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Abstract. We improve in three ways the results of [6] that establish the acoustic limit for
DiPerna-Lions solutions of Boltzmann equation. First, we enlarge the class of collision kernels
treated to that found in [13], thereby treating all classical collision kernels to which the DiPerna-
Lions theory applies. Second, we improve the scaling of the kinetic density fluctuations with
Knudsen number from O(εm) for some m > 1

2 to O(ε
1
2 ). Third, we extend the results from

periodic domains to bounded domains with a Maxwell reflection boundary condition, deriving
the impermeable boundary condition for the acoustic system.

1. Introduction

In this note we establish the acoustic limit starting from DiPerna-Lions renormalized solutions
of the Boltzmann equation considered over a smooth bounded spatial domain Ω ⊂ RD. The
acoustic system is the linearization about the homogeneous state of the compressible Euler
system. After a suitable choice of units and Galilean frame, it governs the fluctuations in mass
density ρ(x, t), bulk velocity u(x, t), and temperature θ(x, t) over Ω × R+ by the initial-value
problem

(1.1)

∂tρ +∇x · u = 0 , ρ(x, 0) = ρin(x) ,

∂tu +∇x(ρ + θ) = 0 , u(x, 0) = uin(x) ,
D
2
∂tθ +∇x · u = 0 , θ(x, 0) = θin(x) ,

subject to the impermeable boundary condition

(1.2) u · n = 0 , on ∂Ω ,

where n(x) is the unit outward normal at x ∈ ∂Ω. This is one of the simplest fluid dynamical
systems imaginable, being essentially the wave equation.

The acoustic system (1.1, 1.2) can be formally derived from the Boltzmann equation for
kinetic densities F (v, x, t) over RD × Ω× R+ that are close to the global Maxwellian

(1.3) M(v) =
1

(2π)
D
2

exp
(
− 1

2
|v|2

)
.

We consider families of kinetic densities in the form Fε(v, x, t) = M(v)Gε(v, x, t) where the
relative kinetic densities Gε(v, x, t) over RD ×Ω×R+ are governed by the rescaled Boltzmann
initial-value problem

(1.4) ∂tGε + v ·∇xGε =
1

ε
Q(Gε, Gε) , Gε(v, x, 0) = Gin

ε (v, x) .
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Here the Knudsen number ε > 0 is the ratio of the mean free path to a macroscopic length
scale and the collision operator Q(Gε, Gε) is given by

(1.5) Q(Gε, Gε) =

∫∫
SD−1×RD

(
G′

ε1G
′
ε −Gε1Gε

)
b(ω, v1 − v) dω M1dv1 ,

where the collision kernel b(ω, v1 − v) is positive almost everywhere while Gε1, G′
ε, and G′

ε1

denote Gε( · , x, t) evaluated at v1, v′ = v +ωω · (v1− v), and v′1 = v−ωω · (v1− v) respectively.
We impose a Maxwell reflection boundary condition on ∂Ω of the form

(1.6) 1Σ+Gε ◦ R = (1− α)1Σ+ Gε + α 1Σ+

√
2π

〈
1Σ+ v ·n Gε

〉
.

Here α ∈ [0, 1] is the Maxwell accommodation coefficient, (Gε ◦ R)(v, x, t) = Gε(R(x)v, x, t)
where R(x) = I − 2n(x)n(x)T is the specular reflection matrix at a point x ∈ ∂Ω, 1Σ+ is the
indicator function of the so-called outgoing boundary set

(1.7) Σ+ =
{
(v, x) ∈ RD × ∂Ω : v · n(x) > 0

}
,

and 〈 · 〉 denotes the average

(1.8) 〈ξ〉 =

∫
RD

ξ(v) M(v) dv .

Because
√

2π
〈
1Σ+ v · n

〉
= 1, it is easy to see from (1.6) that on ∂Ω one has

(1.9)
〈v · n Gε〉 =

〈
1Σ+ v · n

(
Gε −Gε ◦ R

)〉
= α

〈
1Σ+ v · n

(
Gε −

√
2π

〈
1Σ+ v · n Gε

〉)〉
= 0 .

Fluid regimes are those in which the Knudsen number ε is small. The acoustic system (1.1,
1.2) can be derived from (1.4, 1.6) for families of solutions Gε(v, x, t) that are scaled so that

(1.10) Gε = 1 + δεgε , Gin
ε = 1 + δεg

in
ε ,

where

(1.11) δε → 0 as ε → 0 ,

and the fluctuations gε and gin
ε converge in the sense of distributions to g ∈ L∞(dt; L2(Mdv dx))

and gin ∈ L2(Mdv dx) respectively as ε → 0. One finds that g has the infinitesimal Maxwellian
form

(1.12) g = ρ + v ·u +
(

1
2
|v|2 − D

2

)
θ ,

where (ρ, u, θ) ∈ L∞(dt; L2(dx; R× RD× R)) solve (1.1, 1.2) with initial data given by

(1.13) ρin = 〈gin〉 , uin = 〈v gin〉 , θin =
〈(

1
D
|v|2 − 1

)
gin

〉
.

The formal derivation leading to (1.1) closely follows that in [6], so its details will not be given
here. The boundary condition (1.2) is obtained by noticing that (1.9) implies 〈v · n gε〉 = 0,
then passing to the limit in this to get 〈v · n g〉 = 0, and finally using (1.12) to obtain (1.2).

The program initiated in [1, 2, 3] seeks to justify fluid dynamical limits for Boltzmann equa-
tions in the setting of DiPerna-Lions renormalized solutions [5], which are the only temporally
global, large data solutions available. The main obstruction to carrying out this program is that
DiPerna-Lions solutions are not known to satisfy many properties that one formally expects for
solutions of the Boltzmann equation. For example, they are not known to satisfy the formally
expected local conservations laws of momentum and energy. Moreover, their regularity is poor.
The justification of fluid dynamical limits in this setting is therefore not easy.
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The acoustic limit was first established in this kind of setting in [4] over a periodic domain.
There idea introduced there was to pass to the limit in approximate local conservations laws
which are satified by DiPerna-Lions solutions. One then shows that the so-called conservation
defects vanish as the Knudsen number ε vanishes, thereby establishing the local conservation
laws in the limit. This was done in [4] using only relative entropy estimates, which restricted
the result to collision kernels that are bounded and to fluctuations scaled so that

(1.14) δε → 0 and
δε

ε
| log(δε)| → 0 as ε → 0 ,

which is far from the formally expected optimal scaling (1.11).
In [6] the local conservation defects were removed using new dissipation rate estimates. This

allowed the treatment of collision kernels that for some Cb < ∞ and β ∈ [0, 1) satisfied

(1.15)

∫
SD−1

b(ω, v1 − v) dω ≤ Cb

(
1 + |v1 − v|2

)β
,

and of fluctuations scaled so that

(1.16) δε → 0 and
δε

ε1/2
| log(δε)|β/2 → 0 as ε → 0 .

The above class of collision kernels includes all classical kernels that are derived from Maxwell
or hard potentials and that satisfy a weak small deflection cutoff. The scaling given by (1.16)
is much less restrictive than that given by (1.16), but is far from the formally expected optimal
scaling (1.11). Finally, only periodic domains are treated in [6].

Here we improve the result of [6] in three ways. First, we apply estimates from [13] to treat
a broader class of collision kernels that includes those derived from soft potentials. Second,
we improve the scaling of the fluctuations to δε = O(ε1/2). Finally, we treat domains with a
boundary and use new estimates to derive the boundary condition (1.2) in the limit.

We use the L1 velocity averaging theory of Golse and Saint-Raymond [7] through the non-
linear compactness estimate of [13] to improve the scaling of the fluctuations to δε = O(ε1/2).
Without it we would only be able to improve the scaling to δε = o(ε1/2). This is the first time
the L1 averaging theory has played any role in an acoustic limit theorem, albeit for a modest
improvement in the scaling of our result. We remark that averaging theory plays no role in
establishing the Stokes limit with its formally expected optimal scaling of δε = o(ε) [13].

We treat domains with boundary in the setting of Mischler [16], who extended the DiPerna-
Lions theory to bounded domains with a Maxwell reflection boundary condition. He showed
that these boundary conditions are satisfied in a renormalized sense. This means we cannot
deduce that 〈v · n gε〉 → 0 as ε → 0 to derive the boundary condition (1.2), as we did in our
formal argument. Masmoudi and Saint-Raymond [15] developed estimates to obtain boundary
conditions in the Stokes limit. However neither these estimates nor their recent extension to
the Navier-Stokes limit [12] can handle the acoustic limit. Rather, we develop new boundary a
priori estimates to obtain a weak form of the boundary condition (1.2) in this limit. In doing
so, we treat a broader class of collision kernels than was done in [15].

Finally, we remark that fully establishing the acoustic limit with its formally expected optimal
scaling of the fluctuation size (1.11) is still open. This gap must be bridged before one can
hope to fully establish the compressible Euler limit starting from DiPerna-Lions solutions to
the Boltzmann equation. In contrast, optimal scaling can be obtained within the framework
of classical solutions by using the nonlinear energy method developed by Guo. This has been
done recently by the first author of this paper with Guo and Jang [9, 10, 11].
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Our paper is organized as follows. Section 2 gives its framework. Section 3 states and proves
our main result modulo two steps. Section 4 removes the conservation defects. Section 5
establishes the limit boundary mass-flux term.

2. Framework

For the most part we will use the notation of [13]. Here we present only what is needed to
state our theorem. For more complete introductions to the Boltzmann equation, see [6, 13].

Let Ω ⊂ RD be a bounded domain with smooth boundary ∂Ω. Let n(x) denote the outward
unit normal vector at x ∈ ∂Ω and dσx denote the Lebesgue measure on ∂Ω. The phase space
domain associated with Ω is O = RD × Ω, which has boundary ∂O = RD × ∂Ω. Let Σ+ and
Σ− denote the outgoing and incoming subsets of ∂O defined by

Σ± = {(v, x) ∈ ∂O : ±v · n(x) > 0} .

The global Maxwellian M(v) given by (1.3) corresponds to the spatially homogeneous fluid
state with density and temperature equal to 1 and bulk velocity equal to 0. The boundary
condition (1.6) corresponds to a wall temperature of 1, so that M(v) is the unique equilibrium
of the fluid. Associated with the initial data Gin

ε we have the normalization

(2.1)

∫
Ω

〈Gin
ε 〉 dx = 1 .

2.1. Assumptions on the Collision Kernel. The kernel b(ω, v1 − v) associated with the
collision operator (1.5) is positive almost everywhere. The Galilean invariance of the collisional
physics implies that b has the classical form

(2.2) b(ω, v1 − v) = |v1 − v|Σ(|ω ·n|, |v1 − v|) ,

where n = (v1 − v)/|v1 − v| and Σ is the specific differential cross-section. We make five
additional technical assumptions regarding b that are adopted from [13].

Our first technical assumption is that the collision kernel b satisfies the requirements of
the DiPerna-Lions theory. That theory requires that b be locally integrable with respect to
dω M1dv1 Mdv, and that it moreover satisfies

(2.3) lim
|v|→∞

1

1 + |v|2

∫
K

b(v1 − v) dv1 = 0 for every compact K ⊂ RD ,

where b is defined by

(2.4) b(v1 − v) ≡
∫

SD−1

b(ω, v1 − v) dω .

Galilean symmetry (2.2) implies that b is a function of |v1 − v| only.

Our second technical assumption regarding b is that the attenuation coefficient a, which is
defined by

(2.5) a(v) ≡
∫

RD

b(v1 − v) M1dv1 =

∫∫
SD−1×RD

b(ω, v1 − v) dω M1dv1 ,

is bounded below as

(2.6) Ca

(
1 + |v|2

)βa ≤ a(v) for some constants Ca > 0 and βa ∈ R .

Galilean symmetry (2.2) implies that a is a function of |v| only.
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Our third technical assumption regarding b is that there exists s ∈ (1,∞] and Cb ∈ (0,∞)
such that

(2.7)

(∫
RD

∣∣∣∣ b(v1 − v)

a(v1) a(v)

∣∣∣∣sa(v1) M1dv1

) 1
s

≤ Cb .

Because this bound is uniform in v, we may take Cb to be the supremum over v of the left-hand
side of (2.7).

Our fourth technical assumption regarding b is that the operator

(2.8) K+ : L2(aMdv) → L2(aMdv) is compact ,

where

K+g̃ =
1

2a

∫∫
SD−1×RD

(
g̃′ + g̃′1

)
b(ω, v1 − v) dω M1dv1 .

We remark that K+ : L2(aMdv) → L2(aMdv) is always bounded [13, 14] with ‖K+‖ ≤ 1.

Our fifth technical assumption regarding b is that for every δ > 0 there exists Cδ such that b
satisfies

(2.9)
b(v1 − v)

1 + δ
b(v1 − v)

1 + |v1 − v|2

≤ Cδ

(
1 + a(v1)

)(
1 + a(v)

)
for every v1, v ∈ RD .

The above assumptions are satisfied by all the classical collision kernels with a weak small
deflection cutoff that derive from a repulsive intermolecular potential of the form c/rk with
k > 2D−1

D+1
. This includes all the classical collision kernels to which the DiPerna-Lions theory

applies [13, 14]. Kernels that satisfy (1.15) clearly satisfy (2.3). If they moreover satisfy (2.6)
with βa = β then they also satisfy (2.7) and (2.9).

Because the kernel b satisfies (2.3), it can be normalized so that∫∫
SD−1×RD×RD

b(ω, v1 − v) dω M1 dv1 M dv = 1 .

Because dµ = b(ω, v1 − v) dω M1dv1 Mdv is a positive unit measure on SD−1× RD× RD, we
denote by

〈〈
Ξ
〉〉

the average over this measure of any integrable function Ξ = Ξ(ω, v1, v)

(2.10)
〈〈
Ξ
〉〉

=

∫∫∫
SD−1×RD×RD

Ξ(ω, v1, v) dµ .

2.2. DiPerna-Lions-Mischler Theory. As in [4, 6, 13], we will work in the framework of
DiPerna-Lions solutions to the scaled Boltzmann equation on the phase space O = RD × Ω

(2.11)
∂tGε + v ·∇xGε =

1

ε
Q(Gε, Gε) on O × R+ ,

Gε(v, x, 0) = Gin
ε (v, x) on O ,

with the Maxwell reflection boundary condition (1.6) which can be expressed as

(2.12) γ−Gε = (1− α)L(γ+Gε) + α〈γ+Gε〉∂Ω on Σ− × R+ ,

where γ±Gε denote the traces of Gε on the outgoing and incoming sets Σ±. Here the local
reflection operator L is defined to act on any |v · n|Mdv dσx-measurable function φ over ∂O by

Lφ(v, x) = φ(R(x)v, x) for almost every (v, x) ∈ ∂O ,
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where R(x)v = v − 2v · n(x)n(x) is the specular reflection of v, while the diffuse reflection
operator is defined as

〈φ〉∂Ω =
√

2π

∫
v·n(x)>0

φ(v, x) v · n(x) Mdv .

DiPerna-Lions theory requires that both the equation and boundary conditions in (2.11) should
be understood in the renormalized sense, see (3.7) and (3.11). These solutions were initially
constructed by DiPerna and Lions [5] over the whole space RD for any initial data satisfying
natural physical bounds. For bounded domain case, Mischler [16] recently developed a theory
to treat the Maxwell reflection boundary condition (2.12).

The DiPerna-Lions theory does not yield solutions that are known to solve the Boltzmann
equation in the usual sense of weak solutions. Rather, it gives the existence of a global weak
solution to a class of formally equivalent initial value problems that are obtained by multiplying
(2.11) by Γ′(Gε), where Γ′ is the derivative of an admissible function Γ:

(2.13) (∂t + v ·∇x)Γ(Gε) =
1

ε
Γ′(Gε)Q(Gε, Gε) on O × R+ .

Here a function Γ : [0,∞) → R is called admissible if it is continuously differentiable and for
some CΓ < ∞ its derivative satisfies

|Γ′(Z)| ≤ CΓ√
1 + Z

for every Z ∈ [0,∞) .

The solutions are nonnegative and lie in C([0,∞); w-L1(Mdv dx)), where the prefix “w-” on a
space indicates that the space is endowed with its weak topology.

Mischler [16] extended DiPerna-Lions theory to domains with a boundary on which the
Maxwell reflection boundary condition (2.12) is imposed. This required the proof of a so-called
trace theorem that shows that the restriction of Gε to ∂O×R+, denoted γGε, makes sense. In
particular, Mischler showed that γGε lies in the set of all |v · n|Mdv dσx dt-measurable functions
over ∂O × R+ that are finite almost everywhere, which we denote L0(|v · n|Mdv dσx dt). He
then defines γ±Gε = 1Σ±γGε. He proves the following.

Theorem 2.1. (DiPerna-Lions-Mischler Renormalized Solutions [5, 16]) Let b be a collision
kernel that satisfies the assumptions in Section 2.1. Fix ε > 0. Let Gin

ε be any initial data in
the entropy class

(2.14) E(Mdv dx) =
{
Gin

ε ≥ 0 : H(Gin
ε ) < ∞

}
,

where the relative entropy functional is given by

H(G) =

∫
Ω

〈η(G)〉 dx with η(G) = G log(G)−G + 1 .

Then there exists a Gε ≥ 0 in C([0,∞);w-L1(Mdv dx)) with γGε ≥ 0 in L0(|v · n|Mdv dσx dt)
such that:

• Gε satisfies the global entropy inequality

(2.15) H(Gε(t)) +

∫ t

0

[
1

ε
R(Gε(s)) +

α√
2π
E(γ+Gε(s))

]
ds ≤ H(Gin

ε ) for every t > 0 ,

where the entropy dissipation rate functional is given by

(2.16) R(G) =
1

4

∫
Ω

〈〈
log

(
G′

1G
′

G1G

) (
G′

1G
′ −G1G

)〉〉
dx ,
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and the so-called Darrozès-Guiraud information is given by

(2.17) E(γ+G) =

∫
∂Ω

[〈
η(γ+G)

〉
∂Ω
− η

(
〈γ+G〉∂Ω

)]
dσx ;

• Gε satisfies

(2.18)

∫
Ω

〈Γ(Gε(t2)) Y 〉 dx−
∫

Ω

〈Γ(Gε(t1)) Y 〉 dx +

∫ t2

t1

∫
∂Ω

〈Γ(γGε) Y (v · n)〉 dσx dt

−
∫ t2

t1

∫
Ω

〈Γ(Gε) v ·∇xY 〉 dx dt =
1

ε

∫ t2

t1

∫
Ω

〈Γ′(Gε)Q(Gε, Gε) Y 〉 dx dt ,

for every admissible function Γ, every Y ∈ C1∩L∞(RD× Ω̄), and every [t1, t2] ⊂ [0,∞];
• Gε satisfies

(2.19) γ−Gε = (1− α)L(γ+Gε) + α〈γ+Gε〉∂Ω almost everywhere on Σ− × R+ .

Remark. Because the trace γGε is only known to exist in L0(|v · n|Mdv dσx dt) rather than in
L1

loc(dt; L1(|v · n|Mdv dσx)), we cannot conclude from the boundary condition (2.19) that

(2.20) 〈v γGε〉 · n = 0 on ∂Ω .

Indeed, we cannot even conclude that the boundary mass-flux 〈v γGε〉 · n is defined on ∂Ω.
Moreover, in contrast to DiPerna-Lions theory over the whole space or periodic domains, it is
not asserted in [16] that Gε satisfies the weak form of the local mass conservation law

(2.21)

∫
Ω

χ 〈Gε(t2)〉 dx−
∫

Ω

χ 〈Gε(t1)〉 dx−
∫ t2

t1

∫
Ω

∇xχ · 〈v Gε〉 dx dt = 0 ∀χ ∈ C1(Ω) .

If this were the case, it would allow a great simplification the proof of our main result. Rather,
we will employ the boundary condition (2.19) inside an approximation to (2.21) that has a
well-defined boundary flux.

Remark. As was shown in [3], the condition H(G) < ∞ found in our definition of the entropy
class (2.14) is equivalent to the conditon∫∫

RD×Ω

(
1 + |v|2 + | log(G)|

)
G Mdv dx < ∞ ,

which is used by Mischler and others. By presenting it as we do, it is clear that the entropy
class is simply those kinetic densities G whose relative entropy with respect to M is finite.

3. Main Result

3.1. Main Theorem. We will consider families Gε of DiPerna-Lions renormalized solutions
to (2.11) such that Gin

ε ≥ 0 satisfies the entropy bound

(3.1) H(Gin
ε ) ≤ C inδ 2

ε

for some C in < ∞ and δε > 0 that satisfies the scaling δε → 0 as ε → 0.
The value of H(G) provides a natural measure of the proximity of G to the equilibrium

G = 1. We define the families gin
ε and gε of fluctuations about G = 1 by the relations

(3.2) Gin
ε = 1 + δεg

in
ε , Gε = 1 + δεgε .

One easily sees [3] that H asymptotically behaves like half the square of the L2-norm of these
fluctuations as ε → 0. Hence, the entropy bound (3.1) combined with the entropy inequality
(2.15) is consistent with these fluctuations being of order 1. Just as the relative entropy H
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controls the fluctuations gε, the dissipation rate R given by (2.16) controls the scaled collision
integrals defined by

qε =
1√
εδε

(
G′

ε1G
′
ε −Gε1Gε

)
.

Here we only state the weak acoustic limit theorem because the corresponding strong limit
theorem is analogous to that stated in [6] and its proof based on the weak limit theorem and
relative entropy convergence is essentially the same.

Theorem 3.1. (Weak Acoustic Limit Theorem) Let b be a collision kernel that satisfies the
assumptions in Section 2.1. Let Gin

ε be a family in the entropy class E(Mdv dx) that satisfies
the normalization (2.1) and the entropy bound (3.1) for some C in < ∞ and δε > 0 satisfies the
scaling

δε = O
(√

ε
)
.

Assume, moreover, that for some (ρin, uin, θin) ∈ L2(dx; R× RD× R) the family of fluctuations
gin

ε defined by (3.2) satisfies

(3.3) (ρin, uin, θin) = lim
ε→0

(
〈gin

ε 〉 , 〈v gin
ε 〉 ,

〈(
1
D
|v|2 − 1

)
gin

ε

〉)
in the sense of distributions .

Let Gε be any family of DiPerna-Lions-Mischler renormalized solutions to the Boltzmann
equation (2.11) that have Gin

ε as initial values.
Then, as ε → 0, the family of fluctuations gε defined by (3.2) satisfies

(3.4) gε → ρ + v ·u + (1
2
|v|2 − D

2
)θ in w-L1

loc(dt;w-L1((1 + |v|2)Mdv dx)) ,

where (ρ, u, θ) ∈ C([0,∞); L2(dx; R× RD× R)) is the unique solution to the acoustic system
(1.1) that satisfies the impermeable boundary condition (1.2) and has initial data (ρin, uin, θin)
obtain from (3.3). In addition, ρ satisfies

(3.5)

∫
Ω

ρ dx = 0 .

This result improves upon the acoustic limit result in [6] in three ways. First, its assumption
on the collision kernel b is the same as [13], so it treats a broader class of cut-off kernels than
was treated in [6]. In particular, it treats kernals derived from soft potentials. Second, its
scaling assumption is δε = O(

√
ε), which is certainly better than the scaling assumption (1.16)

used in [6]. This assumption is still a long way from that required by the formal derivation of
the acoustic system, which is δε → 0 as ε → 0. Our more restrictive requirement arises from
the way in which we remove the local conservation law defects of the DiPerna-Lions solutions.
Third, we derive a weak form of the boundary condition u · n = 0. It is the first time such a
boundary condition for the acoustic system is derived from the Boltzmann equation with the
Maxwell reflection boundary condition.

3.2. Proof of the Main Theorem. In order to derive the fluid equations with boundary
conditions, we need to pass to the limit in approximate local conservation laws built from
the renormalized Boltzmann equation (2.13). We choose the renormalization used in [13] —
namely,

(3.6) Γ(Z) =
Z − 1

1 + (Z − 1)2
.
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After dividing by δε, equation (2.13) becomes

(3.7) ∂tg̃ε + v ·∇xg̃ε =
1√
ε

Γ′(Gε)

∫∫
SD−1×RD

qε b(ω , v1 − v) dω M1dv1 ,

where g̃ε = Γ(Gε)/δε. By introducing Nε = 1 + δ2
ε g

2
ε , we can write

(3.8) g̃ε =
gε

Nε

, Γ′(Gε) =
2

N2
ε

− 1

Nε

.

When moment of the renormalized Boltzmann equation (3.7) is formally taken with respect
to any ζ ∈ span{1 , v1 , · · · , vD , |v|2}, one obtains

(3.9) ∂t〈ζ g̃ε〉+∇x · 〈v ζ g̃ε〉 =
1√
ε

〈〈
ζ Γ′(Gε) qε

〉〉
.

This fails to be a local conservation law because the so-called conservation defect on the right-
hand side is generally nonzero. We will show that this defect vanishes as ε → 0, while the
left-hand side converges to the local conservation law corresponding to ζ. More precisely, it can
be shown that every DiPerna-Lions solution satisfies (3.9) in the sense that for every χ ∈ C1(Ω)
and every [t1, t2] ⊂ [0,∞) it satisfies

(3.10)

∫
Ω

χ 〈ζ g̃ε(t2)〉 dx−
∫

Ω

χ 〈ζ g̃ε(t1)〉 dx +

∫ t2

t1

∫
∂Ω

χ 〈v ζ γg̃ε〉 · n dσx dt

−
∫ t2

t1

∫
Ω

∇xχ · 〈v ζ g̃ε〉 dx dt =

∫ t2

t1

∫
Ω

χ
1√
ε

〈〈
ζ Γ′(Gε) qε

〉〉
dx dt .

Moreover, from (2.19) the boundary condition is understood in the renormalized sense:

(3.11) γ−g̃ε =
(1− α)Lγ+gε + α〈γ+gε〉∂Ω

1 + δ2
ε [(1− α)Lγ+gε + α〈γ+gε〉∂Ω]2

on Σ− × R+ ,

where the equality holds almost everywhere. We will pass to the limit in the weak form (3.10).
The Main Theorem will be proved in two steps: the interior equations will be established first
and the boundary condition second.

The acoustic system (1.1) is justified in the interior of Ω by showing that the limit of (3.10)
as ε → 0 is the weak form of the acoustic system whenever the test function χ vanishes on ∂Ω.
We prove that the conservation defect on the right-hand side of (3.10) vanishes as ε → 0 in
Proposition 4.1, which is presented in the next section. The proof of the analogous result in [6]
must be modified in order to include the case δε = O(

√
ε). The convergence of the density and

flux terms is proved essentially as in [6], so we omit those arguments here. The upshot is that
every converging subsequence of the family of fluctuations gε satisfies

gε → ρ + v ·u + (1
2
|v|2 − D

2
)θ in w-L1

loc(dt; w-L1((1 + |v|2)Mdv dx)) ,

where (ρ, u, θ) ∈ C([0,∞); w-L2(dx; R× RD× R)) satisfies for every [t1, t2] ⊂ [0,∞)∫
Ω

χ ρ(t2) dx−
∫

Ω

χ ρ(t1) dx−
∫ t2

t1

∫
Ω

∇xχ ·u dx dt = 0 ∀χ ∈ C1
0(Ω) ,(3.12a) ∫

Ω

w ·u(t2) dx−
∫

Ω

w ·u(t1) dx−
∫ t2

t1

∫
Ω

∇x · w (ρ + θ) dx dt = 0 ∀w ∈ C1
0(Ω; RD) ,(3.12b)

D
2

∫
Ω

χ θ(t2) dx− D
2

∫
Ω

χ θ(t1) dx−
∫ t2

t1

∫
Ω

∇xχ ·u dx dt = 0 ∀χ ∈ C1
0(Ω) .(3.12c)
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This shows that the acoustic system (1.1) is satisfied in the interior of Ω.
The more significant step is to justify the impermeable boundary condition (1.2). Unlike

to what is done for the incompressible Stokes [15] and Navier-Stokes [12] limits, here we do
not have enough control to pass to the limit in the boundary terms in (3.10) for the local
conservation laws of momentum and energy. We can however do so for the local conservation
law of mass — i.e. when ζ = 1. Indeed, Proposition 5.1 of Section 5 will show that we can
extend (3.12a) to

(3.13)

∫
Ω

χ ρ(t2) dx−
∫

Ω

χ ρ(t1) dx−
∫ t2

t1

∫
Ω

∇xχ ·u dx dt = 0 ∀χ ∈ C1(Ω) .

We obtain 3.5 by setting χ = 1 and t1 = 0 above, and using the fact that the family Gin
ε satisfies

the normalization (2.1).
Because for every χ ∈ C1(Ω) we can find a sequence {χn} ⊂ C1

0(Ω) such that χn → χ in
L2(dx), it follows from (3.12a) and (3.12c) that

D
2

∫
Ω

χ θ(t2) dx− D
2

∫
Ω

χ θ(t1) dx = lim
n→∞

D
2

∫
Ω

χn θ(t2) dx− lim
n→∞

D
2

∫
Ω

χn θ(t1) dx

= lim
n→∞

∫
Ω

χn ρ(t2) dx− lim
n→∞

∫
Ω

χn ρ(t1) dx

=

∫
Ω

χ ρ(t2) dx−
∫

Ω

χ ρ(t1) dx .

It thereby follows from (3.13) that we can extend (3.12c) to

(3.14) D
2

∫
Ω

χ θ(t2) dx− D
2

∫
Ω

χ θ(t1) dx−
∫ t2

t1

∫
Ω

∇xχ ·u dx dt = 0 ∀χ ∈ C1(Ω) .

Finally, because for every w ∈ C1(Ω; RD) such that w · n = 0 on ∂Ω we can find a sequence
{wn} ⊂ C1

0(Ω; RD) such that wn → w in L2(dx; RD) and ∇x · wn → ∇x · w in L2(dx), it follows
from (3.12b) that∫

Ω

w ·u(t2) dx−
∫

Ω

w ·u(t1) dx = lim
n→∞

∫
Ω

wn ·u(t2) dx− lim
n→∞

∫
Ω

wn ·u(t1) dx

= lim
n→∞

∫ t2

t1

∫
Ω

∇x · wn (ρ + θ) dx dt

=

∫ t2

t1

∫
Ω

∇x · w (ρ + θ) dx dt .

But this combined with (3.13) and (3.14) is the weak formulation of the acoustic system
(1.1) with the boundary condition (1.2). Because this system has a unique weak solution in
C([0,∞); w-L2(dx; R× RD× R)), all converging sequences of the family gε have this same limit.
Moreover, this limit must be the strong solution that lies in C([0,∞); L2(dx; R× RD× R)). The
family of fluctuations gε therefore converges as asserted by (3.4). �

Remark. Had we known that Gε satisfies the weak form of the local mass conservation law
(2.21) then we could have easily obtained (3.13) by passing to the limit in (2.21). In that
case there would be a great simplification in our proof because there would be no need for
Proposition 5.1.
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4. Removal of the Conservation Defects

The conservation defects in (3.9) have the form

1√
ε

〈〈
ζ Γ′(Gε) qε

〉〉
=

1√
ε

〈〈
ζ

(
2

N 2
ε

− 1

Nε

)
qε

〉〉
.

In order to establish local conservation laws, we must show that these defects vanish as ε → 0.
This is done with the following proposition.

Proposition 4.1. For n = 1 and n = 2, and for every ζ ∈ span{1, v1, · · · , vD, |v|2} one has

(4.1)
1√
ε

〈〈
ζ

qε

N n
ε

〉〉
→ 0 in w-L1

loc(dt;w-L1(dx)) as ε → 0 .

Proof. Similar to the proof of Proposition 8.1 in [13], for n = 1, we obtain the decomposition

(4.2)
1√
ε

〈〈
ζ

qε

Nε

〉〉
=

δ2
ε√
ε

〈〈
ζ

g 2
ε1qε

Nε1Nε

〉〉
+

〈〈
ζ

δ 2
ε (gε1 + gε)q

2
ε

N ′
ε1N

′
εNε1Nε

〉〉
− δ 2

ε√
ε

〈〈
ζ ′

g′ε1g
′
ε qε

N ′
ε1N

′
εNε1Nε

Jε

〉〉
,

where Jε is given by

(4.3) Jε = 2 + δε

(
g′ε1 + g′ε + gε1 + gε

)
− δ2

ε

(
g′ε1g

′
ε − gε1gε

)
.

We can then dominate the integrands of the three terms on the right-hand side of (4.2).
Because for every ζ ∈ span{1, v1, · · · , vD, |v|2} there exists a constant C < ∞ such that |ζ| ≤ Cσ
where σ ≡ 1 + |v|2, the integrand of the first term is dominated by

(4.4)
δ2
ε√
ε
σ

g2
ε1|qε|

Nε1Nε

.

Because δε|gε1+gε|√
N ′

ε1N ′
εNε1Nε

≤ 2, the integrand of the second term is dominated by

(4.5) σ
δεq

2
ε√

N ′
ε1N

′
εNε1Nε

.

Finally, because |Jε|√
N ′

ε1N ′
εNε1Nε

≤ 8, the integrand of the third term is dominated by

(4.6)
δ2
ε√
ε
σ′

|g′ε1g′ε||qε|√
N ′

ε1N
′
εNε1Nε

.

Hence, the result (4.1) for the case n = 1 will follow once we establish that the terms (4.4),
(4.5), and (4.6) vanish as ε → 0.

The result (4.1) for the case n = 2 will follow similarly. We start with the decomposition

1√
ε

〈〈
ζ

qε

N 2
ε

〉〉
=

δ2
ε√
ε

〈〈
ζ

g 2
ε1qε

Nε1Nε

(
1 +

1

Nε1

)〉〉
+

〈〈
ζ

δ 2
ε (gε1 + gε)q

2
ε

N ′
ε1N

′
εNε1Nε

(
1

N ′
ε1N

′
ε

+
1

Nε1Nε

)〉〉
− δ 2

ε√
ε

〈〈
ζ ′

g′ε1g
′
ε qε

N ′
ε1N

′
εNε1Nε

Jε

(
1

N ′
ε1N

′
ε

+
1

Nε1Nε

)〉〉
,

where Jε is given by (4.3). Because the terms in parentheses above are each bounded by 2, we
can dominate the three terms on the right-hand side above just as we did the terms on the
right-hand side of (4.2) for the case n = 1. The result (4.1) for the case n = 2 will then also
follow once we establish that the terms (4.4), (4.5), and (4.6) vanish as ε → 0.
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That term (4.5) vanishes is easy to see. The inequality n′ε1n
′
εnε1nε ≤ 2

√
N ′

ε1N
′
εNε1Nε, where

nε = 1 + δε

3
gε, along with the estimate

σ
q 2
ε

n′ε1n
′
εnε1nε

= O
(∣∣log

(√
εδε

)∣∣) in L1
loc(dt; L1(dµ dx)) as ε → 0 ,

which is proved in Lemma 9.4 of [6], imply that

σ
δεq

2
ε√

N ′
ε1N

′
εNε1Nε

= O
(
δε

∣∣log
(√

εδε

)∣∣) → 0 in L1
loc(dt; L1(dµ dx)) as ε → 0 .

The fact that the terms (4.4) and (4.6) vanish as ε → 0 follows from Lemma 4.1, which is
proved below. We thereby complete the proof of Proposition 4.1. �

Lemma 4.1.

δ2
ε√
ε
σ

g2
ε1|qε|

Nε1Nε

→ 0 in L1
loc(dt; L1(dµ dx)) as ε → 0 ,(4.7)

δ2
ε√
ε
σ′

|g′ε1g′ε||qε|√
N ′

ε1N
′
εNε1Nε

→ 0 in L1
loc(dt; L1(dµ dx)) as ε → 0 .(4.8)

Proof. The key to proving Lemma 4.1 is the fact that

(4.9)
g 2

ε√
Nε

is relatively compact in w-L1
loc(dt; w-L1(aMdv dx)) .

This fact follows from Proposition 7.1 of [13], where it plays an essential role in establishing
the Navier-Stokes limit. The approach to proving Lemma 4.1 is the same used to prove the
analogous result in [6]. There the terms (4.4) and (4.6) were estimated by using the entropy
dissipation bound along with the nonlinear estimate

σ
g 2

ε√
Nε

= O(| log(δε)|) in L∞(dt; L1(Mdv dx)) as ε → 0 .

Here this nonlinear estimate, which originated in [3], is replaced by the new weak compactness
result (4.9) from [13], thereby extending the result in [6] to the scaling δε =

√
ε.

The entropy inequality (2.15) and the entropy bound (3.1) combine to bound the entropy
dissipation as

(4.10)
1

εδ 2
ε

∫ ∞

0

∫
Ω

〈〈
1

4
r

(√
εδεqε

Gε1Gε

)
Gε1Gε

〉〉
dx dt ≤ C in ,

where the function r is defined over z > −1 by r(z) = z log(1 + z). The function r is strictly
convex over z > −1. The proofs of (4.7) and (4.8) are each based on a delicate use of the
classical Young inequality satisfied by r and its Legendre dual r∗, namely, the inequality

pz ≤ r∗(p) + r(z) for every p ∈ R and z > −1 .

For every positive % and y we set

p =

√
εδεy

%
and z =

√
εδε|qε|

Gε1Gε

,

and use the fact that r(|z|) ≤ r(z) for every z > −1 to obtain

(4.11) y|qε| ≤
%

εδ 2
ε

r∗
(√

εδεy

%

)
Gε1Gε +

%

εδ 2
ε

r

(√
εδεqε

Gε1Gε

)
Gε1Gε .
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This inequality is the starting point for the proofs of assertions (4.7) and (4.8). These proofs
also use the facts, recalled from [3], that r∗ is superquadratic in the sense

(4.12) r∗(λp) ≤ λ2r∗(p) for every p > 0 and λ ∈ [0, 1] ,

and that r∗ has the exponential asymptotics r∗(p) ∼ exp(p) as p →∞.
The proof of assertion (4.7) follows that of Lemma 8.2 in [13]. We use the inequality (4.11)

with y = σ
4s∗

δ 2
ε√
ε

g 2
ε1

Nε1Nε
, where s∗ ∈ [1,∞) is related to s ∈ (1,∞] appearing in (2.7) by the duality

relation 1
s

+ 1
s∗

= 1. We then apply the superquadratic property (4.12) with λ =
δ3
ε g2

ε1

%Nε1Nε
and

p = σ
4s∗

, where we note that λ ≤ 1 whenever δε ≤ %. This leads to the bound

(4.13)
σ

4s∗
δ 2
ε√
ε

g2
ε1|qε|

Nε1Nε

≤ 1

%

δ 4
ε

ε

g 4
ε1

N 2
ε1N

2
ε

r∗
( σ

4s∗

)
Gε1Gε +

%

εδ 2
ε

r

(√
εδεqε

Gε1Gε

)
Gε1Gε .

The second term on the right-hand side above can be made arbitrarily small in L1(dµ dx dt)
by using the entropy dissipation bound (4.10) and picking % small enough. Assertion (4.7) will
then follow upon showing that for every % > 0 the first term on the right-hand side of (4.13)
vanishes as ε → 0.

Because Gε1Gε ≤ 2
√

Nε1Nε while Nε ≥ 1, the first term on the right-hand side of (4.13) is
bounded by

2 δ 2
ε

% ε

δ 2
ε g 2

ε1

Nε1

g 2
ε1√
Nε1

r∗
( σ

4s∗

)
.

The first factor above is bounded because δ 2
ε = O(ε), while the second is bounded above by 1

and satisfies

δ 2
ε g 2

ε1

Nε1

→ 0 in measure as ε → 0 .

It follows from (4.9) and Lemma 8.1 of [13] that

g 2
ε1√
Nε1

r∗
( σ

4s∗

)
is relatively compact in w-L1

loc(dt; w-L1(dµ dx)) .

We thereby conclude by the Product Limit Theorem [3] that

2 δ 2
ε

% ε

δ 2
ε g 2

ε1

Nε1

g 2
ε1√
Nε1

r∗
( σ

4s∗

)
→ 0 in L1

loc(dt; L1(dµ dx)) .

Hence, for every % > 0 the first term on the right-hand side of (4.13) vanishes as ε → 0.
Assertion (4.7) thereby follows.

The proof of assertion (4.8) similarly follows that of Lemma 8.3 in [13]. We use the inequality

(4.11) with y = σ
4s∗

δ2
ε√
ε

|g′ε1g′ε|√
N ′

ε1N ′
εNε1Nε

and apply the superquadratic property (4.12) to obtain the

bound

σ′

4s∗
δ 2
ε√
ε

|g′ε1g′ε||qε|√
N ′

ε1N
′
εNε1Nε

≤ 1

%

δ 4
ε

ε

g′ 2ε1g
′ 2
ε

N ′
ε1N

′
εNε1Nε

r∗
( σ

4s∗

)
Gε1Gε +

%

εδ 2
ε

r

(√
εδεqε

Gε1Gε

)
Gε1Gε .

We then argue as we did to prove assertion (4.7) from (4.13). �
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5. Limit of the Boundary Mass-Flux Term

In this section we show that as ε → 0 the boundary term vanishes in the weak form of the
approximate local conservation of mass that is obtained by setting ζ = 1 in (3.10). This is the
key step in establishing the limiting mass conservation equation (3.13) from (3.10), as the limit
for all the other terms are obtained exactly as they were when we established the interior mass
conservation equation (3.12a). More specifically, we prove the following.

Proposition 5.1. For every [t1, t2] ⊂ [0,∞) and every χ ∈ C1(Ω) one has

lim
ε→0

∫ t2

t1

∫
∂Ω

χ 〈v γg̃ε〉 · n dσx dt = 0 .

Proof. Denote the boundary mass-flux term as

jε =

∫ t2

t1

∫
∂Ω

χ 〈v γg̃ε〉 · n dσx dt .

The renormalized boundary condition (3.11) can be expressed as

γ−g̃ε = L

(
ĝε

1 + δ 2
ε ĝ 2

ε

)
, where ĝε = γ+

(
(1− α)gε + α〈γ+gε〉∂Ω

)
.

It follows that

jε =

∫ t2

t1

∫
∂Ω

χ
〈
v (γ+g̃ε + γ−g̃ε)

〉
· n dσx dt

=

∫ t2

t1

∫
∂Ω

χ

〈
v

(
γ+g̃ε −

ĝε

1 + δ 2
ε ĝ 2

ε

)〉
· n dσx dt

= α

∫ t2

t1

∫
∂Ω

χ

〈
v γ+

(gε − 〈γ+gε〉∂Ω)(1− δ 2
ε gεĝε)

(1 + δ 2
ε g 2

ε )(1 + δ 2
ε ĝ 2

ε )

〉
· n dσx dt .

If α = 0 then we are done. If α > 0 then set γε = γ+

(
gε − 〈γ+gε〉∂Ω

)
, so that

(5.1) jε = α

∫ t2

t1

∫
∂Ω

χ

∫
v · n>0

γε
1− δ 2

ε γ+gε ĝε

(1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ 2

ε )
v ·n Mdv dσx dt .

The idea will now be to control γε with the bound on the Darrozès-Guiraud information (2.17)
given by the entropy inequality (2.15) and entropy bound (3.1). More specifically, we will show
in Lemma 5.1 that

(5.2) lim
ε→0

∫ t2

t1

∫
∂Ω

χ

∫
v · n>0

γε

(1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ2

ε )
v · n Mdv dσx dt = 0 ,

and that

(5.3) lim
ε→0

∫ t2

t1

∫
∂Ω

χ

∫
v · n>0

γε
δ 2
ε γ+gε ĝε

(1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ 2

ε )
v ·n Mdv dσx dt = 0 .

Propostion 5.1 for the case α > 0 will then follow from (5.1-5.3) upon proving Lemma 5.1. �

Lemma 5.1. Let α > 0. Then the limits (5.2) and (5.3) hold.
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Proof. Following [15], we employ the decomposition

(5.4) γε = γ(1)
ε + γ(2)

ε , where γ(1)
ε = γε1{γ+Gε≤2〈γ+Gε〉∂Ω≤4γ+Gε} .

By arguing as in Lemma 6.1 of [15] extended to our more general class of collision kernels as
in Lemma 6 of [12], we obtain

γ
(1)
ε

(1 + δ 2
ε γ+g2

ε )
1/4

is bounded in L2
loc(dt; L2(|v · n|Mdv dσx)) ,(5.5)

γ
(1)
ε

(1 + δ 2
ε 〈γ+gε〉 2

∂Ω)1/4
is bounded in L2

loc(dt; L2(|v · n|Mdv dσx)) ,(5.6)

1

δε

γ(2)
ε is bounded in L1

loc(dt; L1(|v · n|Mdv dσx)) .(5.7)

To prove (5.2) we use the fact that 〈γε〉∂Ω = 0 and the decompositon (5.4) to write∫ t2

t1

∫
∂Ω

χ

∫
v · n>0

γε

(1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ 2

ε )
v · n Mdv dσx dt

=

∫ t2

t1

∫
∂Ω

χ

∫
v · n>0

(
γε

(1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ 2

ε )
− γε

(1 + δ 2
ε 〈γ+gε〉 2

∂Ω)2

)
v · n Mdv dσx dt

=

∫ t2

t1

∫
∂Ω

χ

∫
v · n>0

(
γ

(1)
ε

(1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ 2

ε )
− γ

(1)
ε

(1 + δ 2
ε 〈γ+gε〉 2

∂Ω)2

)
v · n Mdv dσx dt

+

∫ t2

t1

∫
∂Ω

χ

∫
v · n>0

γ
(2)
ε

(1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ 2

ε )
v · n Mdv dσx dt

−
∫ t2

t1

∫
∂Ω

χ

∫
v · n>0

γ
(2)
ε

(1 + δ 2
ε 〈γ+gε〉 2

∂Ω)2
v · n Mdv dσx dt .

The last two terms on the right-hand side above vanish as ε → 0 by the bound (5.7).
To show that the first term on the right-hand side above also vanishes as ε → 0, we observe

from the bounds (5.5) and (5.6), the two terms in its integrand are relatively compact in
w-L2

loc(dt; w-L2(|v · n|Mdv dσx)). Their difference is

γ
(1)
ε

(1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ 2

ε )
− γ

(1)
ε

(1 + δ 2
ε 〈γ+gε〉 2

∂Ω)2

= γ(1)
ε

[(1 + δ 2
ε 〈γ+gε〉 2

∂Ω)2 − (1 + δ 2
ε γ+g 2

ε )2] + [(1 + δ 2
ε γ+g 2

ε )− (1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ 2

ε )]

(1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ 2

ε )(1 + δ 2
ε 〈γ+gε〉2∂Ω)2

.

Noting that γ+gε − ĝε = αγε, we see that

(5.8)

γ
(1)
ε

(1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ 2

ε )
− γ

(1)
ε

(1 + δ 2
ε 〈γ+gε〉 2

∂Ω)2

= δε

(
γ(1)

(1 + δ 2
ε γg 2

ε )1/4

)2

1{γ+Gε≤2〈γ+Gε〉∂Ω≤4γ+Gε}(S
(1)
ε + S(2)

ε ) ,
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where

S(1)
ε =

δε(γ+gε + 〈γ+gε〉∂Ω)(2 + δ 2
ε γ+g 2

ε + δ 2
ε 〈γ+gε〉 2

∂Ω)

(1 + δ 2
ε γ+g 2

ε )1/2(1 + δ 2
ε ĝ 2

ε )(1 + δ 2
ε 〈γ+gε〉 2

∂Ω)2
,

S(2)
ε = − αδε(γ+gε + ĝε)(1 + δ 2

ε γ+g 2
ε )

(1 + δ 2
ε γ+g 2

ε )1/2(1 + δ 2
ε ĝ 2

ε )(1 + δ 2
ε 〈γ+gε〉 2

∂Ω)2
.

Note that γ+Gε ≤ 2〈γ+Gε〉∂Ω ≤ 4γ+Gε implies that

δεγ+gε ≤ 2δε〈γ+gε〉∂Ω + 1 , and δε〈γ+gε〉∂Ω ≤ 2δεγ+gε + 1 .

It is easy to see that both

1{γ+Gε≤2〈γ+Gε〉∂Ω≤4γ+Gε}S
(1)
ε and 1{γ+Gε≤2〈γ+Gε〉∂Ω≤4γ+Gε}S

(2)
ε

are bounded in L∞. Noting that the extra δε in front of (5.8), we conclude that for any
convergent subsequence,

γ
(1)
ε

(1 + δ 2
ε γ+g 2

ε )(1 + δ 2
ε ĝ 2

ε )
− γ

(1)
ε

(1 + δ 2
ε 〈γ+gε〉 2

∂Ω)2
→ 0 , in w-L2

loc(dt; w-L2(|v · n|Mdv dσx)) ,

as ε → 0. This establishes limit (5.2).

To prove limit (5.3) separate γε = γ
(1)
ε + γ

(2)
ε , using the bound (5.7) for γ

(2)
ε , it is easy to

estimate that

δε

∥∥∥∥α

δε

γ(2)
ε

∥∥∥∥
L1

loc(dt;L1(|v · n|Mdv dσx))

|δεγ+gε δεγ+ĝε|
(1 + δ 2

ε γ+g 2
ε )(1 + δ 2

ε ĝ 2
ε )
≤ C 1

4
δε .

For the γ
(1)
ε part, from the L2 bounds (5.5) and (5.6),

(5.9)
γ

(1)
ε√

1 + δ 2
ε γ+g 2

ε

is relatively compact in w-L1
loc(dt; w-L1(|v · n|Mdv dσx)). Use the fact that

(5.10)
δεγ+gε δεĝε√

1 + δ 2
ε γ+g 2

ε (1 + δ 2
ε ĝ 2

ε )

is bounded in L∞ and goes to 0 a.e. Then again by the Product Limit Theorem of [3], the
product of (5.9) and (5.10) goes to 0 in L1

loc(dt; L1(|v · n|Mdv dσx)) as ε → 0. We thereby finish
the proof of the Lemma. �

Remark. The most important difference between the acoustic limit and the incompressible
limits (Stokes in [15] and Navier-Stokes in [12]) is that the compactness of the renormalized
traces γg̃ε in the acoustic limit case is not available. The pointwise convergence δεg̃ε → 0
a.e. is also unavailable. (compare Lemma 5.2 in [15].) In contrast, for the incompressible
limits the entropy bounds from boundary provide a priori estimates on the quantity γε =

γ+gε − 1Σ+〈γ+gε〉∂Ω
. Specifically, we have the L2 bound on 1

δε

γ
(1)
ε

nε
with some renormalizer nε, see

bounds (6.2) and (6.3) in [15]. However, in the acoustic limit, because of the acoustic scaling,

we have only the L2 bound on γ
(1)
ε

nε
which is much weaker than in the incompressible limits

cases.
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