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Abstract

This paper deals with the numerical simulations of
the Vlasov-Poisson equation using a phase space grid
in the quasi-neutral regime. In this limit, explicit nu-
merical schemes suffer from numerical constraints re-
lated to the small Debye length and large plasma fre-
quency. Here, we propose a semi-Lagrangian scheme
for the Vlasov-Poisson model in the quasi-neutral limit.
The main ingredient relies on a reformulation of the
Poisson equation derived in [4] which enables asymp-
totically stable simulations. This scheme has a compa-
rable numerical cost per time step to that of an explicit
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de Strasbourg and CNRS, F-67084 Strasbourg cedex, France.
crouseil@math.u-strasbg.fr
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scheme. Moreover, it is not constrained by a restriction
on the size of the time and length step when the Debye
length and plasma period go to zero. A stability analysis
and numerical simulations confirm this statement.

Key-words: Vlasov equation, quasi-neutral limit, semi-Lagrangian
method, asymptotic preserving scheme.
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1 Introduction

For many years, the modeling and numerical simulation of plas-
mas has been an active field of research. The description of the
plasma is usually performed in two ways. On the one hand,
fluid models which need that the system is close to a thermo-
dynamical equilibrium to be valid. On the other side, kinetic
models consider a phase space repartition of the particles, but
numerical simulations are larger than fluid ones. Indeed, the
high dimensionality of the kinetic models (6 dimensions plus
the time) makes the simulations difficult to handle. However,
when collisionless problems are studied, the use of kinetic mod-
els is necessary since fluid models cannot accurately describe
the physics.

In addition, kinetic simulations are complex due to the large
variety of scales involved in the system. Among them, there are
two important physical length and time scales: the Debye length
and the electron plasma period. The Debye length measures the
typical length of charge unbalances whereas the electron plasma
period characterizes the motion of the oscillations due to the
electrostatic restoring forces when charge unbalances occur.

We are interested in this paper in the so-called quasi-neutral
limit where both parameters are small compared with macro-
scopic lengths of interest. From a numerical point of view, a
classical explicit scheme has to solve these micro-parameters in
order to remain stable, which requires a very small time step
and phase space cells. But on the other side, simulations have
to be performed on macroscopic lengths, which makes kinetic
simulations challenging.

Many asymptotic models have been derived to describe such
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regimes, but in situations where both quasi-neutral and non
quasi-neutral regimes coexist, these models are not valid. Hence,
hybrid approaches can be adopted (see [18, 21, 25]). However,
a specific development is necessary to connect the models, and
the interface has to be carefully described through an asymp-
totic analysis (see [10, 16]) or thanks to physical considerations.
Finally, these two points are quite difficult to handle numeri-
cally. Hence, it seems important to develop numerical methods
which can handle the two regimes simultaneously.

The main goal of this work is to present Vlasov-type sim-
ulations (i.e. using a grid of the phase space) which are valid
in both the quasi-neutral and the non-quasi-neutral regime. To
that purpose, following the strategy introduced in [4, 5, 8], a
new numerical scheme is introduced, the stability analysis of
which shows that its stability domain is independent of the De-
bye length. The present approach allows stable simulations even
when the mesh does not resolve the Debye length and the plasma
period.

As in [8], the Vlasov-Poisson model is studied with arbitrar-
ily small values of the Debye length (which corresponds to the
quasi-neutral regime). The Poisson equation is re-written in an
equivalent form: the so-called Reformulated Poisson Equation
(RPE). It has been first introduced in [4, 5] within the context
of the fluid Euler-Poisson system, and the extension to the ki-
netic framework has been performed in [8]. The RPE enables
to overcome the drastic reduction of time and space steps and is
not more difficult or costly to solve numerically. Its goal is the
simulation of the Vlasov-Poisson equation over time and length
scales which are arbitrarily small or large compared with the
plasma period and Debye length. With time and space steps
which resolve the plasma period and Debye length, it produces
comparable results to the standard semi-Lagrangian method but
unlike the latter it still produces stable results if the time and
space steps do not resolve them (under-resolved situations). Of
course, in such under-resolved situations, the plasma oscillations
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and wave-lengths are filtered out and cannot be accurately ac-
counted for. However, this filtering out of the small scales struc-
tures is precisely what allows the method to highlight the large
scales structures and makes it valuable for the simulation of the
large scale dynamics of the plasma.

This work is based on the same model as [8] since the Vlasov
equation is coupled with the RPE, but a semi-Lagrangian Vlasov
solver is used in place of a Particle In Cell (PIC) solver. Such
solvers are very often used for kinetic simulations (see [1, 19])
with the advantage that the computational cost of these meth-
ods remains acceptable, even in high dimensions. However, the
inherent numerical noise becomes too significant for some appli-
cations. Hence, methods discretizing the Vlasov equation on a
phase space grid have been proposed (see [14, 13, 27]). Unlike
PIC methods, the distribution function is well resolved every-
where, even in zones where few plasma particles are present.

The semi-Lagrangian method can be viewed as an intermedi-
ate method between PIC methods and Eulerian methods. The
mesh of the phase space is kept fixed in time (Eulerian method),
and the Vlasov equation is integrated along the trajectories us-
ing the invariance of the distribution function along the charac-
teristic curves (Lagrangian method). Interpolation is performed
to evaluate the new value of the distribution function on the grid
nodes. In particular, one of the advantages of such a method
is to have a good description of the phase space (also in re-
gions where the density is low), and unlike PIC methods, it is
noiseless.

The main particularity of this work consists in the time inte-
gration of the trajectories and its coupling with the field solver.
As in [8], the particle trajectories are computed using a semi-
implicit symplectic integrator: the characteristics in velocity are
integrated using an implicit electric potential evaluated at an
explicit position. Semi-implicit time discretization of the char-
acteristics has already been employed in [3, 20, 22, 23], but the
use of the Reformulated Poisson Equation makes the approach
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different. This equation enables to predict a stable electric field
even for small values of the Debye length λ. Moreover, the
present approach does not suffer from unphysical decay of con-
served quantities such as the total energy, which can prevent
the asymptotic preserving property of the numerical scheme.
Besides, as mentioned in [4, 5, 8], the coupling with the RPE
together with the new time integration has the same compu-
tational cost per time step as the standard resolution of the
Vlasov-Poisson equation.

Moreover, a stability analysis of the model is performed in
the linear framework, proving that the numerical scheme is sta-
ble for small values of the Debye length λ, even if the time step
does not resolve it. Such a study has been performed for the
Euler-Poisson context in [9]. However, the strategy is different
in the Vlasov case. Indeed, starting from the semi-discretized
linearized version of the Vlasov equation coupled with the RPE,
we derive a semi-discretized dispersion relation. The roots of
this dispersion relation provide an indication on the stability
of the numerical scheme. Indeed, when the imaginary part of
the root is negative, then the numerical scheme is stable. As a
comparison, we also derive a dispersion relation for the classical
numerical scheme which does not enjoy such a property when
the time step is bigger than the Debye length. This study em-
phasizes the Asymptotic Preserving property since the damping
coefficient obtained by solving the dispersion relation presents
the correct behavior as λ goes to zero. These results are con-
firmed by the numerical results. In non-linear situations, the
method gives extremely satisfactory results when λ = 1 (re-
solved situation). On the other hand, when λ ≪ 1 and ∆t,
∆x do not resolve the scales associated with λ (under-resolved
situation), the method provides a stable solution in which the
plasma oscillations and wave-lengths are filtered out, while clas-
sical methods are simply unstable.

The paper is organized as follows. In the next part, we
describe the Vlasov-Poisson model and introduce the Reformu-
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lated Poisson Equation. Then, we recall the main steps of the
semi-Lagrangian method. Next, the asymptotically stable nu-
merical scheme is presented with a classical scheme. A stability
analysis is then performed on these two numerical schemes by
solving the associated dispersion relation. Finally, some numeri-
cal results in linear and nonlinear regimes illustrate the efficiency
of the new method compared to the classical one.

2 The Vlasov-Poisson model and its

quasi-neutral limit

In this section, we present the Vlasov-Poisson system and its
quasi-neutral limit. As in [4], we show that the Poisson equation
can be reformulated into an elliptic equation which does not
degenerate in the quasi-neutral limit and, at the limit, provides
an equation for the quasi-neutral potential.

2.1 The Vlasov-Poisson system and its prop-

erties

In this paper, we restrict ourselves to the one-dimensional Vlasov-
Poisson system, even if this work straightforwardly extends to
the multi-dimensional case.

Here, we consider only one species of particles, the electrons,
and we assume that the ions form a uniform neutralizing back-
ground. Under these assuptions, the time evolution of the elec-
tron distribution function f(t, x, v) in phase space (x, v) ∈ IR×IR
(with t the time, x the spatial direction and v the velocity) is
given by the dimensionless Vlasov equation

∂tf + v∂xf + ∂xφ∂vf = 0, (2.1)

where the electric potential φ(t, x) is coupled to f through the
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Poisson equation

λ2∂xxφ(t, x) = ρ(t, x) − 1, with ρ(t, x) =

∫
f(t, x, v)dv.

(2.2)
In this one-dimensional context, this Poisson equation (2.2) is
equivalent to the Ampère equation

∂tE =
j

λ2
, j(t, x) =

∫

IR

vf(t, x, v)dv, (2.3)

where E = −∂xφ is the electric field.
Here the density ρ has been normalized to the ion background
density and the electron mass to unity. The dimensionless pa-
rameter λ is the ratio of the Debye length to the length unit,
or equivalently the ratio of the plasma period to the time unit.
Here, velocities are normalized to ionic thermic velocity and
space to a characteristic length of the problem.

In the sequel, we briefly recall some classical estimates on
the Vlasov-Poisson system (2.1)-(2.2). First of all, mass and
momentum are preserved with time,

d

dt

∫

IR×IR

f(t, x, v)

(
1
v

)
dxdv = 0, t ∈ IR+.

Next, multiplying the Vlasov equation (2.1) by |v|2 and per-
forming an integration by parts, we find the conservation of the
total energy Et for the (2.1)-(2.2) system

dEt

dt
=

d

dt
(Ek(t) + Ep(t)) = 0, t ∈ IR+,

where Ek denotes the kinetic energy and Ep the potential energy

Ek(t) =

∫

IR×IR

f(t, x, v)
|v|2
2

dxdv, Ep(t) =
λ2

2

∫

IR

|∂xφ(t, x)|2dx.

On the other hand, we can define the characteristic curves of
the Vlasov-Poisson equation (2.1)-(2.2) as the solutions of the
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following first order differential system




dX

dt
(t; s, x, v) = V (t; s, x, v),

dV

dt
(t; s, x, v) = ∂xφ(t,X(t; s, x, v)),

(2.4)

with the initial conditions

X(s; s, x, v) = x, V (s; s, x, v) = v.

We denote by (X(t; s, x, v), V (t; s, x, v)) the position in phase
space at the time t, of a particle which was in (x, v) at time s.
Let say that t → (X(t; s, x, v), V (t; s, x, v)) is the characteris-
tic curves solution of (2.4). Then, the solution of the Vlasov-
Poisson equation (2.1)-(2.2) is given for all t ≥ 0 by

f(t, x, v) = f(s,X(s; t, x, v), V (s; t, x, v)) (2.5)

= f0(X(0; t, x, v), V (0; t, x, v)), (x, v) ∈ IR × IR,(2.6)

where f0 is a given initial condition of the Vlasov-Poisson equa-
tion. This equality means that the distribution function f is
constant along the characteristic curves which is the basis of
the semi-Lagrangian method we recall in a next section.

2.2 The quasi-neutral model

The quasi-neutral limit of the Vlasov-Poisson system (λ → 0)
has been studied rigorously in a series of papers (for example
see [2]).

Formally, passing to the limit λ → 0 in (2.1)-(2.2) merely
amounts to replacing the equation (2.2) by the quasi-neutrality
constraint ρ = 1. The Poisson equation is then lost, while the
electrostatic potential becomes the Lagrange multiplier of the
quasi-neutrality constraint. This is exactly the same in the in-
compressible Euler equations in which the pressure is a Lagrange
multiplier for the divergence-free constraint.
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Assuming that the quasineutrality constraint is satisfied ini-
tially, integrating (2.1) with respect to the velocity variable leads
to the divergence-free constraint for the scaled electric current

∂x

∫
vf dv = 0. (2.7)

Then, using (2.7) and after some computations that will be de-
tailed in the next section, we obtain the following elliptic equa-
tion for the quasi-neutral potential φ

∂2
xφ = ∂2

xS, (2.8)

where S is the second moment of the distribution function f ,
S(t, x) =

∫
v2f(t, x, v) dv.

In summary, the quasi-neutral model consists in the following
system

∂f

∂t
+ v∂xf + ∂xφ∂vf = 0, (2.9)

∂2
xφ = ∂2

xS. (2.10)

We first note that the Vlasov-Poisson system (2.1)-(2.2) and
(2.9)-(2.10) differ by the elliptic equations for the potential φ
namely the Poisson equation (2.2) for the former and the quasi-
neutral limit (2.10) for the latter.

A major difficulty is to find a direct way to obtain the equa-
tion (2.10) from the quasi-neutral limit of (2.2). In [4, 5], in
order to unify these two different equations, a new reformula-
tion of the Poisson equation has been derived.

2.3 The reformulated Poisson equation

This present part recalls the main steps of the derivation of the
Reformulated Poisson Equation (see [4, 5, 8]).

By taking the two first moments of the Vlasov equation, we
get the continuity equation

∂tρ + ∂xj = 0, (2.11)
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and the equation evolving the current density j

∂tj + ∂xS − ρ∂xφ = 0, (2.12)

where ρ =
∫

f(v)dv, j =
∫

vf(v)dv and S =
∫

v2f(v)dv. In
order to eliminate the current j, we make the difference between
the time derivative of (2.11) and the divergence of (2.12). It
follows

∂ttρ − ∂xxS + ∂x(ρ∂xφ) = 0. (2.13)

Now, using the Poisson (2.2) to replace ρ in the first term of
(2.13) gives the Reformulated Poisson Equation

−∂x

[
(λ2∂tt + ρ)∂xφ

]
= −∂xxS (2.14)

which is equivalent to the original one if initially the Poisson
equation (2.2) and its time derivative are satisfied.

In the quasi-neutral limit (λ → 0), the reformulated equation
(2.14) formally converges toward the quasi-neutral potential el-
liptic equation (2.10). It does not degenerate into an algebraic
equation like the Poisson equation (2.2) does. Then the refor-
mulated system

∂f

∂t
+ v∂xf + ∂xφ∂vf = 0, (2.15)

−∂x

[
(λ2∂tt + ρ)∂xφ

]
= −∂xxS (2.16)

seems to be an appropriate framework to deal with problems
which are partly or totally in the quasi-neutral regime.

In the next section, we show how we can use this refor-
mulated system to derive an asymptotic time strategy for the
Vlasov-Poisson problem.

3 An asymptotic preserving scheme

for the Vlasov-Poisson model

In this part, we describe a numerical scheme used to solve the
Vlasov-Poisson system. In a previous work of P. Degond et. al
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[8], a PIC method was used to solve the Vlasov-Poisson equa-
tion. Although they could deal with unresolved Debye length
and plasma electron period and get stable simulations, they ob-
served an unphysical strong decay of the total energy which
could not permit to verify if the PIC method enjoys the asymp-
totic preserving property. In this work, we propose to use a
semi-Lagrangian method to overcome this lack of energy con-
servation.

3.1 The semi-Lagrangian method

In this section, we will recall the principles of the semi-Lagrangian
method for the Vlasov-Poisson equation (see [27] for more de-
tails) in two dimensions of the phase space.

First of all, we introduce the finite set of mesh points (xi, vj), i =
0, ..., Nx and j = 0, ..., Nv to discretize the phase space compu-
tational domain. Then, given the value of the distribution func-
tion f at the mesh points at any given time step tn, we obtain
the new value at mesh points (xi, vj) at tn+1 using

f(tn + ∆t, xi, vj) = f(tn, Xn, V n),

where the notations (Xn, V n) = X(tn; tn +∆t, xi, vj), V (tn; tn +
∆t, xi, vj) are used for the solutions of (2.4), and ∆t stands for
the time step. For each mesh point (xi, vj), the distribution
function f is then computed at tn+1 by the two following steps

1. Find the starting point of the characteristic ending at
(xi, vj), which is Xn and V n.

2. Compute f(tn, Xn, V n) by interpolation, f being known
only at mesh points at time tn.

Now, for the general case, in order to deal with step 1, we
need to introduce a time discretization of (2.4). A lot of numer-
ical methods exist for the resolution of the characteristic curves,
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given by the following ordinary differential equations

dX

dt
= V, (3.1)

dV

dt
= ∂xφ(t,X). (3.2)

Here, we want to use a robust and stable scheme which can take
into account the spatial and time oscillations of the electric po-
tential φ when the parameter λ tends towards 0. To reach this
goal, the first difficulty is related to the time discretization of φ
in the right hand side of (3.2). In the context where the plasma
is at equilibrium, it refers to a source term in the momentum
conservation’s law of the Euler equations. In the work of S.
Fabre (see [12]), it is proven that a necessary condition for sta-
bility for the Euler-Poisson system is the use of an implicit time
discretization of the advection term ∂xφ. We therefore do the
same for the time discretization of φ in (3.2).

The second difficulty is related to the time discretization of
(3.1) coupled to the space discretization of the right hand side of
(3.2). In order to preserve the total mass quantity for all time
and to preserve the areas of the transformation (Xn, V n) →
(Xn+1, V n+1), we have to use the well known Euler symplectic
schemes for (3.1)-(3.2) (see [17] for more details).

Then, we have two possible alternatives to discretize (3.1)-
(3.2). The first one we call (EI) is (E for explicit in space and I
for implitit in velocity)

Xn+1 − Xn

∆t
= V n, (3.3)

V n+1 − V n

∆t
= ∂xφ

n+1(Xn+1), (3.4)
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and the second one (IE) writes

Xn+1 − Xn

∆t
= V n+1, (3.5)

V n+1 − V n

∆t
= ∂xφ

n+1(Xn). (3.6)

But some basic computations on the (EI) scheme lead to

Xn+1 − 2Xn + Xn−1

∆t2
= ∂xφ

n(Xn), (3.7)

whereas the same ones for the (IE) scheme give

Xn+1 − 2Xn + Xn−1

∆t2
= ∂xφ

n+1(Xn). (3.8)

The two schemes (3.7) and (3.8) correspond to an explicit and
an implicit time discretization of the equation describing the
motion of electrons

d2X

dt2
= ∂xφ(t,X).

In order to get stable numerical results with respect to the time
step ∆t and the parameter λ and since we deal with strong
oscillations in space and in time of the electric potentiel φ, we
have to choose the symplectic scheme (IE) to solve (3.1)-(3.2).

Therefore the starting point of the characteristic curves end-
ing at (Xn+1, V n+1) is computed thanks to the following numer-
ical scheme

Xn = Xn+1 − ∆t V n+1, (3.9)

V n = V n+1 − ∆t ∂xφ
n+1(Xn). (3.10)

The second step of the semi-Lagrangian method deals with
the interpolation of fn(Xn, V n) by using the values of fn on the
mesh points. This is done by using local cubic B-splines. For
more details on this step, we refer the reader to [7].
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3.2 The classical time discretization for the

Vlasov-Poisson model

In this subsection, the Ampère equation will be used to pre-
dict the electric field at time tn+1 (En+1 = −∂xφ

n+1) in (3.10).
Indeed, we use the fact that in one dimension of space, the Pois-
son equation (2.2) and the Ampère equation (2.3) are equivalent
(note that the methodology can be extended to multidimen-
sional problems using the continuity equation, see [6] for exam-
ple). In the rest of the paper, the use of the Ampère equation in
order to predict the electric field at time tn+1 will be referred to
the “classical time discretization”. Its time discretization writes

En+1
i = En

i +
∆t

λ2
jn
i , (3.11)

where ∆t is the time step, En
i is the electric field evaluated at

t = tn in x = xi. Finally, jn
i denotes the current evaluated at

time tn in xi, and is given by

jn
i =

Nv∑

j=0

f(tn, xi, vj)vj∆v, (3.12)

with ∆v the velocity step.
Hence the classical numerical scheme can be decomposed

into the following steps.
Let us suppose that f(tn, xi, vj), (∂xφ

n)i are known on the
mesh points

Step 1. Computation of a prediction of En+1
i , called Ẽn+1

i ,
by solving the Ampère equation

Ẽn+1
i = En

i +
∆t

λ2
jn
i ,

where jn
i is computed via (3.12).

Step 2. Resolution of (2.4)
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• Backward advection of ∆t in the spatial direction

Xn = Xn+1 − ∆t V n+1.

• Backward advection of ∆t in the velocity direction

V n = V n+1 − ∆t ∂xφ
n+1(Xn),

Step 3. Interpolation of f(tn, Xn, V n) and updating of the
distribution function thanks to the following equality

f(tn+1, Xn+1, V n+1) = Πf(tn, Xn, V n),

where Π is an interpolation operator.

Step 4. Computation of the density ρn+1(Xn+1)

ρn+1(Xn+1) =

∫

IR

f(tn+1, Xn+1, v)dv,

and resolution of the Poisson equation at time tn+1 to get φn+1

and En+1.

It is well known that the stability of this classical scheme
requires a space and a time step which resolve the parameter
λ (the numerical results will show this fact). But this classical
approach will be used as a reference to make comparison with
the new approach.

3.3 The asymptotically stable time discretiza-

tion

As evoked previously, we use the Reformulated Poisson Equa-
tion (2.14) to compute the electric potential at time tn+1. To
that purpose, a time discretization has to be performed, de-
duced from a time discretization of the Euler-Poisson equation
(see [4, 5, 8]).
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In the sequel, we fastly recall the main steps allowing to
derive a time disretization of the Reformulated Poisson Equa-
tion. The starting point is the semi-discretization in time of
(2.11)-(2.12) in the following way

ρk+1 − ρk

∆t
+ ∂xj

k+1 = 0, (3.13)

jk+1 − jk

∆t
+ ∂xS

k − ρk∂xφ
k+1 = 0. (3.14)

Now, we perform the same computations as in the continuous
case (see section 2.3): we take the discrete time difference of
(3.13) and we combine it with the space derivative of (3.14) to
eliminate the discrete moment jk. This leads to

ρk+1 − 2ρk + ρk−1

∆t2
+ ∂x

(
ρk∂xφ

k+1
)

= ∂2
xS

k. (3.15)

By substituting the density ρk+1 by (1 + λ2∂2
xφ

k+1) thanks to
the Poisson equation which we suppose satisfied at time tn+1,
we get the semi-implicit time differencing of (2.14)

−∂x

(
(ρk∆t2 + λ2)∂xφ

k+1
)

= −∆t2∂2
xS

k−2ρk+ρk−1+1. (3.16)

Let us remark that (3.16) is an elliptic problem which allows to
compute φk+1 thanks to quantities at time tn and which does
not degenerate when λ goes to zero; moreover, its numerical
resolution has the same cost as the traditional Poisson equation.

The spatial approximation of (3.16) is performed in a usual
way, by discretizing the space derivatives on the fixed grid (xi)i

using uncentered finite differences. The reader is refered to [5]
for more details.

4 Continuous dispersion relation of the

linearized Vlasov-Poisson model

In this section, we study the dispersion relation of the linearized
Vlasov-Poisson model for different values of λ. To derive the
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dispersion relation; the Vlasov-Poisson model (2.1)-(2.2) is lin-
earized around a equilibrium Maxwellian distribution function

f0(x, v) =
1√
2π

exp

(
−v2

2

)
, E0(x) = 0. (4.1)

We may reformulate the Vlasov-Poisson system (2.1)-(2.2) as
equations for the perturbations f1 and E1 of the equilibrium
(4.1) so that

f = f0 + f1, E = 0 + E1.

We deduce that they satisfy the linearized Vlasov-Poisson equa-
tion

∂tf1 + v∂xf1 − E1∂vf0 = 0, (4.2)

λ2∂xE1 = −
∫

f1 dv. (4.3)

Note that the linearized Poisson equation is equivalent to

λ2∂tE1 =

∫
vf1 dv (4.4)

which corresponds to the linearization of the Ampère equation
around the Maxwellian steady-state.

The dispersion relation of (4.2)-(4.3) (see[11]) is

D(ω, ξ, λ) = 1 +
1

λ2ξ2

∫
∂vf0

ω

ξ
− v

dv. (4.5)

As in [15], this function D (4.5) can be reformulated as

D(ω, ξ, λ) = 1+
1

λ2ξ2

(
1 +

√
π

2

ω

ξ
exp(− ω2

2ξ2
)

(
i − erfi (

ω√
2ξ

)

))
.

(4.6)
where erfi is the imaginary error function defined such that

erfi(0) = 0, and
d

dx
erfi(x) =

2√
π

exp(x2).
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Figure 1: Absolute value of the Imaginary part of the solution
to (4.6) as a function of ξ: (a) λ = 1, (b) λ = 10−1.

For the reader’s convenience, the details of the computations
from (4.5) to (4.6) have been put in the Appendix.

This last formulation enables to compute numerically ω as a
function of (ξ, λ). In the sequel, we plot the imaginary part of
the solutions of (4.6) as a function of ξ for different values of λ.

We can observe that there exists at least two curves of so-
lutions of (4.6). We plot on Figs. 1, 2 two curves of solutions
of the dispersion relation: the absolute value of the Imaginary
part of the solution ω = ωr + iωi is plotted as a function of
the wave number, for different values of λ. Several curves of
solutions exist, but we restrict ourselves to solutions with small
ωi.

In the literature, numerical simulations capture the wave as-
sociated with the smallest ωi since the others waves are damped
very fastly; however, residual of these highly damped waves can
be observed at the beginning of the simulations: the first oscil-
lation is usually larger than the following ones (see [6, 14]).

19



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.5  1  1.5  2  2.5  3

w

k

w_1(k)
w_2(k)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.5  1  1.5  2  2.5  3
w

k

w_1(k)
w_2(k)

(a) (b)

Figure 2: Absolute value of the Imaginary part of the solution
to (4.6) as a function of ξ: (a) λ = 10−2, (b) λ = 10−3.

5 Stability analysis of the linearized

equations

In this section, we study the linear stability of a semi-discretization
in time of the Vlasov-Poisson (Vlasov-Ampère) system and of
the Vlasov-RPE system. For each system, we start from the
time discretization of its linearized version. Then, by using
a spatial Fourier transform, the discrete dispersion relation is
computed for each scheme, which enables to study the stability
of the time discretization. Even if looking at the stability of a
linearized semi-discretized version of the initial model is quite
restrictive, this study is easier and can give some indications
of the behavior of the fully discretized model. Let us mention
[9], in which the authors perform a similar study for the Euler-
Poisson and Euler-RPE systems; asymptotic stability is then
proved when the RPE is used.
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5.1 Stability analysis of the linearized Vlasov-

Ampère system

In order to analyse the numerical stability of the semi-discrete
scheme, we start from the time discretization of the linearized
version the Vlasov-Poisson model (4.2)(4.4)

fn+1
1 − fn

1

∆t
+ v∂xf

n+1
1 − En+1

1 ∂vf0 = 0, (5.1)

λ2

∆t
(En+1

1 − En
1 ) =

∫
vfn

1 dv, (5.2)

where the flux term as well as the electric field is considered
implicit, following [9]. In order to analyse the stability of the
numerical scheme (5.1)-(5.2), it is customary, at this point, to in-
troduce the Fourier transforms in space of the perturbed distri-
bution function and of the electric field. The numerical scheme
in Fourier space reads

f̂n+1
1 − f̂n

1

∆t
+ iξvf̂n+1

1 − Ên+1
1 ∂vf0 = 0, (5.3)

λ2

∆t
(Ên+1

1 − Ên
1 ) =

∫
vf̂n

1 dv, (5.4)

where f̂n, Ên denote the spatial Fourier transform of fn, En

respectively.
Let us follow the standard procedure for analyzing small am-

plitudes waves. Assuming that all perturbed quantities evolve
in time like exp(−iωt), the Fourier transforms in space of f̂n

and Ên can be written as

f̂n
1 = Cf exp(−iωn∆t), Ên = Ce exp(−iωn∆t), (5.5)

where Cf and Ce are functions of ξ. Seeking the solution of
(5.3)-(5.4) under the form (5.5) leads to

Cf [exp(−iω∆t)(1 + i∆tξv) − 1] = Ce∆t exp(−iω∆t)∂vf0,

Ce
λ2

∆t
(exp(−iω∆t) − 1) =

∫
vCf dv,

21



which gives

Cf =
Ce∆t exp(−iω∆t)∂vf0

exp(−iω∆t)(1 + i∆tξv) − 1
, (5.6)

Ce
λ2

∆t
(exp(−iω∆t) − 1) =

∫
vCf dv. (5.7)

Since we deal with non-zero solutions, plugging the expres-
sion of Cf given by (5.6) in (5.7) gives

λ2

∆t
(exp(−iω∆t) − 1) −

∆t exp(−iω∆t)

∫
v∂vf0

exp(−iω∆t) − 1 + i exp(−iω∆t)∆tξv)
dv = 0,

which can be rewritten as

λ2

∆t
(exp(−iω∆t) − 1) − i

ξ

∫
v∂vf0

exp(iω∆t) − 1

i∆tξ
− v

dv = 0. (5.8)

Some basic computations lead to

1 − i
∆t

λ2ξ(exp(−iω∆t) − 1)

∫
v∂vf0

ã − v
dv = 0,

with ã =
exp(iω∆t) − 1

i∆tξ
=

a

ξ
. Since the following equality holds

∫
v∂vf0

ã − v
dv = ã

∫
∂vf0

ã − v
dv,

the discrete dispersion relation associated to the Vlasov-Ampère
discretization is given by

D∆t
1 (ω, ξ, λ) = 1 +

exp(iω∆t)

λ2ξ2

∫
∂vf0

ã − v
dv. (5.9)
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Moreover, for all α ∈ C| , we have (see the Appendix for more
details)

∫
∂vf0

α − v
dv = 1 + α

√
π

2
exp(−α2/2)

(
i − erfi(α/

√
2)

)
.

This previous computations finally give the following discrete
dispersion relation

D∆t
1 = 1 +

exp(iω∆t)

λ2ξ2
(5.10)

(
1 +

√
π

2

a

ξ
exp(− a2

2ξ2
)

(
i sign (ξ) − erfi (

a√
2ξ

)

))
(5.11)

with a = (exp(iω∆t)−1)/(i∆t). Remark that, since lim∆t→0 a =
ω, in the limit ∆t tends towards 0, we recover the continuous
dispersion relation (4.5)

lim
∆t→0

D∆t
1 (ω, ξ, λ) = D(ω, ξ, λ).

Thanks to this formulation of the dispersion relation (5.11),
we are able to compute ω as a function of (ξ, λ, ∆t). The
main goal consists in the determination of the behavior of the
small amplitudes perturbed waves: if Im(ω) < 0, the perturba-
tions are damped and the numerical scheme is stable whereas if
Im(ω) > 0, the numerical scheme is then unstable. The numer-
ical results are resumed in the table 1. We can observe that the
stability condition has to be respected; indeed when ∆t > λ, we
find Im(ω) > 0 and the numerical scheme is then unstable.

5.2 Stability analysis of the linearized Vlasov-

RPE system

In this part, we perform the same analysis as previously for the
Vlasov-RPE system

∂f

∂t
+ v∂xf − E∂vf = 0, (5.12)

−∂x

[
(λ2∂tt + ρ)E

]
= ∂xxS. (5.13)
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∆t, λ 1 10−1 10−2 10−3 10−4

10−1 −0.8808 −0.1506 +45.55 +91.8 +137.86
10−2 −0.8563 −1.8028 −1.7806 +1381 +1842
10−3 −0.8518 −1.7585 −1.7377 −1.7376 +18420
10−4 −0.8513 −1.7538 −1.7533 −1.7331 −1.7333

0 −0.8513 −1.7533 −1.7528 −1.7326 −1.7326

Table 1: Imaginary part of the root of the dispersion relation
associated to the Vlasov-Ampère model in the implicit case:
Im(ω) for ξ = 1 as a function of (∆t, λ).

The linearized Vlasov-RPE system around the Maxwellian steady
state writes

∂tf1 + v∂xf1 − E1∂vf0 = 0, (5.14)

∂x(λ
2∂2

t E1 + E1) = −∂2
xS1, (5.15)

with S1(t, x) =
∫

v2f1(t, x, v) dv.
In order to recover the continuous dispersion relation which

permits to analyse the small amplitudes waves, we assume that
all perturbed quantities vary with (x, t) like exp(i(ξx − ωt)).
Thus equations (5.14)-(5.15) reduce to

i(ω − ξv)Cf + Ce∂vf0 = 0, (5.16)

iξ(1 − ω2λ2)Ce = ξ2

∫
v2Cf dv (5.17)

respectively. Solving the first of these equations for Cf and
substituting into the integral in the second, we formally get, (if
Ce is non-zero) the following dispersion relation

D̃ =
1

ξ
− ω2λ2

ξ
+

∫
v2∂vf0

vξ − ω
dv = 0.

Using the fact that
∫

v2∂vf0

vξ − ω
dv = −1

ξ
+

ω2

ξ2

∫
∂vf0

vξ − ω
dv
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we get

D̃(ω, ξ, λ) =
ω2λ2

ξ


1 +

1

λ2ξ2

∫
∂vf0

ω

ξ
− v

dv


 = 0 (5.18)

which is the same dispersion relation as for the linearized Vlasov-
Poisson equation multiplied by (ωλ/ξ)2.

We compute the time approximate solutions of the linearized
Vlasov-RPE system (5.14)-(5.15) with the following numerical
scheme

fn+1 − fn

∆t
+ v∂xf

n+1 − En+1∂vf0 = 0, (5.19)

λ2∂xE
n+1 − 2∂xE

n + ∂xE
n−1

∆t2
+ ∂xE

n+1 =−∂2
x

∫
v2fndv.(5.20)

The stability analysis is done using the space Fourier transform
of (5.19)-(5.20)

f̂n+1 − f̂n

∆t
+ iξvf̂n+1 − Ên+1∂vf0 = 0, (5.21)

i
λ2

∆t2
(Ên+1 − 2Ên + Ên−1) + iÊn+1 = ξ

∫
v2f̂n dv. (5.22)

Note that the equation (5.22) is still valid when ξ = 0.
As in the Vlasov-Ampère case, we use the decomposition (5.5)
for the linear stability analysis.

Seeking the solution of (5.21)-(5.22) under the form (5.5) leads
to

Cf [exp(−iω∆t)(1 + i∆tξv) − 1] = Ce∆t exp(−iω∆t)∂vf0,(5.23)

i
λ2

∆t
(exp(−iω∆t) + exp(iω∆t) − 2) (5.24)

+i exp(−iω∆t)Ce =ξ

∫
v2Cf dv. (5.25)
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Since we deal with non-zero solutions, plugging the expression
of Cf given by (5.23) in (5.25) leads to

i
2λ2

∆t2
(cos(ω∆t) − 1) + i exp(−iω∆t) =

ξ

Ce

∫
v2Cfdv.

Using the fact that

∫
v2Cf dv =

iCe

ξ

∫
v2∂vf0

ã − v
dv, with ã =

exp(−iω∆t) − 1

i∆tξ
,

we get

−i
4λ2

∆t2
sin2(

ω∆t

2
) + i exp(−iω∆t) = i

∫
v2∂vf0

ã − v
dv.

Since the following equality holds

∫
v2∂vf0

ã − v
dv = 1 + ã2

∫
∂vf0

ã − v
dv,

the discrete dispersion relation associated to the Vlasov-RPE
discretization (5.21)-(5.22) is

D∆t
2 (ω, ξ, λ) = 1−exp(−iω∆t)+

4λ2

∆t2
sin2

(
ω∆t

2

)
+ã2

∫
∂vf0

ã − v
dv.

(5.26)
The previous computations give the following discrete dispersion
relation

D∆t
2 = 1 − exp(−iω∆t) +

4λ2

∆t2
sin2(

ω∆t

2
) (5.27)

a

ξ

(
1 +

√
π

2

a

ξ
exp(− a2

2ξ2
)

(
i sign (ξ) − erfi (

a√
2ξ

)

))
(5.28)

Remark that, in the limit ∆t tends towards 0, we recover the
continuous dispersion relation (5.18)

lim
∆t→0

D∆t
2 (ω, ξ, λ) = ξD̃(ω, ξ, λ).
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The numerical solutions of the dispersion relation D∆t
2 are

exposed in Table 2 where the imaginary part of ω is written as
a function of ∆t and for different values of λ. As expected, the
numerical scheme is stable for all values of λ and ∆t since all
the values of the imaginary part of ω are negative.

∆t, λ 1 10−1 10−2 10−3 10−4

10−1 −0.8949 −2.0081 −1.9817 −1.9817 −1.9817
10−2 −0.8573 −1.7924 −1.7708 −1.7707 −1.7707
10−3 −0.8519 −1.7574 −1.7367 −1.7366 −1.7366
10−4 −0.8514 −1.7537 −1.7332 −1.7330 −1.7330

0 −0.8513 −1.7533 −1.7328 −1.7326 −1.7326

Table 2: Imaginary part of the root of the dispersion relation
associated to the Vlasov-RPE model in the implicit case: Im(ω)
for ξ = 1 as a function of (∆t, λ).

6 Numerical results

In this section, we propose to validate the method with two
tests cases. The fisrt one is a linear Landau damping: a uniform
quasi-neutral stationary solution of the Vlasov-Poisson equation
is perturbed. The second one is the bump-on-tail instability (see
[24, 26]). As pointed out in section 2, the total energy is pre-
served with time at the continuous level. As a diagnostic, we
then are interested in the time evolution of the kinetic, electro-
static and total energies Ek, Ep and Et, respectively given by

Ek =
1

2

∫ ∫
fv2dvdx, Ep =

λ2

2

∫
E2dx, Et = Ep + Ek.

We also plot the electric field and the logarithm of the electric
energy to accurately study the damping coefficient computed in
the previous section.
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6.1 Linear Landau damping

We then initialize the Vlasov-Poisson equation with

f0(x, v) =
1√
2π

(1 + α sin(κx)) exp(−v2

2
),

on the interval [0, 2π/κ], with periodic boundary conditions in
the space direction and homogeneous Dirichlet boundary con-
ditions in the velocity direction. The same numerical test case
has been studied in [8] using a PIC solver of the Vlasov equation
coupled with the Reformulated Poisson Equation.

The numerical parameters are the following: vmax = 6 where
the velocity domain extend from −vmax to vmax, we use a num-
ber of cells Nv = 128; the κ parameter is taken equal to κ = 1,
α << 1 to consider linear regimes, and ∆t = 0.5∆x/vmax.

The two different methods we detailed in section 3.1 are com-
pared: the classical method uses the Ampère equation to predict
the electric potential at time tn+1 whereas the asymptotic stable
approach uses the RPE discretization (3.16).

The initialization of the RPE scheme is done in the following
way: we first compute the initial density ρ0 thanks to the initial
data f 0 and we assume that ρ−1 = ρ0. Thanks to (3.16), we are
able to compute φ1, the approximation of φ at time ∆t. For the
Ampère approach, classically the initial density ρ0 enables us to
compute φ0 according to the Poisson equation; then thanks to
the initial current, we can advance the discrete Ampère equation
(3.11) to get φ at time ∆t.

On Figs. 3, 4 and 5, we give the results obtained by the
two approaches with λ = 1 and ∆x = 2.4 × 10−2, which results
to a resolved case since (∆x, ∆t) < λ. The kinetic, electric
and total energies are plotted on Fig. 3, the electric field at
time t = 2 ω−1

p and t = 10 ω−1
p is plotted on Fig. 4 and the

logarithm of the electric energy on Fig. 5. For both methods,
the results are stable since the stability constraint is fullfilled
for the Ampère approach. The total energy is particularly well
conserved with time for both methods. We can also observe that
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the results of the RPE approach are very close to the standard
one on the different quantities we plot. Moreover, the numerical
damping coefficient is in well agreement with that computed in
the previous section for the two approaches. This test validates
the RPE method with respect to the standard one.

On Figs. 6, 7 and 8, the same numerical parameters are
considered but λ = 0.1. The same conclusions as before are
available for these results: both methods give accurate results
with respect to the total energy conservation and to the damping
coefficient. Moreover, the associated period of the wave is very
close to the computed complex solution of the dispersion relation
(ω = 10.15 − i0.12 whereas numerically we obtain ω = 10.2 −
i0.1).

Finally, Figs. 9, 10 and 11 present some results where λ =
10−2. In this case, the stability condition is not (strictly) re-
spected in the standard approach neither in the RPE algorithm.
However, both methods give stable results even if we can observe
some differences. Indeed, on Fig. 10, the Ampère approach
makes appear some oscillations on the electric field whereas
the RPE one does not. The RPE method smoothes the mi-
croscale oscillations and consequently gives stable results, even
when λ < ∆x. On Fig. 11 the logarithm of the electric en-
ergy is plotted as a function of time. Up to t ≈ 4 ω−1

p , both
methods are nearly superimposed. First, the two curves present
a highly damped behavior since the damping coefficient equals
−10; then, a second behavior appears with a lower damping
coefficient (about −1.73). We verify that these two behaviors
are solutions to the dispersion relation; as mentioned in the sec-
tion 4, the dispersion relation has several solutions, and two of
them are captured by the numerical methods. From a quanti-
tative point of view, the numerical methods are able to recover
accurately the solutions of tables 1 and 2. For large times, the
Ampère method seems to degenerate whereas the RPE approach
appears to be more robust (we can observe a recurrence effect
for example on Fig. 19; see also remark 6.1).
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The last figures present numerical results for the RPE ap-
proach only. Indeed, when λ = 10−3 or 10−4, the Ampère ap-
proach gives rise to unstable results: the electric field generated
by the Ampère equation becomes very strong which pushes the
particles outside the velocity domain, so the total mass falls
to zero. On Fig. 12, we observe that the total energy is still
well preserved with time even if a decay occurs at the beginning
of the simulation. This remains quite reasonable compared to
the decay observed for PIC simulations in [8] due to the large
noise resulting from the PIC assignment procedure. The use of
a phase space grid solver seems to efficiently avoid this kind of
phenomenom. On Fig. 14 the logarithm of the electric field also
presents two different behaviors (the first behaviour, very fast,
can not be distinguished on the figure 14). They are both in a
good agreement with the solutions of the dispersion relation we
determined in section 4. On the contrary, in the Ampère con-
text, since there exists one solution of the dispersion relation
which gives rise to a positive imaginary part, the method leads
to unstable numerical results.

Finally, the asymptotic preserving property is investigated
considering very small values of λ (λ = 10−4, 10−8). We want
to check if the numerical scheme tends towards a numerical ap-
proximation of the limit system of the Vlasov-Poisson system as
λ goes to zero. To that purpose, we compare our numerical re-
sults in which λ = 10−8 with the limit system (2.9)-(2.10). The
numerical parameters are the same as previously. The initial
condition with α = 0 has to be considered to respect the quasi-
neutrality condition ρ = 1 initially. In this case, the electric field
is null everywhere and the Maxwellian initial condition is then
a stationary solution. We can observe that the RPE method
gives satisfactory results since the electric field is very close to
zero (see Fig. 16), and the total energy is equal to π for large
times. Fig. 18 shows that the total mass is equal to one for the
RPE method whereas the total mass associated to the Ampère
approach fails to zero, due to numerical instabilities. We can
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observe that for λ close to zero, the RPE approach is able to
numerically recover the quasi-neutral limit with a fixed grid of
the phase space, i.e without resolving the small scales as the
Debye length for example.
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Figure 3: Comparison of the two methods: log(Ek) as a function
of time (left pannel), log(Et) as a function of time (right pannel).
∆x = 2.10−2, λ = 1.
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p (left pannel), and at
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p (right pannel). ∆x = 2.10−2, λ = 1.
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to the numerical Landau damping rate (root of the dispersion
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Figure 6: Comparison of the two methods: log(Ek) as a function
of time (left pannel), log(Et) as a function of time (right pannel).
∆x = 2.10−2, λ = 0.1.
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p (left pannel), and at
t = 10 ω−1

p (right pannel). ∆x = 2.10−2, λ = 0.1.

-10

-9

-8

-7

-6

-5

-4

-3

-2

 0  5  10  15  20

t

Ampere 
RPE

slope: -0.1

Figure 8: Comparison of the two methods: time evolution of
log(‖E‖L2). ∆x = 2.10−2, λ = 0.1. The slope −0.1 cor-
responds to the numerical Landau damping rate (root of the
dispersion relation).

34



0.0 10.0 20.0
t

0.4970

0.4975

0.4980

0.4985

0.4990

RPE
Ampere

0.0 10.0 20.0
t

0.4970

0.4980

0.4990

0.5000

RPE
Ampere

(a) (b)

Figure 9: Comparison of the two methods: log(Ek) as a function
of time (left pannel), log(Et) as a function of time (right pannel).
∆x = 2.10−2, λ = 0.01.
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Figure 10: Comparison of the two methods: electric field as a
function of the space variable at t = 2 ω−1

p (left pannel), and at
t = 10 ω−1

p (right pannel). ∆x = 2.10−2, λ = 0.01.
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Figure 11: Comparison of the two methods: time evolution of
log(‖E‖L2). ∆x = 2.10−2, λ = 0.01. The slope A −10 and
the slope B −1.73 correspond to the numerical Landau damping
rates (corresponding to the two roots of the dispersion relation).
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Figure 12: Numerical results for the RPE approach: log(Ek) as
a function of time (left pannel), log(Et) as a function of time
(right pannel). ∆x = 2.10−2, λ = 0.001.
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Figure 13: Numerical results for the RPE approach: electric
field as a function of the space variable at t = 2 ω−1

p (left pannel),
and at t = 10 ω−1

p (right pannel). ∆x = 2.10−2, λ = 0.001.
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Figure 14: Numerical results for the RPE approach: time evolu-
tion of log(‖E‖L2). ∆x = 2.10−2, λ = 0.001. The slope −1.73
corresponds to the numerical Landau damping rate (root of the
dispersion relation).
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Figure 15: Numerical results for the RPE approach: log(Ek) as
a function of time (left pannel), log(Et) as a function of time
(right pannel). ∆x = 2.10−2, λ = 0.0001.

-2.5e-05

-2e-05

-1.5e-05

-1e-05

-5e-06

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 0  1  2  3  4  5  6

x

RPE

-1.5e-06

-1e-06

-5e-07

 0

 5e-07

 1e-06

 1.5e-06

 2e-06

 0  1  2  3  4  5  6

x

RPE

(a) (b)

Figure 16: Numerical results for the RPE approach: electric
field as a function of the space variable at t = 2 ω−1

p (left pannel),
and at t = 10 ω−1

p (right pannel). ∆x = 2.10−2, λ = 0.0001.
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Figure 17: Numerical results for the RPE approach: time evo-
lution of log(‖E‖L2). ∆x = 2.10−2, λ = 0.0001. The slope
−1.73 corresponds to the numerical Landau damping rate (root
of the dispersion relation).
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Figure 18: Comparison of the two methods: total mass as a
function of time for λ = 10−4 (left pannel), and for λ = 10−8

(right pannel). ∆x = 2.10−2
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Remark 6.1 In the previous example where the spatial frequency
κ was chosen equal to one, the Landau damping rate is too strong
to observe the recurrence effect. This purely numerical effect is
due to both a velocity discretisation and a periodic space box; it
can be proved (see [14]) the problem is periodic in time with a
period of length the recurrence time TR = 2π/(κ∆v).

In some simulations, the recurrence effect can not be ob-
served (see Fig. 11 for example). It is not reduced or elimi-
nated; the numerical parameters are such that the amplitude of
the electric field reaches the roundoff machine precision before
the recurrence time. Hence, the recurrence effect is then elimi-
nated.

In order to illustrate this recurrence phenomenon, we choose
a smaller spatial frequency κ = 0.5 to obtain a smaller Landau
damping rate (see Fig. 1). The results are presented on Fig. 19
and we recover the recurrence effect at time TR = 2π/(κ∆v) for
the two methods. In this case, we chose Nv = 64 so that the
recurrence time TR ≈ 67ω−1

p .
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Figure 19: Comparison of the two methods: time evolution of
log(‖E‖L2). ∆x = 2.10−2, λ = 1. The slope −0.153 corresponds
to the numerical Landau damping rate (root of the dispersion
relation).
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6.2 Bump on tail instability

We initialize the Vlasov-Poisson equation with

f0(x, v) = f1(v)(1 + α cos(κx)),

where α = 0.04, κ = 0.3 and the phase space domain is [0, 20π]×
[−9, 9].

The function f1 is a distribution function which has a bump
of the Maxwell distribution on its tail,

f1(v) = np exp(−v2/2) + nb exp(−(v − vd)
2/2v2

t ),

where vd = 4.5, vt = 0.5 and nb/np = 2/9, and the amplitude
of the bump is chosen in order to satisfy

∫
f1(v) dv = 1. The

numerical parameters are the following: ∆t = 0.5∆x/vmax with
vmax = 9. The two methods are compared in this nonlinear con-
text with respect to the electrostatic energy Ep and the spatially
integrated distribution function

F (t, v) =

∫ 20π

0

f(x, v, t)dx. (6.1)

Obviously, different values of λ are investigated.

In the case λ = 1, we plot in Fig. 20 the time evolution of
the electrostatic energy Ep = λ2

2

∫
E2dx. The number of points

is Nx = Nv = 1024 so that ∆t = 0.0034. First of all, the two
methods give rise to equivalent results: the instability grows af-
ter t = 10 ω−1

p and the maximum value of Ep is reached for the
two methods at t ≈ 21 ω−1

p . These quantitative observations are
in very good agreement with the results obtained in [24]. But,
due to a first order time integration of the characteristics and
to an additional diffusion of the method, the amplitude of the
electric energy has a tendency to decrease when long time simu-
lations are considered. Howevern this tendency is qualitatively
comparable with the two methods and for this reason, cannot
be attributed to an excess of numerical diffusion produced by
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the use of the RPE. Rather, it is most probably a consequence
of the first order time integration of the characteristics, a second
order time integration of the characteristics can remove partially
this phenomenon. Then, considering the case λ = 1, we plot on
Fig. 21 the time development of the spatially integrated distri-
bution function given by (6.1). The small bump on the tail is
trapped by the electric field and a plateau is gradually formed
for velocities in the range v ∈ [2, 6]. The same conclusions have
been drawn in [24].

Now, we test the method in under-resolved situations, when
the time and space steps are several orders larger than the Debye
length, and we show that the RPE method gives stable results
in which the plasma oscillations and wave-lengths are filtered
out. Of course, in such under-resolved situation, the Ampère
equation is dramatically unstable. In the following, the number
of points is fixed equal to 128 in each direction and the value of
λ is modified.

On Fig. 22 and 23, the time history of the electric energy is
plotted for the two methods with λ = 0.1, in a resolved situa-
tion: the spatial and time steps are such that ∆x, ∆t < λ = 0.1.
We observed that the results are very similar for both approches.
However, if the same numerical parameters as in the previ-
ous case are considered (so that an under-resolved situation
(∆x = 0.5 > λ and ∆t = 0.027) is considered), the Ampère
approach leads to unstable results since the electric energy be-
comes very important around t ≈ 100 ω−1

p . On the contrary, the
RPE approach is able to produce an accurate history of the elec-
tric energy even for very large time scales. However, the oscilla-
tions which occured at the beginning (t < 10 ω−1

p ) in the resolved
case (see the right pannel of Fig. 22) have nearly disappeared
in the under-resolved case. The RPE approach seems to damp
these oscillations so that stable results are obtained for larger
times. In fact, small scales are not considered by the method
and only a overall behaviour is reproduced so that macroscopic
time scales can be envisaged even when λ is small. On Fig. 26,
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we plot the total energy as a function of the time. First, as ob-
served before, in the resolved case, the two approches are nearly
superimposed. Then, we remark that the RPE approach, in
the under-resolved case displays an energy decay which is faster
but still of the same order as in the resolved case. As in the
previous case, the RPE approach shows a correct behavior at
large time scales which enables stable long time simulations of
quasi-neutral plasmas.

All these phenomena are available when the value of λ is
diminished; indeed, on Fig. 27, λ = 10−2 and on Fig. 28 λ =
10−4 are considered with fixed spatial and time steps: ∆x = 0.5
and ∆t = 0.027. As observed in the previous tests, the electric
energy is strongly damped at the beginning of the simulation.
However, the time history of the total mass and total energy on
Fig. 27 and 28 is well reproduced since they are well preserved
even in these strongly under-resolved cases.
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Figure 20: Comparison of the two methods: electric energy as
a function of time for the Ampère approach (left pannel), and
for the RPE approach (right pannel). ∆x = 0.0034, λ = 1.
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Figure 21: Comparison of the two methods: time history of the
spatially integrated distribution function as a function of the
velocity. Ampère approach (left pannel), and RPE approach
(right pannel). ∆x = 0.0034, λ = 1.

 0

 2

 4

 6

 8

 10

 0  50  100  150  200

Time

Ampère

 0

 2

 4

 6

 8

 10

 0  50  100  150  200

Time

RPE

(a) (b)

Figure 22: Resolved case. Comparison of the two methods:
electric energy as a function of time for the Ampère approach
(left pannel), and for the RPE approach (right pannel). ∆x =
0.05, λ = 0.1.
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Figure 23: Resolved case. Comparison of the two methods:
time history of the spatially integrated distribution function as
a function of velocity for the Ampère approach (left pannel),
and for the RPE approach (right pannel). ∆x = 0.05, λ = 0.1.
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Figure 24: Under-resolved case. Comparison of the two meth-
ods: electric energy as a function of time for the Ampère ap-
proach (left pannel), and for the RPE approach (right pannel).
∆x = 0.5, λ = 0.1.
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Figure 25: Under-resolved case. Comparison of the two meth-
ods: time history of the spatially integrated distribution func-
tion as a function of velocity for the Ampère approach (left pan-
nel), and for the RPE approach (right pannel). ∆x = 0.05, λ =
0.1.
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Figure 26: Comparison of the two methods: time history of
the total energy for the Ampère approach and for the RPE
approach. ∆x = 0.05, λ = 0.1 for the resolved case and
∆x = 0.5, λ = 0.1 for the under-resolved case.
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Figure 27: Time evolution of the total mass, electric energy and
total energy for the RPE approach: λ = 10−2. ∆x = 0.5, ∆t =
0.027.
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Figure 28: Time evolution of the total mass, electric energy and
total energy for the RPE approach: λ = 10−4. ∆x = 0.5, ∆t =
0.027.
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7 Conclusion

In this paper, we used a semi-Lagrangian scheme to simulate
quasi-neutral problems using the kinetic description. In order to
overcome the drastic stability condition ∆x < λ, ∆t < λ, follow-
ing [8], a Reformulated Poisson equation coupled with an appro-
priate time discretization of the characteristic curves has been
implemented. An asymptotic preserving numerical scheme is
then obtained, which enables to simulate quasi-neutral regimes,
in linear and in nonlinear regimes. The present strategy has a
comparable cost per time step to that of a standard discretiza-
tion, but allows the use of dramatically larger time and space
steps.

8 Appendix: Details for the compu-

tation of the complex integrals

For the Ampère or the RPE case, we are led to compute integrals
of the form ∫

∂vf0

v − α
dv, α ∈ C| ,

where f0 is a Maxwellian

f0(v) =
1√
2π

exp(−v2/2).

Let us detail the computation in the following. Using an appro-
priate contour in the complex plane, we set

∫
∂vf0

v − α
dv = Pr

∫
∂vf0(v + α)

v
dv + iπ∂vf0(α), (8.1)

where the Cauchy principal value denoted by Pr is defined by

Pr

∫ +∞

−∞

g(v)

v
dv = lim

δ→0

[∫
−δ

−∞

g(v)

v
dv +

∫ +∞

δ

g(v)

v
dv

]
.
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Let us detail the computations associated to the first term which
we call I.

I = − 1√
2π

Pr

∫
(v + α) exp(−(v + α)2/2)

v
dv

= − 1√
2π

[∫
e−(v+α)2/2dv + αPr

∫
e−(v+α)2/2

v
dv

]
.

Let us call J the last term.

J = Pr

∫
e−(v+α)2/2

v
dv

= lim
δ→0

[∫
−δ

−∞

e−(v+α)2/2

v
dv +

∫ +∞

δ

e−(v+α)2/2

v
dv

]

= lim
δ→0

[∫ +∞

δ

e−α2/2e−v2/2
(
−eαv − e−αv

)
dv

]

= −2e−α2/2

∫ +∞

0

exp(−v2/2) sh(vα)
dv

v
.

It is possible to express this last integral as a function of the erfi
function, erfi(x) = (2/

√
π)

∫ x

0
exp(t2)dt. Indeed, noticing that

y(x) =

∫ +∞

0

e−v2/2sh(vx)
dv

v
,

satisfies the differential equation y′′ − xy′ = 0, we get that

∫ +∞

0

e−v2/2sh(vα)
dv

v
=

π

2
erfi

(
α√
2

)
.

Hence, gathering the previous terms leads to an expression of I

I = − 1√
2π

[√
2π − αe−α2/2πerfi(α/

√
2)

]
. (8.2)
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Finally, the initial complex integral we look for becomes

∫
∂vf0

v − α
dv=− 1√

2π

[√
2π−αe−α2/2πerfi(α/

√
2)

]
− i

√
π

2
αe−α2/2,

= −1 + α

√
π

2
e−α2/2erfi(α/

√
2) − i

√
π

2
αe−α2/2,

= −1 + α

√
π

2
e−α2/2

(
erfi(α/

√
2) − i

)
.
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