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Abstract. A novel Bloch band based level set method is proposed for computing the
semiclassical limit of Schrödinger equations in periodic media. For the underlying equa-
tion subject to a highly oscillatory initial data, a hybrid of the WKB approximation
and homogenization leads to the Bloch eigenvalue problem and an associated Hamilton-
Jacobi system for the phase in each Bloch band, with the Bloch eigenvalue be part of
the Hamiltonian. We formulate a level set description to capture multi-valued solutions
to the band WKB system, and then evaluate total homogenized density over a sample
set of bands. A superposition of band densities is established over all bands and solution
branches when away from caustic points. The numerical approach splits the solution
process into several parts: i) initialize the level set function from the band decomposi-
tion of the initial data; ii) solve the Bloch eigenvalue problem to compute Bloch waves;
iii) evolve the band level set equation to compute multi-valued velocity and density on
each Bloch band; iv) evaluate the total position density over a sample set of bands using
Bloch waves and band densities obtained in step ii) and iii), respectively. Numerical
examples with different number of bands are provided to demonstrate the good quality
of the method.
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1. Introduction

In this paper we are concerned with numerical computation of physical observables to
the linear Schrödinger equation

iε∂tψ
ε = −ε2

2
∂x

(
b
(x

ε

)
∂xψ

ε
)

+ V
(x

ε

)
ψε + Ve(x)ψε, x ∈ IR, t ∈ IR+,(1.1)
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subject to the highly oscillatory function as initial data

(1.2) ψε(0, x) = eiS0(x)/εg
(
x,

x

ε

)
, ε ¿ 1.

Here ψε is the complex wave field, and ε is a re-scaled Planck constant. Both b(y) > 0
and V (y) are smooth and periodic with respect to the regular lattice Γ = 2πZZ, i.e.,

(1.3) b(y + 2π) = b(y), V (y + 2π) = V (y), ∀y ∈ IR.

The external potential Ve is a given smooth function.
This type of Schrödinger equations is a fundamental model in solid-state physics [2], and

also models the quantum dynamics of Bloch electrons subjected to an external field. This
problem has been studied from a physical, as well as from a mathematical point of view
in, e.g., [1, 7, 30, 36, 41], resulting in a profound understanding of the novel dynamical
features. An essential feature of the model, regardless of the point-of-view taken, is the
energy band structure imposed on the model [6]. The mathematical asymptotic analysis
as ε → 0 combining both semiclassical and homogenization limits has been a subject of
intensive study in past decades, see e.g., [3, 5, 13, 24, 31, 39].

In the semiclassical regime, where ε is small, the external potential Ve(x) varies at
larger spatial scales than periodic potential V (y) does and can be considered weak com-
pared with periodic field. The wave function ψε and the related physical observables
become oscillatory of wave length O(ε). A direct simulation of (1.1) using the Bloch wave
decomposition was recently developed, see e.g. [19], improving mesh sizes up to order
O(ε). However, this system involves several different sources of oscillations, making direct
numerical simulation prohibitively costly in the semiclassical regime.

A more realistic approach is to explore an asymptotic model by passing ε → 0. The
periodic structure calls for the two scale expansion method [5, 18] in which the electron
coordinate y = x

ε
and the space variable x are regarded as independent variables.

ψε = Aε (t, x, y) eiS(t,x)/ε,

in which the amplitude Aε is assumed to admit an asymptotic expansion of the form

Aε(t, x, y) ∼ A0(t, x, y) + εA1(t, x, y) + ε2A2(t, x, y) + · · · .

The insertion of the above ansatz into (1.1) gives, to the leading orders of ε, a band
Hamilton-Jacobi equation for the phase S and the transport equation for the amplitude
ρ:

St + E(Sx) + Ve(x) = 0,(1.4)

ρt + (E ′(Sx)ρ)x = 0,(1.5)

where E(k) is determined by solving the Bloch eigenvalue problem

H(k, y)z(k, y) = E(k)z(k, y), z(k, y + 2π) = z(k, y),(1.6)

where

H(k, y) :=
1

2
(−i∂y + k)[b(y)(−i∂y + k)] + V (y)

is a differential operator parameterized by k.
Singularity formation (Sx becomes discontinuous) in solutions of (1.4) is a generic

phenomena even when the initial phase is smooth. Before the singularity formation, the
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classical theory in [5] asserts that the wave function can be recovered by a superposition
of wave patterns on each band

∥∥∥∥∥ψε(t, ·)−
∑

n

√
ρn(t, ·)zn

(
(Sn)x,

x

ε

)
exp

(
iSn(t, ·)

ε

)∥∥∥∥∥
L2(IR)

∼ O(ε).

After the singularity formation standard schemes using shock capturing ideas will select
the viscosity solution [10, 11], which is inadequate in this context for describing the
relevant physical phenomena. Multi-valued solutions for (1.4) are physically relevant
ones. The first attempt to compute multi-valued solutions for (1.1) with b(y) ≡ 1 was
due to [15], using so called K-branch solutions, see also subsequent works [14, 16].

Phase space based geometric methods were first introduced for tracking wave fronts in
geometric optics, such as the segment projection method [12] and the level set method
[34, 9, 38, 8]. More recently, a level set framework has been developed for computing multi-
valued phases in the entire physical domain in [8, 22, 25, 21, 20]; main development has
been summarized in the review article [26]. A key idea is to represent the n-dimensional
bi-characteristic manifold of the Hamilton-Jacobi equation in phase space by an implicit
vector level set function. Further developments are geared at handing more complex
potentials or recovery of the original wave field, see [23, 27, 28, 29].

The aim of this paper is to extend the level set method of [8, 21] for linear Schrödinger
equations to solve (1.1)-(1.2) with periodic structures. We formulate level set description
to solve the banded WKB system (1.4)–(1.5) and then compute total averaged density
over a sample set of Bloch bands. In order to illustrate the level set method developed in
this paper, we let φ(t, x, k) be a function in phase space (x, k) ∈ IR2, whose zero level set
determines the multi-valued phase gradient u = Sx, i.e.,

u(t, x) ∈ {k| φ(t, x, k) = 0}, (t, x) ∈ IR+ × IR.

It is shown that on nth Bloch band, φ solves

φt + E ′
n(k)φx − V ′

e (x)φk = 0.

The initial data for the level set function φ(t, x, k) is selected to uniquely imbed the initial
phase gradient into its zero set.

Following [29], we compute the multi-valued density by

ρn(t, x) ∈
{

f(t, x, k)

|φk|
∣∣∣ φ(t, x, k) = 0

}
, (t, x) ∈ IR+ × IR,

where f is determined by solving the band Liouville equation

ft + E ′
n(k)fx − V ′

e (x)fk = 0,(1.7)

f(0, x, k) = ρn(0, x).

Here En(k) is obtained from solving the associated Bloch eigenvalue problem (1.6), for
which we apply a standard Fourier method.

The initial density on each band is calculated from ψε(0, x) in (1.2) through a projection
procedure,

ρn(0, x) =
1

2π
|an(x)|2,
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where

an(x) =

∫ 2π

0

g(x, y)z̄n(∂xS0, y)dy.

Considering the possible phase shift, the wave profile in each Bloch band takes the form

ψε
n(t, x) =

Kn∑
j=1

√
ρj

n(t, x)zn

(
uj

n(t, x),
x

ε

)
exp

(
iSj

n(t, x)

ε

)
exp

(
iπ

4
µj

n

)
,

where the phase shift µj
n corresponds to the usual Keller-Maslov phase shift [32].

Finally, the total position density over all bands is evaluated using Bloch waves and
multi-valued densities obtained on each band:

ρ̄(t, x) =
∑

n

Kn∑
j=1

ρj
n.

Although the level set equation is formulated in phase space, the computational cost,
when using a local level set method such as those in [33, 34, 37], is almost linear in the
number of grid points in physical domain. In contrast to the method of using K-branch
solutions in [15], the level set method developed here is simple and more robust especially
when the number of solution branches increase.

The rest of this paper is organized as follows: in §2, we derive the level set algorithm
and analyze the effective position density to be computed. §3 describes the numerical
procedure in four steps. Finally in §4 a series of numerical tests is given to validate our
level set algorithm.

2. Level Set Formulation

In this section we follow a hybrid of semiclassical approximation and homogenization
to derive the Bloch eigenvalue problem and the Bloch banded WKB system for phase
and amplitude, and then formulate the level set method for each Bloch band, followed by
computation of position density over a sample set of Bloch bands.

2.1. Semi-classical homogenization and Bloch decomposition. We now sketch the
asymptotic procedure to derive a limiting model for the Schrödinger equation

iε
∂ψε

∂t
= −ε2

2
∂x

(
b
(x

ε

)
∂xψ

ε
)

+ V
(x

ε

)
ψε + Ve(x)ψε, x ∈ IR, t ∈ IR+(2.1)

ψε(x, 0) = eiS0(x)/εg
(
x,

x

ε

)
.(2.2)

We use, as illustrated in [5, 18], the two scale expansion method in which the electron
coordinate y = x

ε
and the space variable x are regarded as independent variables. Thus

consider the following equation in the independent variables (t, x, y):

(2.3) iε∂tψ =

[
−1

2
(∂y + ε∂x) (b (y) (∂y + ε∂x)) + V (y) + Ve(x)

]
ψ.

Note that if we let y = x/ε in the solution ψ(t, x, y; ε) of (2.3) we recover the solution of
(2.1).

We now look for approximate solutions of the following form

(2.4) ψ(t, x, y; ε) = eiS(t,x)/ε [A0(t, x, y) + εA1(t, x, y) + · · · ] ,



BLOCH BAND BASED LEVEL SET METHOD 5

where A0, A1, · · · are required to be 2π−periodic function in y. A substitution of this
ansatz into (2.3), collecting terms which are the same order in ε, gives

0 = eiS(t,x)/ε [c0(t, x, y) + εc1(t, x, y) + · · · ] ,(2.5)

where the first two coefficients are

c0(t, x, y) = − [St + H(k(t, x), y) + Ve(x)] A0, k(t, x) = Sx(t, x),(2.6)

c1(t, x, y) = iLA0 − [St + H(k(t, x), y) + Ve(x)] A1.(2.7)

Here we have set

H(k, y) = −1

2
(∂y + ik)[b(y)(∂y + ik)] + V (y),(2.8)

L = ∂t − i

2
[(∂y + ik)[b(y)∂x] + ∂x[b(y)(∂y + ik)]] .(2.9)

It is known [40] that for smooth V (y) and b(y) > 0, H(k, y) admits a complete set of
(normalized) eigenfunctions zn for each fixed k, in the sense that {zn(k, y)}∞n=1 form an
orthonormal basis in L2(0, 2π) for any fixed k. Let zn be the normalized eigenfunction
corresponding to the eigenvalue En(k), then

(2.10) H(k, y)zn(k, y) = En(k)zn(k, y),

zn(k, y + 2π) = zn(k, y), k ∈ B, y ∈ R.

Here k is confined to the reciprocal cell B = [−0.5, 0.5](or a Brillouin zone in physical
literature)[5, 40]. Correspondingly there exists a countable family of real eigenvalues
which can be ordered according to

E1(k) ≤ E2(k) ≤ · · · ≤ En(k) ≤ · · · , n ∈ N,

including the respective multiplicity. The set {En(k)| k ∈ B} is called the nth energy
band, which together with the corresponding Bloch functions characterizes the spectral
properties of the operator H(k, y). Standard perturbation theory shows that En(k) is a
continuous function of k and is real analytic in a neighborhood of any k such that

En−1(k) < En(k) < En+1(k).

From now on we will suppress the index n whenever no confusion is caused.
We can thus satisfy c0 = 0 in (2.6) by choosing

(2.11) St + E(Sx) + Ve(x) = 0

and setting
A0(t, x, y) = a(t, x)z(k(t, x), y).

Thus c1 = 0 in (2.7) becomes

iLA0 − (H(k, y)− E(k))A1 = 0.

By the Fredholm alternative, this equation has a solution A1 if and only if

(2.12) 〈Lz, z〉 = 0.

A substitution of A0 = a(t, x)z(k(t, x), y) into (2.12) leads to the following transport
equation for a:

(2.13) ∂ta +
1

2
a∂xE

′(k(t, x)) + ∂xaE ′(k(t, x)) + βa = 0,
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with

β = (∂tz, z)− 1

2
∂xE

′(k(t, x))− i

2
〈(∂y + ik(t, x))[b(y)∂xz] + b(y)∂x(∂y + ik(t, x))[z], z〉.

We now turn to show that the above β is purely imaginary so that ρ = |a|2 satisfies

(2.14) ρt + (E ′(Sx)ρ)x = 0.

In fact, if we use Hk, then β can be recast as

(2.15) β = 〈zt, z〉 − 1

2
∂xE

′(k) + 〈Hk · ∂xz, z〉+
kx

2
〈b(y)z, z〉.

Let E(k) be a simple eigenvalue, then z(k, y) may be assumed analytic in k. Thus,
differentiating H(k, y)z = E(k)z with respect to k we have

(2.16) [E ′(k)−Hk] z = [H − E]zk,

which upon taking inner product with z gives

E ′(k) = 〈Hkz, z〉.(2.17)

Here we have used the fact that 〈z(k, ·), z(k, ·)〉 = 1 and H − E is self-adjoint. Further
we differentiate (2.17) with respect to x, and noting that Hk is self-adjoint, to obtain

∂xE
′(k) = 〈z,Hk · ∂xz〉+ 〈Hk · ∂xz, z〉+ 〈(∂xHk)z, z〉

= 2Re〈Hk · ∂xz, z〉+ kx〈b(y)z, z〉.
This combined with 〈zt, z〉 ∈ iR (which follows from 〈z, z〉 = 1) when inserted into (2.15)
yields

Re(β) = 0.

The superposition principle for linear Schrödinger equations suggests that the wave func-
tion has an asymptotic description of the form

(2.18) ψε(t, x) =
∞∑

n=1

an(t, x)zn

(
∂xSn,

x

ε

)
eiSn(t,x)/ε +O(ε),

where Sn(t, x) satisfies the nth band Hamilton-Jacobi equation (2.11) with E = En.
Upon these equations for density (2.14), phase (2.11) as well as the Bloch waves (2.10),

we proceed to formulate our Bloch band based level set method.

2.2. Bloch band based level set equation. Once we obtain the WKB system on nth

Bloch band

St + E(Sx) + Ve(x) = 0,

ρt + (E ′(Sx)ρ)x = 0,

the next task is to solve them numerically to obtain multi-valued solutions (here again
band indexes are suppressed). Here, multi-valued phase shall be sought in order to capture
the relevant physical phenomena.

Let φ(t, x, k) be a function in phase space, whose zero level set implicitly describes the
phase gradient ∂xS(t, x), where S(t, x) solves (2.11), then φ is proven to satisfy

φt + E ′(k)φx − V ′
e (x)φk = 0,(2.19)

φ(0, x, k) = k − ∂xS0(x),(2.20)
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with E ′(k) being solved from (2.10). The multi-valued velocity is then given by

u(t, x) ∈ {k| φ(t, x, k) = 0}, ∀(t, x) ∈ IR+ × IR.

The corresponding multi-valued density can be evaluated as suggested in [29]

(2.21) ρ(t, x) ∈
{

f(t, x, k)

|φk|

∣∣∣∣ φ(t, x, k) = 0

}
, ∀(t, x) ∈ IR+ × IR,

where f solves

ft + E ′(k)fx − V ′
e (x)fk = 0,(2.22)

f(0, x, p) = ρ0(x),(2.23)

where ρ0(x) is to be determined from the initial data ψε(0, x), see (2.27). The averaged
density can be evaluated as

(2.24) ρ̄(t, x) =

∫ +∞

−∞
f(t, x, k)δ(φ)dk.

Note that we need to compute E ′(k) in the level set equation, which may also be evaluated
based on {zn} using (2.17).

Remark 1. The above procedure can be easily extended to more general case. For instance
the case with coefficient b(x, x/ε) and potential V (x, x/ε) with no separation of two scales.
However, in such case the Bloch eigenvalue problem becomes spatial dependent:

H(k, x, y)z(k, x, y) = E(k, x)z(k, x, y), z(k, x, y) = z(k, x, y + 2π), ∀(k, x) ∈ B × IR.

A level set formulation in multi-dimensional case can be derived in a straightforward
manner.

2.3. Initial band configuration. We now discuss the recovery of the initial band density
ρn(0, x) from the given initial data

(2.25) ψε
0

(
x,

x

ε

)
= g

(
x,

x

ε

)
exp(iS0(x)/ε),

with a real-valued phase S0 ∈ C∞(IR) and a possible complex-valued amplitude g(x, ·) ∈
L2(IR).

From (2.18) it follows that one needs only to decompose g as follows:

g(x, y) =
∞∑

n=1

an(x)zn(∂xS0, y).

The orthonormality of zn(∂xS0, y) leads to the following formula for an

an(x) =

∫ 2π

0

g(x, y)z̄n(∂xS0, y)dy.

The above decomposition ensures that

(2.26)

∫ 2π

0

|ψε
0(x, y)|2dy =

∫ 2π

0

|g(x, y)|2dy =
∞∑

n=1

|an|2.

Hence ρn(x) can be evaluated by

(2.27) ρn =
1

2π
|an(x)|2
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so that 1
2π

∫ 2π

0
|ψε

0(x, y)|2dy =
∑

n ρn.

2.4. Evaluation of position density. In this section, we evaluate the position density
and the wave field based on the quantities computed from the level set algorithm.

Let {uj
n, j = 1, · · · , Kn} be the multi-valued velocities, {Sj

n, j = 1, · · · , Kn} and {aj
n, j =

1, · · · , Kn} be the corresponding phase and amplitude on nth band, the wave function of
two scales, associated with each uj

n, is

ψε(t, x, y, uj
n) = aj

n(t, x)zn(uj
n(t, x), y) exp

(
iSj

n(t, x)

ε

)
.

The wave field on each band is thus calculated from its phase space counterpart as

ψε
n(t, x, y) =

∫
ψε(t, x, y, k)δ(φ) det(φk)dk(2.28)

=
Kn∑
j=1

∫
ψε(t, x, y, k)δ(k − un

j (t, x))dk

=
Kn∑
j=1

ψε(t, x, y, uj
n) =

Kn∑
j=1

aj
nzn

(
uj

n, y
)
exp

(
iSj

n

ε

)
.

This wave function is periodic in the lattice scale y, we thus only calculate the averaged
band density as

ρ̄ε
n(t, x) =

1

2π

∫ 2π

0

|ψε
n(t, x, y)|2dy.

Lemma 2.1. Away from caustics we have

(2.29) ρ̄ε
n(t, x) ⇀

1

2π

Kn∑
j=1

|aj
n|2 as ε → 0.

Proof. By a direct calculation we have

2πρ̄ε
n(t, x) =

Kn∑
j=1

|aj
n|2 +

∑

j 6=j′
aj

naj′
n exp(i(Sj

n − Sj′
n )/ε)

∫ 2π

0

zn(uj
n, y)z̄n(uj′

n , y)dy.

The cross-terms over different j, j′, denoted by O1(n), will converge, when away from
caustics, to zero weakly as ε → 0. In fact, for any smooth test-function Φ

∫

R
O1Φ(x)dx =

∑

j 6=j′

∫

R
aj

naj′
n exp(i(Sj

n − Sj′
n )/ε)

∫ 2π

0

zn(uj
n, y)z̄n(uj′

n , y)dyΦ(x)dx.
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According to the stationary phase lemma∗, the non-trivial contribution as ε → 0 comes
from the stationary points of Sj

n(t, x)− Sj′
n (t, x), i.e.,

(2.30) A1 := {x|uj
n(t, x) = uj′

n (t, x), j 6= j′}.
Note that for x ∈ A1,

∫
zn(uj

n, y)z̄n(uj′
n , y)dy = 1. According to our level set construction

this only happens at the caustic points where j′ = j + 1 (or j − 1), and at such points
aj

n = aj′
n , Sj

n = Sj′
n and ∂2

x(S
j
n − Sj′

n ) 6= 0. These terms will weakly converge to

O1(n) ⇀
∑

x∗∈A1

|aj
n(x∗)|2

√
2πε

|(∂x(u
j
n − uj′

n )(x∗)|e
iπµ

j
n

4 ,

where µj
n = 1 or −1 depending on the sign change of ∂x(u

j
n−uj′

n )(x∗). However, at caustic
points both ∂xu

j
n and ∂xu

j
n = −φx/φp become unbounded with different signs such that

|∂x(u
j
n − uj′

n )| = ∞. On the other hand at caustics aj
n also becomes unbounded. These

together leave the above weak limit undefined at caustic points. ¤
We now consider all Bloch bands. Since the underlying equation is linear, the wave

field over all bands is simply a superposition of wave filed on each band

ψε(t, x, y) =
∞∑

n=1

Kn∑
j=1

aj
nzn

(
uj

n, y
)
exp

(
iSj

n

ε

)
.

Lemma 2.2. Let the total density be defined as

(2.31) ρε(t, x) =
1

2π

∫ 2π

0

|ψε(t, x, y)|2dy.

Then away from caustics, we have

(2.32) ρε(t, x) ⇀
1

2π

∑
n

Kn∑
j=1

|aj
n|2 as ε → 0.

Proof. A direct calculation gives

2πρε(t, x) =
∑

n

Kn∑
j=1

|aj
n|2 +

∑
n

∑

j 6=j′
aj

nā
j′
n exp(i(Sj

n − Sj′
n )/ε)

∫ 2π

0

zn(uj
n, y)z̄n(uj′

n , y)dy

+
∑

m6=n

∑

j,j′
aj

maj′
n exp(i(Sj

n − Sj′
m)/ε)

∫ 2π

0

zn(uj
n, y)z̄m(uj′

m, y)dy

≡
∑

n

Kn∑
j=1

|aj
n|2 + Q1 + Q2.

As shown in Lemma 2.1 the term Q1 =
∑

n O1(n) ⇀ 0 away from caustics.

∗Let x∗ be the critical point of the phase φ(x), x ∈ R. For any integrable function F (x), the following
asymptotic formula holds

∫

R
F (x)eiφ(x)/εdx '

√
2πε

|φxx(x∗)| exp
(

sign(φxx(x∗))
πi

4

)
exp

(
iφ(x∗)

ε

)
F (x∗).
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For the term Q2 we explore the stationary phase lemma again. The only O(1) contri-
bution comes from the stationary points of Sj

n(t, x)− Sj′
m(t, x), i.e.,

(2.33) A2 := {x|uj
n(t, x) = uj′

m(t, x), m 6= n}.
However for x ∈ A2, it holds

∫ 2π

0

zn(uj
n, y)z̄m(uj′

m, y)dy = 0,

where we have used the fact 〈zn(k, ·), zm(k, ·)〉 = δmn for any fixed k. Therefore, Q2 ⇀ 0
as ε → 0. The proof is thus complete. ¤

Based on Lemma 2.1 and 2.2, the total position density ρ̄(x) can be evaluated by

(2.34) ρ̄(x) =
∑

n

Kn∑
j=1

ρj
n,

where ρj
n = 1

2π
|aj

n|2 is given by (2.21).

Remark 2.3. The above analysis shows that in order to recover the wave field, one needs
a caustic correction — the so called Keller-Maslov phase shift [32] such that

(2.35) ψε (t, x) =
∑

n

Kn∑
j=1

aj
n(t, x)zn

(
uj

n,
x

ε

)
exp

(
iSj

n

ε

)
exp

(
iπ

4
µj

n

)
.

However, this modified wave profile is valid only before and after caustics. To obtain a
uniformly valid wave field a globally bounded aj

n needs to be constructed. This will be
considered in a future publication.

2.5. 2D Strang Splitting spectral method. This section is to present a spectral
scheme to compute the solution of (2.3), i.e.,

(2.36) iε∂tψ =

[
−1

2
(∂y + ε∂x) (b (y) (∂y + ε∂x)) + V (y) + Ve(x)

]
ψ.

The computed solution will be used to compare with the solution computed from our level
set method.

For simplicity, we assume Ve(x) is a periodic function in x ∈ [a, b]. Then ψ(t, x, y) is a
periodic solution to (2.36) in both x and y. We choose spatial meshes

∆x =
b− a

J
, ∆y =

2π

P

where both J and P are even integers. Let the grid points be (xj, yp)

xj = a + j∆x, j = 0, 1, · · · J − 1; yp = p∆y, p = 0, · · · , P − 1.

Let φj,p(t) be the numerical approximation of φ(t, xj, yp).
Given φj,p(t) we shall compute φj,p(t + ∆t). From t to t + ∆t we follow [4] to solve

equation (2.36) by a Strang Splitting spectral method. For j = 0, · · · , J − 1, p =
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0, · · · , P − 1,

ψ∗j,p = exp

(
−i∆t

2ε
(V (yp) + Ve(xj))

)
φj,p(t),

ψ̂∗∗m,q =
(
Gψ̂∗

)
m,q

, G is defined in (2.38) below,

ψ∗∗j,p =
1

JP

J/2−1∑

m=−J/2

P/2−1∑

q=−P/2

ψ̂∗∗m,q exp

(
im

2π(xj − a)

b− a
+ iqyp

)
,

ψj,p(t + ∆t) = exp

(
−i∆t

2ε
(V (yp) + Ve(xj))

)
ψ∗∗j,p.(2.37)

Here ψ̂m,q, the Fourier coefficients of ψj,p, is defined as

ψ̂m,q =
J−1∑
j=0

P−1∑
p=0

ψj,p exp

(
−im

2π(xj − a)

b− a
− iqyp

)

for m = −J
2
, · · · , J

2
− 1 and q = −P

2
, · · · , P

2
− 1.

We now determines the operator G as follows: we insert the Fourier series

ψ(t, x, y) =
∑
m,q

ψ̂m,q(t) exp

(
im

2π(x− a)

b− a
+ iqy

)
, b(y) =

∑
q

b̂q exp(iqy),

into the equation spilt from (2.36):

iε∂tψ = −1

2
(∂y + ε∂x) (b (y) (∂y + ε∂x)) ψ,

and truncate to arrive the following ODE system

iε
d

dt
ψ̂m,q =

1

2

P/2−1∑

q′=−P/2

ψ̂m,q′ b̂q−q′

(
q + m

2πε

b− a

)
·
(

q′ + m
2πε

b− a

)
, q = −P

2
, · · · ,

P

2
− 1.

Introduce a P × P matrix Ĥ with entries as

Ĥr,s = b̂r−s

(
r − P

2
− 1 + m

2πε

b− a

)
·
(

s− P

2
− 1 + m

2πε

b− a

)
.

The solution operator G is thus given as

(2.38) (Gψ̂)m,q =

(
exp

(−i∆t

2ε
H

)
(ψ̂m,−P/2, · · · , ψ̂m,P/2−1)

>
)

q+P/2+1

.

If b ≡ 1, then operator G can be reduced to a simple formulation as

(Gψ̂∗)m,q = exp

(
−i∆t

2ε

(
q + m

2π

b− a
ε

)2
)

ψ̂∗m,q.
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3. Numerical Procedures

In this section, we first examine the Bloch waves numerically and then show how to
implement the level set method developed in this paper. The solution process is carried
out in following steps.

Step 1. Solving Bloch eigenvalue problem
We first evaluate En(k) from a sequence of the eigenvalue problems (2.10)

(3.1) V (y)zn +
1

2
(−i∂y + k) [b(y)(−i∂y + k)zn] = En(k)zn,

where En(k) is the nth energy band, and eikyzn is the nth Bloch function with k ∈ [−1
2
, 1

2
].

Since zn(k, y), b(y) and V (y) are 2π−periodic functions in y, we can expand them in
Fourier series

(3.2) V (y) =
∑

q∈Z
V̂q exp(iqy), V̂q =

1

2π

∫ 2π

0

V (y) exp(−iqy)dy,

(3.3) b(y) =
∑

q∈Z
b̂q exp(iqy), b̂q =

1

2π

∫ 2π

0

b(y) exp(−iqy)dy,

(3.4) zn(k, y) =
∑

q∈Z
ẑn,q exp(iqy), ẑn,q =

1

2π

∫ 2π

0

zn(k, y) exp(−iqy)dy.

Insertion of these into (3.1) leads to

1

2

∑

q∈ZZ

(k + m)(k + q)âm−qẑn,q +
∑

q∈ZZ

V̂m−qẑn,q = En(k)ẑn,m, ∀m ∈ ZZ.(3.5)

Extracting 2N + 1 terms for q ∈ {−N, · · · , N}, we have the corresponding matrix H =
(Hm,q) of the eigenvalue problem with

Hm,q =
1

2
(k + m)(k + q)âm−q + V̂m−q, −N ≤ m, q ≤ N.

This is a Hermitian matrix satisfying

(3.6) H




(ẑn)−N
...

(ẑn)N


 = En(k)




(ẑn)−N
...

(ẑn)N


 .

Note that by a transform of z̃n(y) = zn(k, y)eimy in (3.1), we obtain an equivalent
eigenvalue problem to (3.5) for z̃n, which shows that the eigenvalue problem is invariant
under any integer shift in k. Taking m = 1, we have the following relation,

En(k + 1) = En(k), zn(k + 1, y) = zn(k, y),(3.7)

which implies that the fundamental domain of dual lattice, B = [−0.5, 0.5], is not re-
stricted. Note that the eigen-matrix in (3.6) is independent of spatial grids and time, we
only have to solve it once; therefore the computational complexity of this step is not a
major concern. In our simulation, N = 50 ∼ 100.

After solving the above Bloch eigenvalue problem at each grid point {ki ∈ [−0.5, 0.5], i =
−Mk, · · · ,Mk} with mesh size ∆k, we are equipped with discrete function values of En(ki).
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We now evaluate {E ′
n(ki), i = −Mk, · · · ,Mk} for any grid point ki. A natural way of

computing first order derivative to a certain order accuracy is by polynomial interpolation
using nearby grid points. Note that, periodic boundary conditions are used due to the
1-periodicity of E(k), (3.7). A second order approximation is

E ′(ki) =
E(ki+1)− E(ki−1)

2∆k
,(3.8)

and a fourth order approximation is given by

E ′(ki) =
E(ki−2)− 8E(ki−1) + 8E(ki+1)− E(ki+2)

12∆k
.(3.9)

Note that in this case, E ′(k) can also be computed from z(k, y) by the integral (2.17).
Step 2. Bloch band based decomposition of initial data.

Given the WKB-type wave function

ψε
(
x,

x

ε

)
= g

(
x,

x

ε

)
exp(iS0(x)/ε),

we compute the band density ρn defined in (2.27) by using different number of energy
bands from the Bloch waves. We will check how many eigen-modes are needed to recover
the density ρ = 1

2π

∫ 2π

0
|ψε(x, y)|2dy at a desired accuracy. Here we measure the accuracy

by L1 error

(3.10) error = ||ρ−
M∑

n=1

ρn||L1 , M = 2, 4, 6, 8, 10, · · · .

The choice of M is studied numerically in Section 4.1. We find out that for smooth
potential V (x) and initial ψε

0(x), 8 bands are sufficient for the numerical simulation.
Step 3. Solving the level set equation

(3.11) φt + E ′(k)φx − V ′
e (x)φk = 0,

subject to initial data (2.20).
We discretize space with uniform mesh size ∆x and ∆k, and use φ(t, xi, kj) to denote

the grid function value. Let φij(t) ≈ φ(t, xi, kj) be the numerical solution, computed from
the upwind semi-discrete scheme

d

dt
φij(t) = L(φij),(3.12)

L(φij) := −E ′(kj)
(φij)

+
x + (φij)

−
x

2
+ |E ′(kj)|(φij)

+
x − (φij)

−
x

2
(3.13)

−V ′
e (xi)

(φij)
+
k + (φij)

−
k

2
+ |V ′

e (xi)|(φij)
+
k − (φij)

−
k

2
,

where E ′(k) was evaluated in Step 1. Higher order spatial approximation can be achieved
by high order ENO reconstruction applied to both φ±x and φ±k respectively, see [35]. Here
we use a second order ENO reconstruction in our simulation.

In time, a two-stage, second order Runge-Kutta method [17] is used

φ∗ij = φn
ij + ∆tL(φ

(n)
i,j ),

φn+1
ij =

1

2
φn

ij +
1

2

(
φ∗ij + ∆tL(φ∗ij)

)
.(3.14)
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Now,we briefly summarize the procedure here:

(i) Find high order approximation of (φij)
±
x,k using ENO, and E ′(kj) using (3.8) or

(3.9) at each grid point,
(ii) Solve (3.11) by using (3.12) and (3.14),
(iii) Project φ = 0 onto x− k plane to get Sx.

Note that in (ii), one may use interpolation to approximate E ′(k) when grid point of
E ′(kj) is not coincided with the grid point obtained in (3.8) or (3.9). In our computation,
we simply choose the same grid points.

Step 4. Computing the density ρ.
We solve (2.22) with initial condition (2.23) using methods described in step 3 in each
band to obtain fn for n = 1, · · ·M , where M is the number of bands to be sampled. M
is taken to be 10 in our numerical tests in next section.

The position density is to be computed by

ρ̄(t, x) =
M∑

n=1

∫
fn(t, x, k)δ(φn)dk(3.15)

=
M∑

n=1

∑

ki

fn(t, x, ki)δη(φn(t, x, ki))∆k,

where δη is an approximation of the δ−function. Let χ denote the characteristic function,
our choice is

δη(φ) =
1 + cos(πφ/η)

2η
χ[−η,η].

Finally, we compare the density obtained from (3.15) with

(3.16) ρ(t, x) =
1

2π

P−1∑
p=0

|ψ(t, x, yp)|2∆y,

where ψ(t, x, y) is computed by the Strang splitting spectral method (2.37) for different
ε.

4. Numerical Examples

4.1. Bloch band based initial decomposition. We first examine the accuracy of the
Bloch band decomposition of the initial data

ψ0(x) = g(x, x/ε)eiS0(x)/ε, ε ¿ 1,

in terms of Bloch functions {zn} obtained from (3.1) with V (y) = cos(y) and b(y) ≡ 1.
This internal potential V (y) = cos(y) will be used in some numerical tests below.

The eigen-structure of this potential V (y) and b(y) is shown in Fig.1, in which we
observe that all 5 eigenvalues are distinct for any k ∈ B. It meets the assumption of the
Bloch Band expansion in Section 2.

In all examples of this section the computation domain is chosen to be (x, k) ∈ [0, 2π]×
[−0.5, 0.5] with 151× 101 grid points and 101× 101 eigen-matrix.
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−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

Eigenvalues for first 5 bands
 

Figure 1. Eigenvalues for V (y) = cos(y) and b ≡ 1 of nth band, with
n = 1, · · · , 5 (bottom to top).

We compare the L1 error of the Bloch decomposition, defined in (3.10), for the following
data

(i) g (x, y) = exp

(−(x− π)2

2

)
, S0(x) = 0,

(ii) g (x, y) = exp

(−(x− π)2

2

)
, S0(x) = −0.3 cos(x),

(iii) g (x, y) = exp

(−(x− π)2

2

)
cos (y) , S0(x) = 0.

A comparison table is given below.

# of bands 4 6 8 10 12
L1 error of (i) 0.032843 0.009905 0.009879 0.009879 0.009879
L1 error of (ii) 0.017008 0.008111 0.008101 0.008101 0.008101
L1 error of (iii) 0.691181 0.062764 0.059332 0.059329 0.059329

From the above table we see that 8 bands give a good approximation with L1 error of
the order of 10−2, with ∆x = 2π/150 and ∆k = 1/100. Including more bands does not
seem to improve the accuracy of decomposition. Fig.2 shows a comparison between the
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1 2 3 4 5 6

 
Exact
Approx

Figure 2. Initial data (iii), Bloch decomposition of initial density, exact
density vs approximation with 8 bands

exact density and an approximation using 8 bands of data (iii). We see that they match
very well. This tells that, in solving level set equation (3.11), only a few bands are needed,
which makes our level set method more practical.

4.2. Numerical examples. We consider the periodic potential

V = cos
(x

ε

)

for all examples below.
Example 1. b = 1, Ve = 0 and

ψε(0, x) = exp

(
−(x− π)2

2

)
exp

(−0.3i cos(x)

ε

)
.

This example is to compare total averaged density computed from our level set (LS)
algorithm with the corresponding quantity in (3.16). From Fig.3, we observe that in
these three plots each density computed by the level set algorithm predicts the correct
trend as desired.

In what follows we shall test our level set algorithm for different choices of b and external
potentials as well as of zn(k, y).
Example 2. b ≡ 1, Ve = 0, and

ψε(0, x) = e
−0.3i cos(x)

ε e−(x−π)2zn(0.3 sin(x), x/ε), n = 3, 4, 5.
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1 2 3 4 5 6

intensity initial vs t=0.10176 for first 10 bands

LS
SP2 with ε=0.001

1 2 3 4 5 6

intensity initial vs t=0.30528 for first 10 bands

LS
SP2 with ε=0.001

1 2 3 4 5 6

intensity initial vs t=0.40169 for first 10 bands

LS
SP2 with ε=0.001

Figure 3. Example 1, homogenized density at different times
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# of bands 4 6 8 10 12
L1 error 0.004515 0.000967 0.000950 0.000950 0.000950

Table 1. L1 error table for initial Bloch decomposition of example 4 with
101× 101 grid points and 101 eigen-matrix.

This example is to test capacity of the level set algorithm to capture multi-valued velocities
and associated densities in different bands.

From the Bloch eigenvalues given in Fig.1 we see that when n = 3, E ′
3(k) is positive

when k > 0 and negative when k < 0; |E4(k)| ∼ −2|k| and |E5(k)| ∼ 2|k|. Thus when
initial velocity is a sine profile, both the third and fifth band will lead to multi-valued
solutions to the corresponding equation for u = Sx:

ut + E ′
n(u)ux = 0.

The forth band leads to a smooth rarefaction profile in u. The density is calculated as
(3.15).

The case n = 3 is illustrated in Fig.4 for multi-valued velocity and averaged density
at different times. From these figures we see that the density becomes infinite where the
velocity has turns.

The case n = 4 is displayed in Fig. 5, in which we see that as the rarefaction appears
around x = π, the averaged density tends to zero. Note that the multi-valued velocity
at the boundaries are the waves from adjacent period, because of the periodic boundary
condition.

When n = 5, multi-valuedness in velocity appears immediately when t > 0, see Fig.6.

Example 3. b ≡ 1, the harmonic potential Ve = |x−π|2
2

and the initial data

ψε(0, x) = e
−0.3i cos(x)

ε e−
(x−π)2

2 z5

(
0.3 sin(x),

x

ε

)
.

This example is to show the level set method to be capable of dealing with nontrivial
external potentials. In presence of a nontrivial Ve, both shapes and amplitudes of u
will change, a larger computation domain may be needed so that the computed velocity
remains to be observed in k direction. In Fig.7 we observe the motion of peaks in intensity,
which corresponds to the location of turning points in velocity.
Example 4. b = 3

2
+ sin (y), Ve = 0, and

ψε(0, x) = exp

(
−(x− π)2

2

)
exp

(−0.3i cos(x)

ε

)
.

Here we test this initial data with the Mathieu potential V = cos(y) [15]. The first eight
Bloch eigenvalues for this potential are shown in Fig.8. We first do the initial Bloch
decomposition with L1 errors shown in Table 1, where ∆x = 2π/100 and ∆k = 1/100
have been used.

In our simulation, we use 10 bands. The eigen-structure indicates that caustics will
appear in at least three bands. In Fig. 9 with 201× 101 grid points, peaks correspond to
turning points of the multi-valued velocities and valleys correspond to rarefaction waves.
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velocity at time about 1 of band 3

1 2 3 4 5 6 0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
intensity at time about 1 of band 3

velocity at time about 1.5 of band 3

1 2 3 4 5 6 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
intensity at time about 1.5 of band 3

velocity at time about 2 of band 3

1 2 3 4 5 6 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
intensity at time about 2 of band 3

Figure 4. Example 2, n = 3, velocity and density at different times
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velocity at time about 0.11056 of band 4

1 2 3 4 5 6 0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
intensity at time about 0.11056 of band 4

velocity at time about 0.50857 of band 4

1 2 3 4 5 6 0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
intensity at time about 0.50857 of band 4

Figure 5. Example 2, n = 4, velocity and density at different time
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