductively, to control each moment uniformly in time. As a result one
obtains L1-Maxwellian weighted estimates and the corresponding L∞-Maxwellian weighted
estimates in the elastic interaction models in n-dimensions and for variable hard potential
collision kernels with an integrable angular singularity condition depending on the dimension
n.

Here we show that these results extend to the study of propagation of L1-Maxwellian
and L∞-Maxwellian weighted estimates to any high order derivatives of the solution to the
n-dimensional elastic Boltzmann equation for variable hard potentials. In particular, these
bounds imply that if the initial derivatives of the solution are controlled pointwise by the
derivatives of a Maxwellian then this control propagates for all times.

The paper is organized as follows. After this introduction, section 2 presents the prob-
lem and the main Theorem 1. Section 3 focus in finding sharp Povzner inequalities for
the solution’s derivatives. All the computations regarding the derivatives of the collision
operator and the action of the differential collision operator on test functions are presented
in Lemmas 1, 2 and 3. Lemmas 4, 5, 6 and 7 are devoted to provide a suitable expression
ready to use for the construction of the mentioned system of inequalities on the derivative’s
moments. In Lemma 8 such a system of inequalities is presented.

Then in section 4, all previous results used to obtain information for the solution’s deriva-
tives in the elastic case. Theorem 2 proves the control of moment’s growth, and Theorem 3
uses Lemma 8 to obtain a global in time bound for the derivative’s moments in the elastic



case yielding the L1-Maxwellian bounds to derivatives of any order. Finally in section 5, we
show that uniform bounds on the moments of these derivatives lead to a pointwise estimate.
This is possible after using an L∞−L1 Maxwellian weighted control on the gain collision op-
erator as shown in [5] (see Theorems 5 and 6 in the Appendix A). The Boltzmann equation
and this control are sufficient to find a time uniform pointwise control by Maxwellians for
the solution’s derivatives of any order. Calculations of this fact are performed in Theorem 1,
where the L∞-Maxwellian bound is shown.

2. Preliminaries and Main Result

This section presents the assumptions and notation used along the paper. Assume that
the function 0 ≤ f(ξ, t) with (ξ, t) ∈ R

n × R
+ solves the homogeneous Boltzmann problem

(1)
∂f

∂t
= Q(f, f) on (0, T ) × R

n, f(ξ, 0) = f0,

where Q(f, f) := Q+(f, f) − Q−(f, f) is the standard Boltzmann collision operator for
variable hard potentials. It is defined for any two measurable functions f and g by the
formula

(2) Q(f, g) =

∫

Rn

∫

Sn−1

(

f ′g′∗ − fg∗
)

B(ξ − ξ∗, σ)dσdξ∗.

In particular,

(3) Q+(f, g) =

∫

Rn

∫

Sn−1

f ′g′∗B(ξ − ξ∗, σ)dσdξ∗

and,

(4) Q−(f, g) =

∫

Rn

∫

Sn−1

fg∗B(ξ − ξ∗, σ)dσdξ∗ .

The classical notation ′f , ′f∗, f ′ and f ′
∗ is adopted to imply that the distributional function

f has the pre-collision velocity arguments ′ξ, ′ξ∗ or the post collision velocity arguments ξ′,
ξ′∗. Recall that the dependence of post and pre-collision velocities is given by the formulas

ξ′ = ξ +
1

2
(|u|σ − u)), ξ′∗ = ξ∗ −

1

2
(|u|σ − u))

where σ ∈ Sn−1 is a vector describing the geometry of the collisions, see for example [13],
for a complete description.

Intramolecular potentials are modeled by the collision kernel as a non negative function
given by

B(ξ − ξ∗, σ) = |ξ − ξ∗|
α h(û · σ) and û =

ξ − ξ∗
|ξ − ξ∗|

with α ∈ (0, 1] and û is the renormalized relative velocity. It is assumed that the angular
cross section h(·) has the following properties

(i) h(z) ≥ 0 is nonnegative on (−1, 1) such that

h(z) + h(−z) is nondecreasing on (0, 1)

(ii)

0 ≤ h(z)(1 − z2)µ/2 ≤ C for z ∈ (−1, 1)

where µ < n − 1 and C > 0 constant.
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Note that assumption (i) implies that h(û · σ) ∈ L1(Sn−1). For convenience we normalized
its mass as follows

∫

Sn−1

h(û · σ)dσ = ωn−2

∫ 1

−1
h(z)(1 − z2)

n−3

2 dz = 1

where ωn−2 is measure of the n − 2 dimensional sphere.
In the case of three dimensional collisional models for variable hard potential, condition (ii)
simplifies to

(5)

∫ 1

−1
h(z)dz = 1/2π.

usually referred as the Grad cutoff assumption. With these assumptions the collision model
kernel used still falls in the category of variable hard potential with angular cut-off. The
reader may go to [5] for a recent, complete discussion on the behavior of the moments of
the solution for variable hard potential with cut-off in any dimension.

The standard integrability conditions on the initial datum f0 are assumed to be
∫

Rn

f0dξ = 1,

∫

Rn

f0ξdξ = 0,

∫

Rn

f0|ξ|
2dξ < ∞.

In other words, f0 has finite mass, which is normalized to one for convenience, and finite en-
ergy. These conditions can be addressed in a compact manner using the weighted Lebesgue
space Lp

k with p ≥ 1 and k ∈ R, defined by the norm

‖f‖Lp
k(Rn) =

(∫

Rn

|f |p(1 + |ξ|2)pk/2dξ

)1/p

.

In particular the initial datum can be referred as f0 ∈ L1
2.

Following these ideas, the weighted Sobolev spaces W s,p
k , with s ∈ N , are used to work with

the weak derivatives of f . These spaces are defined by the norm

‖f‖W s,p
k (Rn) =





∑

|ν|≤s

‖∂νf‖p
Lp

k





1/p

where the symbol ∂η is understood as ∂η = ∂η1

∂ξ1
∂η2

ξ2
· · · ∂ηn

ξn
for a multi-index η of n dimen-

sions. The usual notation is used for the Hilbert space Hs
k ≡ W s,2

k .

Throughout the paper, the order of the multi-index is defined as |η| =
∑

1≤i≤n ηi, in
addition, the comparison between multi-indexes is denoted as ν < η or ν ≤ η. This is
understood as νi ≤ ηi for all 1 ≤ i ≤ n and |ν| < |η| or |ν| ≤ |η| respectively.

Regarding the regularity of the initial datum, it is required that f0 ∈ W s,1
2 for some s ≥ 1

to be chosen afterwards. The additional assumption f0 ∈ Hs is required for the final result.

Definition 1. Define for any sufficiently regular function f , multi-index η and p > 0 the
moment of order p for the η derivative of f as the time dependent function

(6) δηmp(t) ≡

∫

Rn

|∂ηf ||ξ|2pdξ.

This definition tries to generalize the classical definition for the moments, mp(t) ≡
∫

Rn f |ξ|2pdξ, however an absolute value is imposed in ∂ηf since this function in general

does not have sign. Observe that the condition f0 ∈ W s,1
2 is equivalent to say that δνm0(0)

and δνm1(0) are bounded for |ν| ≤ s.



The next definition is related to the exponential tail concept introduced in [2] in the study
of the solution’s moments of the elastic homogenous Boltzmann equation, and later in [3]
in the study of large velocity tails for solutions of the inelastic homogeneous Boltzmann
equation with source terms.

Definition 2. The function f has an L1 exponential (weighted) tail of order s > 0 in [0, T ]
if

(7) r̄s = sup
r>0

{

r : sup
0≤t≤T

‖f exp(r|ξ|s)‖L1(Rn) < +∞

}

is positive.
In particular, for s = 2 we simply say that f has an L1-Maxwellian (weighted) bound.

This definition is equivalent to that one used in [2] and [3] for the solution of the homo-
geneous Boltzmann equation. Observe that the definition does not requires non negativity
in the function f . This is important since the main purpose of this paper is to study the
derivatives of the solution of problem (1), functions that do not have sign.

We point out that Bobylev proved in [2] the propagation L1-Maxwellian tails for the hard
sphere problem in three dimentsions. That is, he showed the existence of L1 exponential
tail of order 2 for the solution of the homogeneous Boltzmann equation provided the initial
data has L1 exponential tail of order 2 the case is special in the sense that the angular cross
section function h(z) in (2) is constant. Recently, this result was extended was in [5] under
the conditions ( i-ii) for the angular cross section, to further show that the tail behavior
is in fact ‘pointwise’ for all times if initially so. This fact motivates the following natural
definition.

Definition 3. The function f has an L∞ exponential (weighted) tail of order s > 0 in [0, T ]
if

(8) r̄s = sup
r>0

{

r : sup
0≤t≤T

‖f exp(r|ξ|s)‖L∞(Rn)

}

< ∞

is positive.
In particular, for s = 2 we simply say that f has an L∞-Maxwellian (weighted) bound.

As it was just mentioned above, the elastic, space homogeneous Boltzmann equation for
variable hard spheres (i.e. α ∈ (0, 1] in equation (2)) it has been shown that the solution
has an L∞ exponential tail of order 2 in [0,∞). This is a consequence of the rather strong
fact that L1 exponential tail implies the L∞ exponential tail in the solution by means of a
result like Theorem 5 in the Appendix. Another example of the strong relation of L1 −L∞

exponential tails is given in [8]. In this work the authors proved the existence of self-similar
solutions for the inelastic homogeneous Boltzmann equation with constant restitution co-
efficient. Using the results from [5], where it was shown proved that an steady state of a
self- similar solution must has all moments bounded and an L1 exponential tail of order 1,
the authors went further to show the existence of such steady states and that also it has an
L∞ exponential tail of order 1.

We are ready to formulate the main result of this work after the introduction of the short
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notation for the Maxwellian (i.e. exponential of order 2) weight,

Mr ≡ Mr(ξ) = exp(−r|ξ|2) with r ∈ R.

Theorem 1. Let η any multi-index and assume that f0 ∈ H
|η|
(|η|−1)(1+α/2). In addition,

assume that for all ν ≤ η we have that |∂νf0|/Mr0
∈ L1 and |∂νf0|/

{

(1 + |ξ|2)|ν|/2Mr0

}

∈
L∞ for some r0 > 0. Then, there exist r ≤ r0 such that

sup
t≥0

|∂νf |

(1 + |ξ|2)|ν|/2Mr
≤ Kη,r0

for all ν ≤ η, where Kη,r0
is a positive constant depending on η, r0 and the kernel h(·). In

particular, for ν ≤ η and t > 0

lim
|ξ|→∞

|∂νf(ξ, t)| ≤ Kη,r0
lim

|ξ|→∞
Mr̄ν

2
(ξ)

where the constant r̄ν
2 is given by (8) for the function ∂νf .

Remarks :

• In other words, if ∂νf0 has a L∞ exponential tail of order 2 for all ν ≤ η, then the ν
derivative of the solution will propagate such behavior, that is the ∂νf(t, v) still has
an L1 exponential tail of order 2. In addition, using related arguments to the ones
in [5], yields the propagation of L∞ exponential tails of order 2 for the ν derivative
of the solution, for all ν ≤ η.

• It is clear that the property of having L1 or L∞ exponential tail is transparent to
the polynomial weight that we include. Indeed, a function has any of the previous
properties if an only if the product of the function with a polynomial also has the
property. We include the weight in the statement of Theorem 1 since it appears
naturally for variable hard sphere kernels with an angular cross section function
h(z) satisfying (i)-(ii), as the proof of the Theorem shows. In addition, emphasis
has been done about the fact that the ν derivative of the solution is being compared
with the ν derivative of the Maxwellian.

As it was noticed in [2] and [3], the existence of L1 exponential tails for a solution f of the
space homogeneous Boltzmann equation, is closely related to the existence of all its moments
and its summability properties. Following that line of work in the such of properties of such
nature for ∂ηf , we also observe that

∫

Rn

|∂ηf | exp (r|ξ|s)dξ =

∞
∑

k=0

δηmsk/2

k!
rk.

Thus, in order to show that there is a the choice of s > 0 for which the summability of
moments, or equivalently, a bound for the right hand side of (2) uniformly in time t, one
would need to show that there exist positive constants K and Q, independent of t, such
that δηmsk/2/k! < KQk, k = 1, 2, 3 · · · . Hence, if that is the case, the sum in the right
hand side of (2) converges choosing, uniformly in time, for any r such that 0 < r < 1/Q.
This fact will imply that the integral is finite and therefore r̄η

s > 0.
Bobylev et al, in [2], and in [3], proved that under precise conditions the moments of f
satisfy estimates

(9) msk/2/k! < KQk uniformly in time for s = 2 .

This paper intends to do the same for δηmsk/2 as defined in (6).

Conversely, if the integral in the left hand side is bounded on [0, T ] for some positive r, s,



the terms in the sum must be controlled in the form δηmsk/2/k! < K Qk, k = 1, 2, 3 · · ·
for some constants K,Q > 0. Thus, the moments δηmsk/2 with k = 1, 2, 3, · · · are uniformly

bounded on [0, T ] if and only if ∂ηf has an L1 exponential tail of some order s > 0 in [0, T ].
Before continuing with the technical work the reader may go to Appendix A. and see some
of the classical results known for a distributional solution f of (1) used throughout this
work.

3. Sharp Povzner-type inequalities for the solution’s derivatives

The purpose of this section is to give technical Lemmas regarding the derivative of the
collision operator ∂ηQ(f, f). The idea of the following Lemmas is to obtain expressions for
this operator as close as possible to those already given in [3] for Q(f, f).

Lemma 1. Let f a sufficiently smooth function. Then, the following expressions hold for
the positive and negative parts of the collision operator

∂ηQ±(f, f) =
∑

ν≤η

(

η
ν

)

Q±(∂νf, ∂η−νf).

In particular,

∂ηQ(f, f) =
∑

ν≤η

(

η
ν

)

Q(∂νf, ∂η−νf).

Proof. This is a direct consequence of the invariance property τ∆Q(f, f) = Q(τ∆f, τ∆f),
where τ∆ is the translation operator defined by τ∆g(ξ) = g(ξ − ∆), for ξ and ∆ in R

n. For
details see [12]. �

Next, we need a suitable form for the action of the derivative of the collision operator
∂νQ(f, f) on test functions.

Lemma 2. Let f a sufficiently smooth function. Then, the action of the η derivative of the
collision operator on any test function φ is given by

(10)

∫

Rn

∂ηQ(f, f)φdξ =

∫ ∫

Rn×Rn

f∗ ∂ηf A[φ]|u|αdξ∗dξ

+ 1/2
∑

0<ν<η

(

η
ν

)∫ ∫

Rn×Rn

∂νf ∂η−νf∗ A[φ]|u|αdξ∗dξ

where

A[φ] = A+[φ] − A−[φ]

with

(11) A+[φ] =

∫

Sn−1

(φ′ + φ′
∗)h(û · σ)dσ and A−[φ] = φ + φ∗

Proof. For f and g any smooth functions we have after the regular change of variables
ξ → ξ

′

(12)

∫

Rn

Q+(f, g)φdξ =
1

2

∫ ∫ ∫

Rn×Rn×Sn−1

(fg∗φ
′ + f∗gφ′

∗)h(û · σ)dσ|u|αdξ∗dξ.

Also, using the change of variables ξ → ξ∗ the action of the negative collision part is given
by

(13)

∫

Rn

Q−(f, g)φdξ =
1

2

∫ ∫

Rn×Rn

(fg∗φ + f∗gφ∗)|u|αdξ∗dξ.
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Now, using Lemma 1
∫

Rn

∂ηQ+(f, f)φdξ =
∑

ν≤η

(

η
ν

)
∫

Rn

Q+(∂νf, ∂η−νf)φdξ.

Let f ≡ ∂νf and g ≡ ∂η−νf in (12) to get

(14)

∫

Rn

∂νQ+(f, f)φdξ = 1/2
∑

ν≤η

(

η
ν

)∫ ∫

Rn×Rn

∂νf ∂η−νf∗ A+[φ]|u|αdξ∗dξ.

Following the same idea, and using (13) and the renormalization of angular cross section

(15)

∫

Rn

∂ηQ−(f, f)φdξ = 1/2
∑

ν≤η

(

η
ν

)
∫ ∫

Rn×Rn

∂νf ∂η−νf∗ A−[φ]|u|αdξ∗dξ.

Subtract (15) from (14) and split the total sum to conclude. �

The moments of the derivative of the collision operator need to be controlled in order to
find a bound for the moments of the solution’s derivatives. The following Lemma is a first
step in this direction.

Lemma 3. Assume φ ≥ 0, then for any multi-index η

(16)

∫

Rn

∂ηQ(f, f)sgn(∂ηf)φdξ ≤

∫ ∫

Rn×Rn

f∗|∂
ηf |A[φ]|u|αdξ∗dξ + 2

∫ ∫

Rn×Rn

f∗|∂
ηf |φ∗|u|

αdξ∗dξ

+ 1/2
∑

0<ν<η

(

η
ν

)
∫ ∫

Rn×Rn

|∂νf∂η−νf∗|A[φ]|u|αdξ∗dξ

+
∑

0<ν<η

(

η
ν

)
∫ ∫

Rn×Rn

|∂νf∂η−νf∗|φ∗|u|
αdξ∗dξ

Proof. Let Ψ ≥ 0 and φ = sgn(∂ηf)Ψ in Lemma 2. In one hand, observe that for the first
term in (10) |A+[sgn(∂ηf)Ψ]| ≤ A+[Ψ], hence

∂ηfA+[sgn(∂ηf)Ψ] ≤ |∂ηf |A+[Ψ].

On the other hand

∂ηfA−[sgn(∂ηf)Ψ] = |∂ηf |A−[Ψ] − Ψ∗ {|∂
ηf | − sgn(∂ηf∗)∂

ηf} .

Gathering these two inequations we have

(17) ∂ηfA[sgn(∂ηf)Ψ] ≤ |∂ηf |A[Ψ] + 2|∂ηf |Ψ∗.

Note that (17) yields a control for the first term in (10) of Lemma 2. Moreover, a similar
argument also works for the second term in (10). �

Although the expression (16) may look cumbersome, we point out that the main idea
here is to separate the terms that depend on the actual derivative of order η from the lower
order derivatives. In this way, it is possible to take advantage of the expression (16) when
an induction argument is used.

We are now ready to study the moments of the solution’s derivatives for p > 1. The
idea is to follow the work [3] adapting the results to this extended case. Several Lemmas
are needed before attempting to prove a time uniform control on these moments. Let us
first consider, in the following Lemma, test functions of the form φp = |ξ|2p, with p > 1.



For a detailed proof see [3] for bounded angular cross section function h(z) and from [5] for
h(z) satisfying conditions (i)-(ii). Nevertheless, we present a slightly modified argument
from the one in [5] to handle condition (ii):

Lemma 4. Under the previous assumptions on h(·), for every p ≥ 1,

(18) A[φp] = A[|ξ|2p] ≤ −(1 − γp)(|ξ|2p + |ξ∗|
2p) + γp((|ξ|2 + |ξ∗|

2)p − |ξ|2p − |ξ∗|
2p)

where the constant γp is given by the formula

(19) γp = ωn−2

∫ 1

−1

(

1 + z

2

)p

h̄(z)(1 − z2)
n−3

2 dz

with h̄(z) = 1
2(h(z) + h(−z)). In particular, for ǫ = n − 1 − µ > 0

(20) lim
p→∞

γp ∼ p−ǫ/2 ց 0 ,

where µ is the growth exponent of condition (ii) on h(z).
Furthermore if h(z) is bounded, the following estimate holds for for p > 1

γp < min

{

1,
16π ‖h‖∞

p + 1

}

.

Proof. It is easy to see that limp→∞ γp ց 0, since by conditions (i-ii) in h(z) it follows that
γ1 is bounded. In particular

(

1 + z

2

)p

ց 0 a.e. in (−1, 1) as p → ∞

so γp is decreasing on p. Using Lebesgue’s Dominated Convergence the decay of γp ց 0
follows.
However, using (ii) on h(z) we can say more about the decreasing rate of γp to zero. Since

h̄(z) ≤ C(1 − z2)−µ/2

then

γp = ωn−2

∫ 1

−1

(

1 + z

2

)p

h̄(z)(1 − z2)
n−3

2 dz

≤ 2ǫ−1Cωn−2

∫ 1

0
sp+ǫ/2−1(1 − s)ǫ/2−1ds

= 2ǫ−1Cωn−2β(p + ǫ/2, ǫ/2)(21)

where ǫ = n − 1 − µ > 0. Then we can estimate

β(p + ǫ/2, ǫ/2) =
Γ(p + ǫ/2)Γ(ǫ/2)

Γ(p + ǫ)
∼ p−ǫ/2 for large p.

It is concluded that γp ∼ p−ǫ/2 when p → ∞ and (20) holds. �

Remarks :

• Lemma 4 is a sharp version of the so called Povzner inequalities. It is proved
after a clever manipulation of the post collision variables in the positive part of the
collision operator. The convexity of h(·) plays an essential role to conclude Lemma
(4) because it provides a non decreasing property to the action of the gain operator
on convex functions.

• For hard spheres h(û · σ) = 1/4π, hence γp < min
{

1, 4
p+1

}

.
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Lemma 5. Assume that p > 1, and let kp = [p+1
2 ]. Then for all x, y > 0 the following

inequalities hold

(22)

kp−1
∑

k=1

(

p
k

)

(xkyp−k + xp−kyk) ≤ (x + y)p − xp − yp ≤

kp
∑

k=1

(

p
k

)

(xkyp−k + xp−kyk).

Remark : The binomial coefficient for a non integer p is defined for k ≥ 1 as

(23)

(

p
k

)

=
p(p − 1) · · · (p − k + 1)

k!
, and

(

p
0

)

= 1.

The following Lemma is a consequence of the previous two results. It provides a control on
the collision operator’s moments of order p using moments of the solution’s derivatives of
order strictly less that p.

Lemma 6. Assume h(z) fulfill all the conditions discussed, then for every p > 1 and multi-
index η

(24)

∫

Rn

∂ηQ(f, f)sgn(∂ηf)|ξ|2pdξ ≤ −(1 − γp)kαδηmp+α/2 + γpδ
ηSp

+ δη−
(mα/2mp) + δη−

(m0mp+α/2)

where kα is a positive constant depending on α but not on p.
In addition,

δηSp ≡

kp
∑

k=1

(

p
k

)

{

δη(mkmp−k+α/2) + δη(mk+α/2mp−k)
}

with kp =

[

p + 1

2

]

and

δη−
(mα/2mp) + δη−

(m0mp+α/2) ≡ 2
∑

ν<η

(

η
ν

)

{

δη−νmα/2δ
νmp + δη−νm0δ

νmp+α/2

}

.

Remarks :

• The notation

δη(mpmq) ≡
∑

ν≤η

(

η
ν

)

δνmpδ
η−νmq and

(25) δη−
(mpmq) ≡

∑

ν<η

(

η
ν

)

δνmpδ
η−νmq

has been chosen so that the “product rule of differentiation” holds. Expression
(24) makes it clear that this notation is very convenient to maintain the length of
expressions short and at the same time easy to remember. The minus sign next to
the upper script η in the last term of (24) was introduced to stress the fact that the
sum is done on the multi-index ν < η.

• Observe that none of the two last terms in (24) depends on δηmp+α/2 for p > 1.
This is important for the induction arguments used later on.

Proof. Let φ = |ξ|2p in Lemma 3. The sum of terms two and four in the right-hand

side of (16) is bounded by δη−
(mα/2mp) + δη−

(m0mp+α/2). Indeed, use the inequality
|u|α ≤ |ξ|α + |ξ∗|

α, which is valid for α ∈ (0, 1], expand the integrals, and use the definition
of moments of the derivatives (6) to conclude directly.



Recall the inequality, found in [1] or [5, Lemma 7], valid for solutions of the Boltzmann
equation with finite mass, energy and entropy,

(26)

∫

Rn

f∗|u|
αdξ∗ ≥ kα|ξ|

α

where the constant kα depends, in addition to α, on the mass, energy and entropy of the
initial datum f0. Thus, it follows that

∫ ∫

Rn×Rn

f∗|∂
ηf |(|ξ|2p + |ξ2p

∗ |)|u|αdξ∗dξ ≥

∫ ∫

Rn×Rn

f∗|∂
ηf ||ξ|2p|u|αdξ∗dξ

≥ kαδηmp+α/2.(27)

Use (27), Lemma 4 and Lemma 5, to control the first term in the right hand side of (16)
∫ ∫

Rn×Rn

f∗|∂
ηf |A[φ]|u|αdξ∗dξ ≤ −(1 − γp)kαδηmp+α/2+

γp

kp
∑

k=1

(

p
k

)

δηmk+α/2mp−k + δηmp−kmk+α/2 + δηmkmp−k+α/2 + δηmp−k+α/2mk.

Similarly, the following control is obtained for the third term of (16)

∑

0<ν<η

(

η
ν

)∫ ∫

Rn×Rn

|∂νf∂η−νf∗|A[φ]|u|αdξ∗dξ ≤

γp

kp
∑

k=1

(

p
k

)

∑

0<ν<η

(

η
ν

)

δνmk+α/2δ
η−νmp−k + δνmp−kδ

η−νmk+α/2

+ δνmkδ
η−νmp−k+α/2 + δνmp−k+α/2δ

η−νmk .

Combining these two inequalities, the sum of first and third term of (16) is bounded by

−(1 − γp)kαδηmp+α/2 + γpδ
ηSp.

This concludes the proof. �

Let us introduce the normalized moments, which are defined as

(28) δηzp ≡ δηmp/Γ(p + b)

where Γ(·) is the gamma function and b > 0 is a free parameter to be chosen in the sequel.
These moments can be used to simplify the estimate obtained in Lemma (6).

Lemma 7. For every p > 1 and multi-index η,

δηSp ≤ A Γ(p + α/2 + 2b)δηZp

where

(29) δηZp = max
1≤k≤kp

{

δη(zkzp−k+α/2), δη(zk+α/2zp−k)
}

and A > 0 is a constant depending only on b.

Proof. The proof is identical to that of Lemma 4 in [3]. First observe that

δηSp =

kp
∑

k=1

(

p
k

)

Γ(k + b)Γ(p − k + α/2 + b)δη(zkzp−k+α/2)

+ Γ(k + α/2 + b)Γ(p − k + b)δη(zk+α/2zp−k).
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But the Beta and Gamma functions are related by

β(x, y) =
Γ(x)Γ(y)

Γ(x + y)
.

This allow us to reduce the right-hand side in the previous equality to

Γ(p + α/2 + 2b)

kp
∑

k=1

(

p
k

)

β(k + b, p − k + α/2 + b)δη(zkzp−k+α/2)

+ β(k + α/2 + b, p − k + b)δη(zk+α/2zp−k).

Therefore,

(30) δηSp ≤ Γ(p + α/2 + 2b) δηZp

kp
∑

k=1

(

p
k

)

β(k + b, p − k + α/2 + b)

+ β(k + α/2 + b, p − k + b).

Using the definition of the beta function it is possible to control the sum in (30) by constant
A depending only on b, for details of this last step see [3, Lemma 4]. �

We are ready to construct the system of differential inequalities used in the proof of
Theorem 2. The following Lemma follows by a direct application of Lemma 6 and Lemma 7
on the Boltzmann equation (1).

Lemma 8. Let η any multi-index and assume that δηm0 > 0 and δνm0, δνmα/2 uniformly
bounded on time for all ν ≤ η, then

(31)
d(δηzp)

dt
+ (1 − γp)kαΓ(p + b)α/2pδηm

−α/2p
0 (δηzp)1+α/2p ≤ γpk0p

α/2+b δηZp

+ k1p
α/2δη−

(m0zp+α/2) + δη−
(mα/2zp)

for all p > 1, with k1 > 0 universal constant, k0 > 0 depending only on b and kα given in
Lemma (6)

Proof. First, note that using Jensen’s inequality

δηmp+α/2 ≥ δηm
−α/2p
0 δηm1+α/2p

p .

Next, take the η derivative in velocity in both sides of the Boltzmann equation (1), then
multiply it by sgn(∂ηf)|ξ|2p and integrate in velocity, then, use Lemma 6 to obtain

d(δηmp)

dt
+ (1 − γp)kαδηm

−α/2p
0 (δηmp)1+α/2p ≤

γpδ
ηSp +

{

δη−
(mp+α/2m0) + δη−

(mpmα/2)
}

.

Use the definition of δηzp in the previous inequality, and combine it with Lemma 7 to get

d(δηzp)

dt
+ (1 − γp)kαΓ(p + b)α/2pδηm

−α/2p
0 (δηzp)1+α/2p ≤

γp K
Γ(p + α/2 + 2b)

Γ(p + b)
δηZp +

Γ(p + α/2 + b)

Γ(p + b)
δη−

(m0zp+α/2) + δη−
(mα/2zp).

For the terms involving Gamma functions use the asymptotic formulas for large p

Γ(p + α/2 + 2b)

Γ(p + b)
∼ pα/2+b,

Γ(p + α/2 + b)

Γ(p + b)
∼ pα/2

to find the right polynomial grow. �



Remark : Lemma 8 is the equivalent result to Lemma 6.2 in [2]. Differential inequalities
(31) have the additional complication that they are not of constant coefficients since δηm0,
unlike m0, is in general a function of t.
The following classical result on ODE’s helps to implement an induction argument on in-
equalities of the form (33-34).

Lemma 9. Let a and b positive continuous functions in t such that

a∗ = inf
t>0

a > 0, b∗ = sup
t>0

b < +∞

and let c a positive constant. In addition assume that y ≥ 0 ∈ C1([0,∞)) solves the
differential inequality

(32) y′ + ay1+c ≤ b, y(0) = y0

then y ≤ max
{

y0, (b∗/a∗)1/(1+c)
}

Proof. Since y′ + a∗y
1+c ≤ b∗, it suffices to prove the Lemma in the case that a and b are

positive constants. As a first step assume equality in (32). Thus, from classical theory of
differential equations this ODE has a unique C1 solution y∗ with the property stated by the
Lemma, i.e.

y∗ ≤ max
{

y0, (b/a)1/(1+c)
}

.

If y ∈ C([0,∞)) solves (32) we claim that y ≤ y∗. Assume that there exist T ′ > 0 where the
inequality y(T ′) > y∗(T

′) holds. Let T < T ′ such that y(T ) = y∗(T ) and y > y∗ in (T, T ′).
The existence of such a point is assured by the continuity of the functions in addition to
the fact that y(0) = y∗(0) = y0. Therefore,

∫ T ′

T
y′ = y(T ′) − y(T ) > y∗(T

′) − y∗(T ) =

∫ T ′

T
y′∗.

Hence, there exist T0 ∈ (T, T ′) such that y′(T0) > y′∗(T0). Thus, the inequalities

b − y(T0)1+c ≥ y′(T0) > y′∗(T0) = b− y∗(T0)1+c

hold. Consequently, it is concluded that y(T0) < y∗(T0) which is a contradiction. As a
result, y ≤ y∗. This proves the Lemma. �

Remark : Same argument proves a similar result for y ≥ 0 ∈ C1([0,∞)) solving the
differential inequality y′ + ay1+c ≤ dy + b with a, b and d positive function on t (satis-
fying similar hypothesis) and c a positive constant. Of course the bound slightly changes
to y ≤ max {y0, ȳ} where point ȳ is given by the equation a∗ȳ

1+c = d∗ȳ + b∗. Here
d∗ = sup t>0 d.

Next result relate the last two Lemmas and gives some orientation of the future application
of Lemma 9.

Corollary 1. Inequalities (31) can be written for p = 3/2 as

(33)
d(δηz3/2)

dt
+ a3/2(δηz3/2)1+c3/2 ≤ b3/2 + d3/2(δηz3/2)

and for p ∈ {2, 5/2, 3, ...} as,

(34)
d(δηzp)

dt
+ ap(δηzp)1+cp ≤ bp

where ap, bp, cp and d3/2 ≥ 0 are positive functions on t and b for p ∈ {3/2, 2, 5/2, ...}, and
more importantly, they are independent of the normalized moment δηzp.
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Proof. The expressions for ap and cp can be found by comparison between (33-34) and (31)

(35) ap(t) = (1 − γp)kαΓ(p + b)α/2pδηm
−α/2p
0 and cp = α/2p.

Clearly they are positive functions of t and independent of δηzp. For p = 3/2 the short
expression for δηZp is obtained

δηZ3/2 = max
{

δη(z1z(1+α)/2), δη(z1+α/2z1/2)
}

≤ δη(z1z(1+α)/2) + δη(z1+α/2z1/2)

= δη(z1z(1+α)/2) + δη−
(z1+α/2z1/2) + z1/2δ

ηz1+α/2.

But note that for α ∈ (0, 1],

(36) δηz1+α/2 ≤ 1 + δηz3/2.

Therefore, this together with Lemma 8 leads to (33) with

(37) d3/2(t) = γ3/2k0(3/2)α/2+bz1/2(t) and

b3/2(t) = γ3/2k0(3/2)α/2+b
{

δη(z1z(1+α)/2) + δη−
(z1+α/2z1/2) + z1/2

}

+ k1(3/2)α/2δη−
(m0z(3+α)/2) + δη−

(mα/2z3/2).

For p ∈ {2, 5/2, 3, ...} it is clear that for 1 ≤ k ≤ kp the subindexes k, p − k + α/2, k + α/2
and p− k used in the definition of δηZp are all strictly less that p. Hence the term δηZp do
not depend on δηzp. Therefore the expression (34) follows if we select

(38) bp(t) = γpk0p
α/2+bδηZp +

{

k1p
α/2δη−

(m0zp+α/2) + δη−
(mα/2zp)

}

.

Recall in equation (38) that the functions δη−
(m0mp+α/2) and δη−

(mα/2mp) depend on
lower derivatives moments. �

4. Main Results

Theorem 2 states that if the initial moments of the derivatives of any order are finite,
they will continue finite through time. Moreover, these moments are controlled by the initial
datum in a specific way. The result is an extension of Bobylev work, Theorem 4 (item 1),
which assures this behavior for the regular p-moments.

Theorem 2. Let η any multi-index and assume that δηm0 > 0, and δνm0, δ
νm1 uniformly

bounded in [0, T ] for T > 0 and all ν ≤ η. Also assume that for some constants k > 0
and q ≥ 1 the initial renormalized moments of the solution’s derivatives satisfy the grow
condition on p

δνzp(0) ≤ kqp, p = 3/2, 2, 5/2, ...

Then we have the following uniform bound for the renormalized moments on t ∈ [0, T ]

(39) δνzp(t) ≤ KQp, p = 3/2, 2, 5/2...

for all ν ≤ η, some Q ≥ q and a positive constant K = K(η, ‖f‖
L∞([0,T ];W

|η|,1
2

)
, k) depending

on the multi-index η, the constant k, and on the L∞([0, T ]; W
|η|,1
2 ) norm of f .

Proof. Argue by induction on the multi-index order |η|. The case |η| = 0 follows from a
direct application of Bobylev work [2] for the hard spheres case (α = 1) or Gamba-Panferov-
Villani work [5] for the general hard potential case α ∈ (0, 1), see Theorem 4 (item 1) on
Appendix A.



Thus, the induction hypothesis (IH) reads: Assume that Theorem 2 is true for any multi-
index ν with |ν| < |η|, therefore there exists K1 > 0 and Q ≥ q depending on different
parameters as stated above, such that for t ∈ [0, T ] and |ν| < |η|

δνzp(t) ≤ K1Q
p for p ≥ 1

The purpose of the rest of the proof is to prove that

δηzp(t) ≤ KQp for p = 1, 3/2, 2, 5/2, ...

for some K > 0. Recall the parameters ap and bp with p ∈ 3/2, 2, 5/2, ... defined explicitly
in the proof Corollary 1. The idea is to use induction on p to show that the quotient ap/bp

is bounded by KQp and conclude by using Lemma 9.
Define

(40) ap
∗ ≡ inf

t∈[0,T ]
ap(t) = ‖δηm0‖

−α/2p
L∞[0,T ] (1 − γp)Γ(p + b)α/2p.

Observe that due to the induction hypothesis (IH)

δη−(m0zp+α/2) ≤ 2|η|K1 ‖f‖L∞([0,T ];W
|η|,1
1

)
Qp+α/2, and

δη−(mα/2zp) ≤ 2|η|K1 ‖f‖L∞([0,T ];W
|η|,1
1

)
Qp.

where we have used the control of the moments 0 and α/2 of the η derivative of f provided

by the L∞([0, T ]; W
|η|,1
1 ) norm of f

∑

i=1,α/2

max
ν≤η

{

‖δνmi‖L∞[0,T ]

}

≤ ‖f‖
L∞([0,T ];W

|η|,1
1

)
.

Hence, for p ∈ 2, 5/2, 3, ...

(41) bp(t) ≤ γpk0p
α/2+bδηZp + 2|η|K1 ‖f‖L∞([0,T ];W

|η|,1
1

)
Qp

{

k1Q
α/2pα/2 + 1

}

.

Substitute (40) and (41) in (34) to conclude that

(42)
d(δηzp)

dt
+ ap

∗(δηzp)1+α/2p ≤ γpk0p
α/2+bδηZp

+ 2|η|K1 ‖f‖L∞([0,T ];W
|η|,1
1

)
Qp

{

k1Q
α/2pα/2 + 1

}

.

Next, define the following sequences of p

A1
p =

k0γpp
α/2+b

ap
∗

and A2
p = 2|η|K1 ‖f‖L∞([0,T ];W

|η|,1
1

)

k1Q
α/2pα/2 + 1

ap
∗

,

in this way equation (42) can be written as

(43)
d(δηzp)

dt
+ ap

∗(δηzp)1+α/2p ≤ ap
∗A

1
pδ

ηZp + ap
∗A

2
pQ

p.

Let us, for the moment, divert our attention from equation (43) and make an observation
regarding the sequences {A1

p} and {A2
p}. Recall the asymptotic formula for Γ(p + b) with

b > 0
Γ(p + b)α/2p ∼ pα/2 for large p,

also recall that in the prove of Lemma (4)

γp ∼ p−ǫ/2 for large p.

Therefore, by letting b − ǫ/2 < 0 we have,

A1
p ∼ pb−ǫ/2 → 0 as p → ∞.
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Meanwhile, the sequence {A2
p} is bounded. Define,

∣

∣A2
p

∣

∣

∞
≡ sup

p≥2
A2

p < ∞.

Thus, there exists p0 such that

2|η|K1Q
α/2A1

p ≤ 1/2 if p ≥ p0.

Now, it is claimed that it is possible to take a number K ≥ max
{

1, k,K1, 2
∣

∣A2
p

∣

∣

∞

}

such

that

(44) δηzp(t) ≤ KQp for p = 3/2, 2, 5/2... and p ≤ p0.

Let us prove that this K actually exists by arguing as follows: When p = 3/2

δηZp = max
{

δη(z1z(1+α)/2), δη(z1+α/2z1/2)
}

.

In the one hand, by hypothesis

δη(z1z(1+α)/2) ≤
2|η|

Γ((1 + α)/2 + b)
‖f‖2

L∞([0,T ];W
|η|,1
2

)
< +∞.

and, in the other hand, by (IH)

δη(z1+α/2z1/2) ≤
2|η|K1Q

1+α/2

Γ(1/2 + b)
(1 + δηz1+α/2) ‖f‖

L∞([0,T ];W
|η|,1
1

)

≤
2|η|K1Q

1+α/2

Γ(1/2 + b)
(2 + δηz3/2) ‖f‖

L∞([0,T ];W
|η|,1
1

)
.

Combine these bounds with the definitions for b3/2 and d3/2 in Corollary 1 and apply
Lemma 9 to find that δηz3/2 is bounded. But once δηz3/2 is bounded, δηZ2 is immediately
bounded and hence, by a new application of Lemma 9 on (43) for p = 2, δηz2 is bounded.
Repeat this process up to p0 to find that δηzp(t) is bounded for p = 3/2, 2, 5/2, ..., p0 . So it
is just a matter of choosing K > 0 sufficiently large so that (44) is fulfill.

Let us argue by induction on the integrability index p to show that the same constants
K and Q also hold for p > p0 with p ∈ {3/2, 2, ...}. Assume that (44) holds. Hence, observ-
ing that the term δηZp does not depend on δηzp for p > 3/2 and using (IH) one concludes
that

δηZp < 2|η|K1KQp+α/2.

Therefore, inequality (43) reads for p > p0

(45)
d(δηzp)

dt
+ ap

∗(δηzp)1+α/2p ≤ 2|η|ap
∗A

1
pK1KQp+α/2 + ap

∗A
2
pQ

p = bp
∗

thus by Lemma 9

δηzp(t) ≤ max
{

(bp
∗/a

p
∗)2p/(2p+α), δηzp(0)

}

.

But the condition p > p0 and the choice of K implies that

bp(t)/ap(t) ≤ bp
∗/a

p
∗ =

{

2|η|A1
pK1Q

α/2 +
A2

p

K

}

KQp ≤ KQp for p > p0.

Since same inequality holds for p ≤ p0 one concludes that,

δηzp ≤ max {KQp, kqp} = KQp for p = 1, 3/2, 2, ...

This completes the proof. �

Remarks :



• For any p > 1 a simple Lebesgue interpolation argument together with Theorem 2
shows that δηzp ≤ KηQ

p.
• The growing constant q for the initial datum is in general smaller that the one

obtained for the differential moments. Thus, the control on the differential moments
may worsen depending on the initial conditions.

• The following is a different way to state Theorem 2: Let η any multi-index and

assume that f0 ∈ L1
2 and f ∈ L∞([0, T ]; W

|η|,1
2 ), if for some r0 > 0 we have that

∫

Rn |∂νf0| exp(r0|ξ|
2)dξ < ∞ for all ν ≤ η then

sup
[0,T ]

{
∫

Rn

|∂νf | exp(r|ξ|2)dξ

}

< ∞

for some r ≤ r0 and all ν ≤ η.

Lemma 10 and Lemma 11 prove that, for a solution of Boltzmann equation f , the differential
moments δνm0 and δνm1 are uniformly bounded on time for ν ≤ η , provided we have
sufficient regularity in the initial datum f0. In other words, given sufficient regularity on f0

we should have that f ∈ L∞([0, T ]; W
|η|,1
2 ).

Lemma 10. Let η any multi-index and suppose that f0 ∈ W
|η|,1
2+α , then for any T ∈ (0,∞)

we have that f ∈ L∞([0, T ]; W
|η|,1
2+α ). Moreover, δηm0(t) > 0 always holds.

Proof. First note that if δηm0(t′) = 0 for some fixed t′ > 0, we have that ∂ηf(ξ, t′) = 0.
Therefore f(ξ, t′) would be a polynomial in the variables ξi with i = 1, 2, · · · , n. Hence
f(ξ, t′) would not be integrable unless f(ξ, t′) = 0. But 0 = ‖f(·, t′)‖L1 = ‖f0‖L1 due to
mass conservation. This is impossible for a non zero initial datum.

Next, since A[1] = 0 and A[|ξ|2] ≤ 0, one uses Lemma 3 to obtain the following inequalities

1/2
d(δηm0)

dt
≤ δηm0mα/2 + δηmα/2m0

+
∑

0<ν<η

(

η
ν

)

(

δνmα/2δ
η−νm0 + δνm0δ

η−νmα/2

)

and

(46) 1/2
d(δηm1)

dt
≤ δηm0m1+α/2 + δηmα/2m1

+
∑

0<ν<η

(

η
ν

)

(

δνmα/2δ
η−νm1 + δνm0δ

η−νm1+α/2

)

.

We can now conclude the proof by using inequality (46) in order to implement an induction
argument on the index order |η|. Note that for the case |η| = 0, the conservation of mass
and dissipation of energy implies that f ∈ L∞([0, T ]; L1

2). In addition, since f0 ∈ L1
2+α,

the moment 1 + α/2 is finite in the initial datum, then we must have that this moment
is uniformly bounded in time, for this is precisely the work of Gamba-Panferov-Villani [5].
Hence, f ∈ L∞([0, T ]; L1

2+α).

For |η| > 0, take f0 ∈ W
|η|,1
2+α and assume that the result is valid for all |ν| < |η|.

Since W
|η|,1
2+α ⊂ W

|ν|,1
2+α then f0 ∈ W

|ν|,1
2+α , thus by induction hypothesis we have that f ∈

L∞([0, T ]; W
|ν|,1
2+α ) for all |ν| < |η|. Therefore, δνm0, δνm1 and δνm1+α/2 are uniformly



−

bounded on [0, T ] as long as |ν| < |η|. Note, that

δηmα/2 ≤ δηm0 + δηm1.

As a result, inequalities (46) imply that δηm0 and δηm1 are uniformly bounded on [0, T ],

i.e. f ∈ L∞([0, T ]; W
|η|,1
2 ). But δηm1+α/2(0) is finite by hypothesis, thus we can ap-

ply Theorem 2 again to get that δηm1+α/2(t) is finite in [0, T ]. We conclude that f ∈

L∞([0, T ]; W
|η|,1
2+α ). �

Lemma 11 shows that it is possible to go further and obtain a global in time result for
the elastic case, provided that more regularity on f0 is imposed.

Lemma 11. Let η any multi-index and assume that f0 ∈ W
|η|,1
2+α ∩ H

|η|
(|η|−1)(1+α/2) then

f ∈ L∞(R+; W
|η|,1
2+α ).

Proof. In the one hand, for all multi-index ν satisfying ν ≤ η we have by Cauchy-Schwartz
inequality that

δνmp ≤ Cs,n ‖f‖H
|η|
2p+s/2

for any s > n and some constant Cs,n depending on s and the dimension n. Therefore, by
letting p = 1 + α/2 we obtain,

max
ν≤η

{

δνm0(t), δνm1(t), δνm1+α/2(t)
}

≤ Cs,n ‖f(t, ·)‖
H

|η|
2+α+s/2

.

Then, using Theorem (6) in Appendix A

sup
t≥t0

{

max
ν≤η

{

δνm0(t), δνm1(t), δνm1+α/2(t)
}

}

< +∞.

On the other hand, the differential moments are bounded for t ≤ t0 by Lemma 10 under
these assumptions on f0. Hence, they are bounded uniformly for all t > 0. As a result,

f ∈ L∞(R+; W
|η|,1
2+α ). �

The results of Theorem 2, Lemma 10 and Lema 11 can be readily used to obtain the
L1-Maxwellian bound for derivatives of any order.

Theorem 3. Let η any multi-index and assume that f0 ∈ W
|η|,1
2+α . In addition, assume the

grow condition on the initial moments

δνmp(0)/p! ≤ k qp

for p ≥ 3/2, all ν ≤ η and some positive constants k and q. Then, ∂νf has exponential
tail of order 2 in [0, T ] for ν ≤ η and T ∈ (0, T ). Moreover, if we additionally assume

f0 ∈ H
|η|
(|η|−1)(1+α/2) then the conclusion can be extended to T = +∞.

Proof. Fix T ∈ (0,∞) and observe that using Lemma 10 it is possible to conclude that

f ∈ L∞([0, T ]; W
|η|,1
2+α ). From this follows that the moments δνm0 and δνm1 are bounded in

[0, T ] for all ν ≤ η. Therefore, the conditions of Theorem 2 are fulfilled and we can use it
to conclude that for all ν ≤ η the following inequality holds in [0, T ]

(47)

∫

Rn

|∂νf |er|v|2dv =
∑

i

δνmi

i!
ri ≤ K

∑

i

Γ(i + b)

Γ(i + 1)
(Qr)i ,

where Q ≥ q and K > 0 are constants that depend on different parameters as discussed in
Theorem 2. But,

Γ(i + b)

Γ(i + 1)
∼ ib−1 for large i.



Consequently, the sum behave like
∑

i

ib−1(Qr)i

Thus, it suffices to choose r > 0 such that Qr < 1 so that the sum in (47) converges.

Use the assumption that f0 ∈ H
|η|
(|η|−1)(1+α/2) and apply Lemma 11 to extend the result

to the limit case T = +∞. �

Remark :

• As a final remark on Theorem 2, Lemma 10 and Lemma 11, observe that for any

multi-index η and k ≥ 2 + α, Theorem 2 implies that if f0 ∈ W
|η|,1
k , then f ∈

C([0, T ]; W
|η|,1
k ) for any T < ∞. For the elastic case T = ∞ is also allowed, provided

we have that f0 ∈ H
|η|
(|η|−1)(1+α/2).

5. Proof of Theorem 1

In order to simplify the notation set Q−(f, g) = f · L(g) where

L(g) =

∫

Rn

g∗|ξ − ξ∗|
αdξ∗.

Proof. Differentiate the equation (1) η times in velocity and multiply the result by sgn(∂ηf)
to obtain

(48) ∂t(|∂
ηf |) + |∂ηf | L(f) ≤ Q+(|∂ηf |, f) + Q+(f, |∂ηf |) + f · L(|∂ηf |)

+
∑

0<ν<η

(

η
ν

)

{

Q+(|∂νf |, |∂η−νf |) + Q−(|∂νf |, |∂η−νf |)
}

.

We use equation (48) to argue by induction on the index order |η|. The case |η| = 0 follows
directly from Theorem 4, item (2).
Next, let f0 fulfilling all the conditions of the Theorem and assume the result for |ν| < |η|.
Then, there exists r′ ≤ r0 such that for any |ν| < |η|

|∂νf | ≤ K1
η,r0

(1 + |ξ|2)|ν|/2Mr′

where K1
η,r0

is a positive constant depending on η and r0.

By hypothesis, |∂νf0|/Mr0
∈ L1 for all ν ≤ η. Thus, the grow condition required in

Theorem 3 on the derivative moments of the initial datum f0 is satisfied, namely, that for
some positive constants k and q,

δνmp(0)/p! ≤ kqp for p ≥ 0.

Furthermore, f0 ∈ H
|η|
(|η|−1)(1+α/2), as a result, Theorem 3 applies to obtain that for some

r′′ ≤ r0

(49) sup
t≥0

∫

Rn

|∂νf | exp(r′′|ξ|2)dξ = sup
t≥0

‖∂νf/Mr′′‖L1 < ∞

for all ν ≤ η. Indeed, recall that in Theorem 2 a bigger grow constant Q ≥ q was obtained
for controlling the derivative’s moments through time. Hence, previous integral must con-
verge in general for r′′ ≤ r0.



−

Let r = min {r′, r′′} and divide inequality (48) by Mr. Using the induction hypothesis
we can bound the derivatives of lower order in (48) to get the inequality,

∂t(|∂
ηf |/Mr) + |∂ηf/Mr| L(f) ≤

K1
η,r0

Mr

{

Q+(|∂ηf |,Mr) + Q+(Mr, |∂
ηf |)

}

+ K1
η,r0

L(|∂ηf |)+

K1
η,r0

Mr

∑

0<ν<η

(

η
ν

)

Q+((1 + |ξ|2)|ν|/2Mr, |∂
η−νf |) + Q−((1 + |ξ|2)|ν|/2Mr, |∂

η−νf |).

Use Theorem 5 and Theorem 6 in the Appendix A, to obtain the following L1 control from
the previous inequality

(50) ∂t(|∂
ηf |/Mr) + |∂ηf/Mr| L(f) ≤

K2
η,r0

(1 + |ξ|2)(|η|−1)/2
∑

0<ν≤η

(

η
ν

)

‖∂νf/Mr‖L1 + L(|∂νf |)

where K2
η,r0

> 0 is a constant depending on η, r0 and on the kernel b(·), as Theorem 5
states.
However, observe that for all ν

L(|∂νf |) ≤ |ξ|αδνm0 + δνmα/2 ≤ Const. ‖∂νf/Mr‖L1 (1 + |ξ|2)α/2

≤ Const. ‖∂νf/Mr‖L1 (1 + |ξ|2)1/2.

Therefore, combining this inequality with by (49) we conclude that the right-hand side of

(50) is bounded by K3
η,r0

(1 + |ξ|2)|η|/2. Specifically,

(51) ∂t(|∂
ηf |/Mr) + |∂ηf/Mr| L(f) ≤ K3

η,r0
(1 + |ξ|2)|η|/2.

Fix t0 > 0 and integrate (51) over [0, t0]. It follows that for any t ∈ [0, t0]

|∂ηf |/Mr ≤ K3
η,r0

t0(1 + |ξ|2)|η|/2 + |∂ηf0|/Mr ≤ K4
η,r0

t0(1 + |ξ|2)|η|/2

where K4
η,r0

is a positive constant that depends on η, r0 and the kernel h(·).
For t > t0 use the lower bound that provides Theorem 4 (item 3) in the Appendix to
conclude that C ≡ inf ξ,t≥t0 L(f) > 0, thus using the full differential inequality (51)

|∂ηf |/Mr ≤ max
{

C−1K3
η,r0

(1 + |ξ|2)|η|/2, |∂ηf0|/Mr

}

≤ K5
η,r0

(1 + |ξ|2)|η|/2.

Therefore, Kη,r0
=max

{

K4
η,r0

· t0,K
5
η,r0

}

provides a sufficiently large constant for any t ≥ 0.
Since it is possible to fix any time t0 to perform these calculations, this constant just depends
on η, r0 and the kernel h(·). �

Remarks :

• If assumption f0 ∈ H
|η|
(|η|−1)(1+α/2) is not imposed, Theorem 1 is still valid changing in

the conclusion ” sup t≥0 ” for ” sup 0≤t≤T ” with T finite. This is a direct consequence
of the fact that Theorem 3 is valid under these conditions for any finite time T .

• Take as hypothesis of Theorem 1 only that f0 ∈ H
|η|
(|η|−1)(1+α/2) and

|∂νf0|/
{

(1 + |ξ|2)|ν|/2Mr0

}

∈ L∞

for ν ≤ η and some positive r0. Since for any r′ ∈ (0, r0) the last hypothesis implies
that |∂νf0|/Mr′ ∈ L1 and

|∂νf0|/
{

(1 + |ξ|2)|ν|/2Mr′

}

∈ L∞



for all ν ≤ η. Thus, using Theorem 1, there exist r ≤ r′ < r0 such that

sup
t≥0

|∂νf |

(1 + |ξ|2)|ν|/2Mr
≤ Kη,r′ .

• Mischler et al. [7] proved that for inelastic collisions the solution of the problem
(1) converges to the Dirac delta distribution as the time goes to infinity (see [7]).
This is a consequence of the energy loss and therefore the cooling process that is
taking place in the gas. Thus, for this case, it is not possible to obtain results like
Theorem 1 which involve bounds that are uniformly in time for the solution f . In
the elastic case, the gas does not have this cool down phenomena hence uniform
bounds on the derivatives can be proved in [0,∞).

Appendix A. Facts for a solution f of the Homogeneous Boltzmann Problem

The homogeneous Boltzmann problem for hard and Maxwellian potentials is nowadays
pretty well understood, in addition to existence and uniqueness of solutions [6] many other
results are available like positive estimates [11] and propagation of regularity [10]. The most
useful results used in this work are stated by the following theorems.

Theorem 4. Assume that f0 and h(·) have the properties discussed in the introduction
and that α ∈ (0, 1]. Then the following properties holds for a solution f of the elastic
homogeneous Boltzmann problem:

(1): If f0 satisfies
∫

Rn f0 exp(r0|ξ|
2)dξ < ∞ for some r0 > 0, then there exist r ≤ r0

such that sup t≥0

∫

Rn f exp(r|ξ|2)dξ < ∞.

(2): If f0 ≤ K0 exp(−r0|ξ|
2) for some K0, r0 > 0 then there exist r ≤ r0 such that

f ≤ K exp(−r|ξ|2) for all t ≥ 0 and some positive constants K.
(3): For every t0 > 0 there are positive constants K, r0 such that f(t, ξ) ≥ K exp(−r0|ξ|

2)
for all t ≥ t0.

These are precisely the results that we want to extend for the derivative of f and their
proof can be found in [3] for item 1, also [5] for item 2 and [11] for item 3. Of course item 3
is not true in general for |∂ηf |, for example as shown by a Maxwellian solution, the gradient
can be in general zero in some points of the velocity space at a given time. However, this
result will prove to be helpful in showing pointwise bounds for the derivatives of a solution.
Observe also that in items 1 and 2 in Theorem 4 the rate of decay r0 that controls f0 is
worsen in general to r ≤ r0 for controlling f .
Next, we state a remarkable result essential to prove item 2 in the previous Theorem, in
particular, essential to control the gain collision operator.

Theorem 5. Assume B(u, σ) = |u|αh(û ·σ) with h(·) satisfying the conditions stated in the
introduction. Then for any measurable function g ≥ 0,

∥

∥

∥

∥

Q+(g,Mr)

Mr

∥

∥

∥

∥

L∞

≤ K

∥

∥

∥

∥

g

Mr

∥

∥

∥

∥

L1

for some positive constant K depending on α and r.

As usual in the L∞ bounds for Q+(f, f), this result is a direct application of the Carleman
representation formula and clever manipulations of it. This Theorem is very helpful when
we try to prove an L∞ bound for the derivatives of f . The proof of Theorem 5 can be found
on [5, Lemma 12].
It is clear that same result holds for Q+(Mr, g), moreover, and slightly modification of the
proof can be used to obtain the following Theorem.



−

Theorem 6. Assume B(u, σ) = |u|αh(û ·σ) with h(·) satisfying the conditions stated in the
introduction, then for any measurable function g ≥ 0

∥

∥

∥

∥

Q+(g, (1 + |ξ|2)sMr)

(1 + |ξ|2)sMr

∥

∥

∥

∥

L∞

≤ K

∥

∥

∥

∥

g

Mr

∥

∥

∥

∥

L1

,

for any s > 0 and some positive constant K depending on s, α and β.

Finally, a powerful result proved by Mouhot and Villani [10, Theorem 4.2] is also used.
This result helps to obtain uniform bounds for infinite time for the derivative’s moments.
A small piece of this theorem, which is the one of use for us, is stated below.

Theorem 7. Let α ∈ (0, 2), s ∈ N and assume that f0 ∈ L1
2 ∩ Hs

(s−1)(1+α/2). Then for any

t0 > 0 and k > 0,
sup
t≥t0

‖f(t, ·)‖Hs
k

< +∞.

This quantity depends on an upper bound on L1
2 and Hs

(s−1)(1+γ/2) norms of f0 and a lower

bound on t0.

The proof of this Theorem is rather technical and requires several previous results on
the control of the positive collision operator including the gain of regularity of the positive
operator, however its spirit is, as in this work, to find a stable differential equation for the
Hs norm of f and proceed by induction.
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