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A. We prove anLp compactness result for the gain parts of the linearized Boltzmann collision
operator associated with weakly cutoff collision kernels that derive from a power-law intermolecular
potential. We replace the Grad cutoff assumption previously made by Caflisch [1], Golse and Poupaud
[7], and Guo [11] with a weaker local integrability assumption. This class includes all classical kernels
to which the DiPerna-Lions theory applies that derive from arepulsive inverse-power intermolecular
potential. In particular, our approach allows the treatment of both hard and soft potential cases.

1. I

The linearized Boltzmann collision operator arises in the study of fluid dynamical approximations
to solutions of the Boltzmann equation. That equation governs the kinetic densityF(v, x, t) of a gas
composed of identical particles with velocitiesv ∈ RD and positionsx ∈ RD at timet ≥ 0 as [3, 4]

(1.1) ∂tF + v · ∇xF = B(F, F) ,

where the collision operatorB(F, F) is given by

(1.2) B(F, F) =
∫∫

SD−1×RD

(F′1F
′ − F1F) b(ω, v1 − v) dω dv1 .

Hereω ∈ SD−1 is a unit vector, dω is the usual rotationally invariant Lebesgue measure onS
D−1, while

F′1, F′, F1, andF are the densityF(·, x, t) evaluated at the velocitiesv′1, v′, v1, andv respectively. Here
(v′1, v

′) are the velocities after an elastic binary collision between two molecules that had the velocities
(v1, v) before the collision, or vice versa. Because both momentumand energy are conserved in an
elastic collision, one can expressv′1 andv′ in terms ofv1 andv as

(1.3) v′1 = v1 − ωω · (v1 − v) , v′ = v+ ωω · (v1 − v) ,

where the unit vectorω ∈ SD−1 is parallel to the deflectionsv′1 − v1 andv′ − v, and is thereby normal
to the plane of reflection. The part ofB(F, F) involving F′1 andF′ is called the gain term, while the
part involvingF1 andF is called the loss term.

By Galilean invariance and rotational invariance, every classical collision kernelb(ω, v1 − v) has
the general form [3]

b(ω, v1 − v) = |v1 − v|Σ(|ω · n|, |v1 − v|) , n =
v1 − v
|v1 − v| ,

whereΣ ≥ 0 is the differential scattering cross-section. When the molecules arehard spheres of mass
m and radiusro thenb has the form

(1.4) b(ω, v1 − v) = |ω · (v1 − v)| (2ro)D−1

2m
.
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When the molecules are point particles with a repulsive intermolecular potential proportional tor−k

for somek > 0, wherer is the intermolecular distance, then the kernelb has the factored form

(1.5) b(ω, v1 − v) = b̂(ω · n) |v1 − v|β ,

whereb̂ is an even function ofω · n andβ = 1− 2(D−1)
k < 1. Notice that the hard sphere kernel (1.4)

can be put into this form withβ = 1. The casesβ < 0, β = 0, andβ > 0 are respectively referred to as
the “soft”, “Maxwell”, and “hard” potential cases.

In this paper we assume that the collision kernelb has the factored form (1.5) whereb̂ andβ satisfy

(1.6) b̂(ω · n) ∈ L1(dω) , −D < β .

These assumptions are necessary forb to be locally integrable in all of its variables. This is needed
to seperately make sense of the gain and loss parts ofB(F, F) for all continuous, rapidly decayingF.
They include the so-called “super hard” kernels coresponding toβ > 1, which do not arise classically.
The first assumption in (1.6) is a so-called small deflection cutoff condition because thêb that is
derived from microscopic physics has a nonintegrable singularity atω · n = 0 due to the large number
of grazing collisions. Grad [10] observed that these grazing collisions should not appreciably affect
the macroscopic dynamics, and therefore proposed that these singularities can be cutoff in order to
make analysis of the Boltzmann equation more tractable. Thesmall deflection cutoff condition in (1.6)
is much weaker than the one introduced by Grad, which requires thatb̂ vanish like|ω ·n| as|ω ·n| → 0.
It is therefore sometimes called the weak cutoff condition. In order to apply the DiPerna-Lions theroy
of global renormalized solutions [5] to the Boltzmann equation with kernels in the factored form (1.5),
it is necessary to impose our assumptions (1.6) and also to require thatβ < 2.

Now let M denote the Maxwellian given by

(1.7) M(v) =
1

(2π)D/2
e−

1
2 |v|

2
.

We consider the linearized Boltzmann operatorL defined by

(1.8) L f = − 2
M
B(M,M f ) =

∫∫

SD−1×RD

(
f + f1 − f ′ − f ′1

)
b(ω, v1 − v) dωM1dv1 .

This case is general because any Maxwellian can be put into the form (1.7) by applying a Galilean
transformation to make its bulk velocity zero and a rescaling of units to make its mass density and
temperature equal to unity, and because the collision operatorB(F, F) commutes with Galilean boosts
and is homogeneous under rescalings of density and temperature units. This last fact is a consequence
of the factored form (1.5) ofb. Finally, also without loss of generality, we normalizeb̂ so that

(1.9)
∫

SD−1
b̂(ω · n) dω = 1 .

We decompose the linearized Boltzmann operatorL as

(1.10) L f = a(v)
(
I +K1 − K2 − K3

)
f ,

where the attenuation coefficienta(v) is given by

(1.11) a(v) =
∫∫

SD−1×RD
b(ω, v1 − v) dωM1dv1 ,
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while the loss operatorK1 and the gain operatorsK2 andK3 are given by

(1.12)

K1 f =
1

a(v)

∫∫

SD−1×RD
f1 b(ω, v1 − v) dωM1 dv1 ,

K2 f =
1

a(v)

∫∫

SD−1×RD

f ′ b(ω, v1 − v) dωM1 dv1 ,

K3 f =
1

a(v)

∫∫

SD−1×RD
f ′1 b(ω, v1 − v) dωM1 dv1 .

The main result of this paper is the following.

Main Theorem. Let the collision kernel b have the factored form (1.5) and satisfy conditions (1.6).
Then for every p∈ (1,∞) and every j= 1, 2, 3 the operator

(1.13) K j : Lp(aMdv)→ Lp(aMdv) is compact.

The first result of this kind was given by Hilbert in the same paper in which he introduced what we
now call the Hilbert expansion [13]. For the hard sphere casein D = 3 he applied his new theory of
integral operators to essentially show that for the operator K = K1 − K2 − K3 one has

(1.14) aK : L2(Mdv)→ L2(Mdv) is compact.

More precisely, what he showed was isometrically equivalent to this. Also for the hard sphere case
in D = 3, Hecke [12] gave a variant of Hilbert’s result by showing that the kernel ofK5 is Hilbert-
Schmidt inL2(aMdv), and Carleman [2] improved upon this by showing that the kernel of K2 is
Hilbert-Schmidt inL2(aMdv). Grad [10] extended Hilbert’s result to the Maxwell and hard potential
cases,β ∈ [0, 1], by introducing his small deflection cutoff condition. This allowed him to adapt
Hecke’s argument and show that the kernel of (aK)3 is Hilbert-Schmidt inL2(Mdv). By using similar
methods, Caflisch [1] extended Grad’s result (1.14) to the soft potential case by treating Grad cutoff
kernels withβ ∈ (−1, 1] in D = 3, and Golse and Poupaud [7] established thatK is compact over
L2(aMdv) for Grad cutoff kernels withβ ∈ (−2, 1] in D = 3. By using an approach that is closer to
our own, Guo [11] extended Caflisch’s result for Grad cutoff kernels to the full rangeβ ∈ (−3, 1] in
D = 3. Our approach allows us to replace the Grad cutoff condition with the weaker cutoff condition
given in (1.6). We do so for general dimensionD.

The most important application of such compactness resultshas been to establish Fredholm alter-
native results for the linearized collision operatorL. Indeed, Grad showed that for Grad cutoff kernels
with β ∈ [0, 1] the operatorL satisfied a Fredholm alternative inL2(Mdv). For soft potential case this
does not hold, but it was pointed out by Golse and Poupaud in [7] that 1

aL still satisfies a Fredholm
alternative inL2(aMdv). Fredholm alternatives and their related coercivity bounds play an impor-
tant role in establishing hydrodynamic limits of the Boltzmann equation [4]. We mention that the
Fredholm alternative has been established inL2(aMdv) for an even broader class of collision kernels
without any small deflection cutoff assumption by Mouhot and Strain [16] using a different approach,
thereby improving upon an earlier result of Pao [17]. Our result yields a Fredholm alternative in
Lp(aMdv) for everyp ∈ (1,∞), but we require the weak cutoff condition. ThisLp Fredholm alterna-
tive is used in [15] to prove an incompressible Navier-Stokes limit for the Boltzmann equation for the
class of collision kernels considered here, thereby extending the results of Golse and Saint-Raymond
[8, 9] for Grad cutoff kernels withβ ∈ [0, 1].

2. C P

2.1. Preliminaries. We begin with a basic fact that illustrates why the operatorsK j defined by (1.12)
and the spacesLp(aMdv) are natural for this study.
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Lemma 2.1. Let the collision kernel b have the factored form (1.5) and satisfy conditions (1.6). Then
for every p∈ [1,∞] and every j= 1, 2, 3 the operator

(2.1) K j : Lp(aMdv)→ Lp(aMdv) is bounded with‖K j‖B(Lp) ≤ 1 .

Proof. First let p ∈ (1,∞) and setp∗ ∈ (1,∞) such that1p +
1
p∗ = 1. For everyf , g ∈ Cc(RD) we have

(2.2)
∫

RD
gK1 f aMdv =

∫∫∫

SD−1×RD×RD
g f1 bdωM1dv1 Mdv .

An application of the Hölder inequality then yields
∫

RD
|gK1 f | aMdv ≤

(∫∫∫

SD−1×RD×RD
|g|p∗ bdωM1dv1 Mdv

) 1
p∗

(∫∫∫

SD−1×RD×RD
| f1|p bdωM1dv1 Mdv

) 1
p

= ‖g‖Lp∗ (aMdv) ‖ f ‖Lp(aMdv) .

This inequality extends to everyf ∈ Lp(aMdv) andg ∈ Lp∗(aMdv) by a density argument. By the
Reisz Representation Theorem we see that assertion (2.1) for K1 holds with‖K1‖B(Lp) ≤ 1 for every
p ∈ (1,∞). The extension to everyp ∈ [1,∞] follows because (2.2) holds for everyf ∈ L1(aMdv)
andg ∈ L∞(aMdv) or for every f ∈ L∞(aMdv) andg ∈ L1(aMdv). The proofs of assertion (2.1) for
K2 andK3 go similarly. �

Remark. This proof does not require the kernelb(ω, v1 − v) to have the factored form (1.5). Rather,
it only requires that the attenuation coefficienta(v) given by (1.11) exists.

Given Lemma 2.1, our Main Theorem follows by a straightforward interpolation argument once we
show that the compactness assertion (1.13) holds forp = 2. We will use the following compactness
criterion [14], which is a generalization of the classical Hilbert-Schmidt criterion.

Lemma 2.2. LetK be an integral operator given by

K f (v) =
∫

RD

K(v, v′) f (v′) dµ(v′) ,

wheredµ(v) is aσ-finite, positive measure overRD. Let the kernel K(v, v′) be symmetric in v and v′

and for some r∈ [1, 2] satisfy the bound

(2.3) ‖K‖Lr∗(Lr ) =


∫

RD

(∫

RD
|K(v, v′)|r dµ(v′)

) r∗
r

dµ(v)



1
r∗

< ∞ ,

where r∗ ∈ [2,∞] satisfies1
r +

1
r∗ = 1. Let p, p∗ ∈ [r, r∗] satisfy1

p +
1
p∗ = 1. Then for every f∈ Lp(dµ)

and g∈ Lp∗(dµ) one has

(2.4)
∫

RD

|g(v)K f (v)| dµ(v) ≤
∫∫

RD×RD

∣∣∣K(v, v′) f (v′) g(v)
∣∣∣ dµ(v′) dµ(v) ≤ ‖K‖Lr∗ (Lr ) ‖ f ‖Lp ‖g‖Lp∗ ,

wherebyK : Lp(dµ) → Lp(dµ) is bounded with‖K‖B(Lp) ≤ ‖K‖Lr∗ (Lr ). Moreover, if r ∈ (1, 2] then
K : Lp(dµ)→ Lp(dµ) is compact.

The bounded (2.4) for eitherp = r or p = r∗ is simply obtained by two applications of the Hölder
inequality. Its extension to everyp ∈ [r, r∗] then follows by interpolation. The assertion thatK maps
Lp(dµ) into itself and the bound on‖K‖B(Lp) are consequences of the Riesz Representation Theorem.
The compactness assertion holds because whenr ∈ (1, 2] the finite-rank kernels are dense in the space
Lr∗(dµ; Lr(dµ)) whose norm is defined by (2.3). The classical Hilbert-Schmidt compactness criterion
is the special caser = 2. The above criterion often becomes easier to meet asr gets closer to 1.
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2.2. Compactness of the Loss Operator. In this section we establish that the loss operatorK1 is
compact fromL2(aMdv) to L2(aMdv). We begin with the following lemma, which plays a central
role in our compactness proofs for the operatorsK1,K2, andK3.

Lemma 2.3. Let H ∈ L∞(dv) such that H≥ 0, H , 0, and(1+ |v|)r H ∈ L∞(dv) for every r> 0. Let
γ > −D and define

(2.5) h(v) =
∫

RD
|v1 − v|γ H(v1) dv1 .

Then h∈ C(RD) and there exist positive constants CandC such that

(2.6) C (1+ |v|)γ ≤ h(v) ≤ C (1+ |v|)γ , for every v∈ RD .

Proof. First consider the case whenγ ≥ 0. From the elementary bounds

(2.7) |v1 − v|2 ≤ (1+ |v1|2) (1+ |v|2) ≤ (1+ |v1|)2 (1+ |v|)2 , for everyv ∈ RD ,

and the factH > 0, we directly obtain the upper bound

h(v) =
∫

RD
|v1 − v|γ H(v1) dv1 ≤

∫

RD
(1+ |v1|)γ H(v1) dv1 (1+ |v|)γ ,

which yields the upper bound of (2.6).
Next, the bounds (2.7) and the factH > 0 imply that (1+ |v|)−γ |v1 − v|γ H(v1) ≤ (1+ |v1|)γ H(v1).

The Lebesgue Dominated Convergence Theorem therefore implies that the positive function

(2.8) v 7→ h(v)
(1+ |v|)γ =

1
(1+ |v|)γ

∫

RD
|v1 − v|γ H(v1) dv1 ,

is continuous overRD and satisfies

lim
|v|→∞

h(v)
(1+ |v|)γ = lim

|v|→∞

1
(1+ |v|)γ

∫

RD

|v1 − v|γ H(v1) dv1 =

∫

RD

H(v1) dv1 > 0 .

The function (2.8) is thereby bounded away from zero, whereby the lower bound of (2.6) follows.
Now consider the case whenγ ∈ (−D, 0). From the elementary bounds (2.7) and the factH > 0,

we directly obtain the lower bound
∫

RD
(1+ |v1|)γ H(v1) dv1 (1+ |v|)γ ≤

∫

RD
|v1 − v|γ H(v1) dv1 = h(v) ,

which yields the lower bound of (2.6).
Next, because|v|γ ∈ (Lp + Lq) while H ∈ (Lp∗ ∩ Lq∗) for everyp ∈ (1, D

|γ| ) andq ∈ ( D
|γ| ,∞), classical

results on convolutions [6] show thath ∈ C0(RD). The function (2.8) is therefore continuous overRD.
Let s> D andCs < ∞ such that‖(1+ |v|)sH(v)‖L∞ ≤ Cs. Then for every nonzerov ∈ RD we have

h(v)
(1+ |v|)γ ≤

1
(1+ |v|)γ

∫

RD

|v1 − v|γ Cs

(1+ |v1|)s
dv1 =

|v|γ
(1+ |v|)γ

∫

RD

|w1 − v̂|γ Cs |v|D
(1+ |v||w1|)s

dw1 ,

wherev̂ = v/|v| andv1 = |v|w1. By rotational invariance, the integral on the right-hand side above is
independent of ˆv. Moreover, by classical “δ-function” approximation estimates we can show

lim sup
|v|→∞

h(v)
(1+ |v|)γ ≤ lim

|v|→∞

∫

RD
|w1 − v̂|γ Cs|v|D

(1+ |v||w1|)s
dw1 =

∫

RD

Cs

(1+ |v1|)s
dv1 < ∞ .

The function (2.8) is thereby uniformly bounded, whereby the upper bound of (2.6) follows. �

Compactness ofK1 is a direct result of Lemmas 2.2 and 2.3.
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Theorem 2.1. Let the collision kernel b have the factored form (1.5) and satisfy conditions (1.6).
Then

(2.9) K1 : L2(aMdv)→ L2(aMdv) is compact.

Proof. Whenb has the factored form (1.5) and satisfies (1.6) then with the normalization (1.9) the
attenuation coefficient defined by (1.11) takes the form

(2.10) a(v) =
∫

RD

|v1 − v|β M1dv1 ,

while the loss operatorK1 defined by (1.12) takes the form

(2.11) K1 f (v) =
∫

RD
K1(v, v1) f (v1) a1M1dv1 ,

where the kernelK1(v, v1) is given by

K1(v, v1) =
1

a(v) a(v1)

∫

SD−1
b(ω, v1 − v) dω =

|v1 − v|β
a(v) a(v1)

.

By Lemma 2.3 withH = M andγ = β there exist positive constantsCa andCa such that

(2.12) Ca(1+ |v|)
β ≤ a(v) ≤ Ca(1+ |v|)β , for everyv ∈ RD .

Becauseβ ∈ (−D,∞), there existsr ∈ (1, 2] such thatβr ∈ (−D,∞). Direct calculation shows that

(2.13)

(∫

RD
|K1(v, v1)|r a1M1 dv1

) 1
r

=
1

a(v)

(∫

RD
|v1 − v|βr a1−r

1 M1 dv1

) 1
r

.

By Lemma 2.3 withH = a1−r M andγ = βr there exist positive constantsCr andCr such that

Cr (1+ |v|)βr ≤
∫

RD

|v1 − v|βr a1−r
1 M1 dv1 ≤ Cr (1+ |v|)βr , for everyv ∈ RD .

When this estimate is combined with estimate (2.12), we see from (2.13) that

0 <
C

1
r

r

Ca

≤
(∫

RD

|K1(v, v1)|r a1M1 dv1

) 1
r

≤ C
1
r

r

Ca

< ∞ , for everyv ∈ RD .

In particular, we see thatK1 ∈ L∞(aMdv; Lr(aMdv)) ⊂ Lr∗(aMdv; Lr(aMdv)), where 1
r +

1
r∗ = 1.

Because the kernelK1(v, v1) thereby satisfies condition (2.3) for somer ∈ (1, 2], upon applying
Lemma 2.2 withp = 2 we see that assertion (2.9) holds. �

2.3. Compactness of the Gain Operators. The remainder of this paper establishes that the gain
operatorsK2 andK3 are compact fromL2(aMdv) to L2(aMdv). In this section we reduce the proof to
technical lemmas that will be proved in later sections.

Theorem 2.2. Let the collision kernel b have the factored form (1.5) and satisfy conditions (1.6).
Then for j= 2, 3

(2.14) K j : L2(aMdv)→ L2(aMdv) is compact.

Proof. We see from definition (1.12) ofK2 andK3 and the factored form (1.5) ofb that

(2.15)
K2 f (v) =

1
a(v)

∫∫

SD−1×RD

f (v′) b̂(ω · n) |v1 − v|β dωM1 dv1 ,

K3 f (v) =
1

a(v)

∫∫

SD−1×RD
f (v′1) b̂(ω · n) |v1 − v|β dωM1 dv1 .
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We employ expressions for the kernels of these operators similar to those introduced by Grad [10].
Becausev′, v′1 andb̂ are even functions ofω, the integrals overω in (2.15) are just twice the integrals
over the regionω · n > 0. It then follows from (1.3) that in this region we have the identities

(2.16)

|v1 − v|2 = |v′1 − v|2 + |v′ − v|2 , (v′1 − v) · (v′ − v) = 0 ,

ω · n = (v′ − v) · (v1 − v)
|v′ − v| |v1 − v| =

|v′ − v|√
|v′1 − v|2 + |v′ − v|2

,

|v1|2 = |v|2 + 2v · (v′1 − v) + 2v · (v′ − v) + |v′1 − v|2 + |v′ − v|2 .
From these identities it can be shown that the gain operatorsK2 andK3 have the forms

(2.17) K2 f (v) =
∫

RD

K2(v, v
′) f (v′) a′M′dv′ , K3 f (v) =

∫

RD

K2(v, v
′
1) f (v′1) a′1M′1dv′1 ,

where, off their diagonals, the symmetric kernelsK2(v, v′) andK3(v, v′1) are given by

(2.18)

K2(v, v
′) =

2
a(v) a(v′)

∫

y⊥(v′−v)

(|y|2 + |v′ − v|2)
β
2

|v′ − v|D−1
e−

1
2 |y|

2−y·w′ b̂


|v′ − v|√
|y|2 + |v′ − v|2

 dy ,

K3(v, v
′
1) =

2
a(v) a(v′1)

∫

z⊥(v′1−v)

(|v′1 − v|2 + |z|2)
β

2

|z|D−1
e−

1
2 |z|

2−z·w′1 b̂


|z|√

|v′1 − v|2 + |z|2

 dz,

with the vectorsw′(v, v′) andw′1(v, v
′
1) defined by

(2.19) w′ =
|v|2 − v′ · v
|v′ − v|2 v′ +

|v′|2 − v′ · v
|v′ − v|2 v , w′1 =

|v|2 − v′1 · v
|v′1 − v|2 v′1 +

|v′1|2 − v′1 · v
|v′1 − v|2 v .

These vectors have minimum norm on the lines{v + s(v′ − v) : s ∈ R} and{v + s(v′1 − v) : s ∈ R}
respectively. In (2.18) the variables of integrationy andzare identified asy = v′1 − v andz= v′ − v.

The compactness ofK2 andK3 is established by showing that they are each the limit of a sequence
of compact operators. We construct the approximating sequences by truncations. Specifically, for
everyR> 0 andǫ > 0 we construct the operatorsK ǫ,R2 andK ǫ,R3 by replacing the kernels in (2.17) by
the doubly truncated symmetric kernels that are respectively given by

(2.20)

Kǫ,R2 (v, v′) = 1{|v|<R} 1{|v′ |<R}
2

a(v) a(v′)

∫

y⊥(v′−v)

(|y|2 + |v′ − v|2)
β

2

|v′ − v|D−1
e−

1
2 |y|

2−y·w′

× b̂


|v′ − v|

√
|y|2 + |v′ − v|2

 1{|v′−v|>ǫ |v1−v|} dy ,

Kǫ,R3 (v, v′1) = 1{|v|<R} 1{|v′1|<R}
2

a(v) a(v′1)

∫

z⊥(v′1−v)

(|v′1 − v|2 + |z|2)
β
2

|z|D−1
e−

1
2 |z|

2−z·w′1

× b̂


|z|

√
|v′1 − v|2 + |z|2

 1{|v′1−v|>ǫ |v1−v|} 1{|z|>ǫ |v1−v|} dz,

where1S denotes the indicator function of a setS. The fact that the operatorsK ǫ,R2 andK ǫ,R3 are
compact overL2(aMdv) for everyR > 0 andǫ > 0 will follow from Lemma 2.4, which is stated and
proved in Section 2.4. The fact that the operatorsK ǫ,R2 andK ǫ,R3 approximateK2 andK3 asǫ → 0 and
R→ ∞ will follow from Lemma 2.5, which is stated and proved in Section 2.5. Because the compact
operators are a closed subspace ofB(L2), we thereby obtain the compactness ofK2 andK3. �
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Remark. When this result is combined with the compactness of the lossoperatorK1 overL2(aMdv)
provided by Theorem 2.1, and the boundedness ofK1,K2, andK3 overLp(aMdv) for everyp ∈ [1,∞)
provided by Lemma 2.1 then our Main Theorem follows by a standard interpolation argument.

2.4. Compactness of the Approximating Operators. In this section we establish the compactness
of the approximating operatorsK ǫ,R2 andK ǫ,R3 . We have the following.

Lemma 2.4. LetK ǫ,R2 andK ǫ,R3 be the operators with kernels Kǫ,R2 (v, v′) and Kǫ,R3 (v, v′1) respectively
given by (2.20). Then

(a) K ǫ,R2 : L2(aMdv)→ L2(aMdv) is compact;
(b) K ǫ,R3 : L2(aMdv)→ L2(aMdv) is compact.

Proof. The normalization (1.9) and a change of variables yields

(2.21) 1=
∫

SD−1
b̂(ω · n) dω = 2

∣∣∣SD−2
∣∣∣
∫ π

2

0
b̂(cos(θ)) sin(θ)D−2 dθ .

We will use this fact to bound the kernelsKǫ,R2 (v, v′) andKǫ,R3 (v, v′1) in such a way that the compactness
of the operatorsK ǫ,R2 andK ǫ,R3 will follow from Lemma 2.2.

We first establish assertion (a). By employing the pointwisebounde−
1
2 |y|

2−y·w′ ≤ e
1
2 |w
′ |2 on the

integrand in definition ofKǫ,R2 (v, v′) given by (2.20), we reduce the resulting bounding integralto a
single radial integral over|y|. By introducing the change of variables

(2.22) cos(θ) =
|v′ − v|√
|y|2 + |v′ − v|2

,
dθ

cos(θ) sin(θ)
=

d|y|
|y| ,

we may use (2.21) to express the resulting pointwise bound as

Kǫ,R2 (v, v′) ≤ 1{|v|<R} 1{|v′ |<R}
2|v′ − v|β
a(v) a(v′)

e
1
2 |w
′ |2

∣∣∣SD−2
∣∣∣

×
∫ π

2

0
cos(θ)−β b̂(cos(θ))

( sin(θ)
cos(θ)

)D−1

1{cos(θ)>ǫ}
dθ

cos(θ) sin(θ)

≤ 1{|v|<R} 1{|v′ |<R}
|v′ − v|β

a(v) a(v′)
e

1
2 |w
′ |2 1
ǫD+β

.

Because|w′| ≤ |v|, we therefore have the pointwise bounds

0 ≤ Kǫ,R2 (v, v′) ≤ |v
′ − v|β

a(v) a(v′)
e

1
2R2

ǫD+β
.

Up to a constant factor, this upper bound has the same form asK1(v, v1). Following the proof of
Theorem 2.1, there existsr ∈ (1, 2] such thatβr ∈ (−D,∞) and

(∫

RD

|Kǫ,R2 (v, v′)|r a′M′ dv′
) 1

r

≤ C
1
r

r

Ca

e
1
2R2

ǫD+β
< ∞ , for everyv ∈ RD ,

whereCr andCa are the same constants appearing in the proof of Theorem 2.1.Because the symmet-
ric kernelKǫ,R2 (v, v′) thereby satisfies condition (2.3) for somer ∈ (1, 2], upon applying Lemma 2.2
with p = 2 we see that assertion (a) holds.

We now establish (b), which asserts the compactness ofK ǫ,R3 : L2(aMdv)→ L2(aMdv) in a similar
way. By employing the pointwise bounde−

1
2 |y|

2−y·w′1 ≤ e
1
2 |w
′
1|

2
on the integrand in definition ofKǫ,R3 (v, v′1)
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given by (2.20), we reduce the resulting bounding integral to a single radial integral over|z|. By
introducing the change of variables

(2.23) sin(θ) =
|v′1 − v|

√
|v′1 − v|2 + |z|2

, − dθ
cos(θ) sin(θ)

=
d|z|
|z| ,

we may use (2.21) to express the resulting pointwise bound as

Kǫ,R3 (v, v′1) ≤ 1{|v|<R} 1{|v′1|<R}
2|v′1 − v|β

a(v) a(v′1)
e

1
2 |w
′
1|

2 ∣∣∣SD−2
∣∣∣

×
∫ π

2

0
sin(θ)−β b̂(cos(θ)) 1{cos(θ)>ǫ} 1{sin(θ)>ǫ}

dθ
cos(θ) sin(θ)

≤ 1{|v|<R} 1{|v′1|<R}
|v′1 − v|β

a(v) a(v′1)
e

1
2 |w
′
1|

2 1
ǫmax{D+β,1} .

Because|w′1| ≤ |v|, we therefore have the pointwise bounds

0 ≤ Kǫ,R3 (v, v′1) ≤
|v′1 − v|β

a(v) a(v′1)
e

1
2R2

ǫmax{D+β,1} .

This upper bound has the same form as the upper bound we obtained for K2(v, v′)ǫ,R. By arguing as
we did to establish (a), we see that assertion (b) also follows from Lemma 2.2. �

2.5. Convergence of the Approximating Operators. In this section we show that the remainder
operatorsK2 − K ǫ,R2 andK3 − K ǫ,R3 can be made arbitrarily small. Their kernels have the form

K2(v, v
′) − Kǫ,R2 (v, v′) = K

ǫ

2(v, v
′) + K̃ǫ,R2 (v, v′) ,

K3(v, v
′
1) − Kǫ,R3 (v, v′1) = K

ǫ

3(v, v
′
1) + K̃ǫ,R3 (v, v′1) ,

where

(2.24)

K
ǫ

2(v, v
′) =

2|v′ − v|−(D−1)

a(v) a(v′)

∫

y⊥(v′−v)
|v1 − v|β e−

1
2 |y|

2−y·w′ b̂


|v′ − v|√
|y|2 + |v′ − v|2

 1{|v′−v|≤ǫ |v1−v|} dy ,

K̃ǫ,R2 (v, v′) =
(
1− 1{|v|<R} 1{|v′ |<R}

) 2|v′ − v|−(D−1)

a(v) a(v′)

×
∫

y⊥(v′−v)
|v1 − v|β e−

1
2 |y|

2−y·w′ b̂


|v′ − v|√
|y|2 + |v′ − v|2

 1{|v′−v|>ǫ |v1−v|} dy ,

K
ǫ

3(v, v
′
1) =

2
a(v) a(v′1)

∫

z⊥(v′1−v)

|v1 − v|β
|z|D−1

e−
1
2 |z|

2−z·w′1 b̂


|z|

√
|z|2 + |v′1 − v|2



×
(
1− 1{|v′1−v|>ǫ |v1−v|} 1{|z|>ǫ |v1−v|}

)
dz

K̃ǫ,R3 (v, v′1) =
(
1− 1{|v|<R} 1{|v′1|<R}

) 2
a(v) a(v′1)

×
∫

z⊥(v′1−v)

|v1 − v|β
|z|D−1

e−
1
2 |z|

2−z·w′1 b̂


|z|

√
|v′1 − v|2 + |z|2

 1{|v′1−v|>ǫ |v1−v|} 1{|z|>ǫ |v1−v|} dz.
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LetK
ǫ

2, K̃ ǫ,R2 , K
ǫ

3, andK̃ ǫ,R3 denote the operators with the kernelsK
ǫ

2(v, v
′), K̃ǫ,R2 (v, v′), K

ǫ

3(v, v
′
1), and

K̃ǫ,R3 (v, v′1) respectively. In the following lemma we show that
∥∥∥K ǫ2

∥∥∥
B(L2)

ǫ↓0−→ 0 ,
∥∥∥K̃ ǫ,R2

∥∥∥
B(L2)

R↑∞−→ 0 ,
∥∥∥K ǫ3

∥∥∥
B(L2)

ǫ↓0−→ 0 ,
∥∥∥K̃ ǫ,R3

∥∥∥
B(L2)

R↑∞−→ 0 .

Its statement and proof employs theL2(aMdv) inner product, which we denote

〈g, h〉 △=
∫

RD
g h aMdv .

Lemma 2.5. For everyη > 0 there existsǫ0 > 0 such that for every g, f∈ L2(aMdv) andǫ ∈ (0, ǫ0)
we have

(i)
∣∣∣∣
〈
g,K

ǫ

2 f
〉∣∣∣∣ ≤ η ‖g‖L2(aMdv) ‖ f ‖L2(aMdv) ,

(ii)
∣∣∣∣
〈
g,K

ǫ

3 f
〉∣∣∣∣ ≤ η ‖g‖L2(aMdv) ‖ f ‖L2(aMdv) .

Moreover, for everyǫ > 0 there exists Rǫ > 0 such that for every g, f∈ L2(aMdv) and R> Rǫ we have

(iii)
∣∣∣∣
〈
g, K̃ ǫ,R2 f

〉∣∣∣∣ ≤ η ‖g‖L2(aMdv) ‖ f ‖L2(aMdv) ,

(iv)
∣∣∣∣
〈
g, K̃ ǫ,R3 f

〉∣∣∣∣ ≤ η ‖g‖L2(aMdv) ‖ f ‖L2(aMdv) .

Proof. (i) Define the nonnegative measure dµ = b(ω, v1 − v) dωM1 dv1 M dv. Then

(2.25)

∣∣∣∣
〈
g,K

ǫ

2 f
〉∣∣∣∣ ≤

∫∫∫

SD−1×RD×RD
|g(v)| | f (v′)| 1{|v′−v|≤ǫ |v1−v|} dµ

≤
(∫∫∫

SD−1×RD×RD
| f (v′)|2 1{|v′−v|≤ǫ |v1−v|} dµ

) 1
2

‖g‖L2(aMdv) .

In order to estimate the first factor on the right-hand side ofthe above inequality, we use the change
of variables (v, v1) 7→ (v′, v′1) and the symmetries of the measure dµ to obtain

(2.26)

∫∫∫

SD−1×RD×RD

| f (v′)|2 1{|v′−v|≤ǫ |v1−v|} dµ =
∫∫∫

SD−1×RD×RD

| f (v)|2 1{|v′−v|≤ǫ |v1−v|} dµ

=

∫

RD
| f (v)|2aǫ(v) M dv ,

where because dµ = |v1 − v|β b̂(ω · n) dωM1 dv1 M dv, we can expressaǫ(v) as

(2.27) aǫ(v) =
∫∫

SD−1×RD
|v1 − v|β b̂(ω · n) 1{|v′−v|≤ǫ |v1−v|} dωM1 dv1 .

By assumption (1.6) that̂b(ω · n) ∈ L1(dω), we have for everyη > 0, there existsǫ0 > 0 such that∫

SD−1
b̂(ω · n) 1{|v′−v|≤ǫ |v1−v|} dω =

∫

SD−1
b̂(ω · n) 1{|ω·n|≤ǫ} dω ≤ η2 for everyǫ ∈ (0, ǫ0) .

We then see from (2.27) that for everyǫ ∈ (0, ǫ0) we have

aǫ(v) ≤ η2

∫

RD
|v1 − v|β M1 dv1 = η

2a(v) ,

which by (2.26) implies that∫∫∫

SD−1×RD×RD
| f (v′)|2 1{|v′−v|≤ǫ |v1−v|} dµ ≤ η2 ‖ f ‖ 2

L2(aMdv) .

Upon placing this bound into (2.25), we establish (i).
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(ii) The proof of (ii) is similar to that of (i). From (2.24), we see that

(2.28)
∣∣∣∣
〈
g,K

ǫ

3 f
〉∣∣∣∣ ≤

∫∫∫

SD−1×RD×RD
|g(v)| | f (v′1)|

(
1− 1{|v′−v|>ǫ |v1−v|} 1{|v′1−v|>ǫ |v1−v|}

)
dµ ≤ I ǫ1 + I ǫ2 ,

where

(2.29)
I ǫ1 =

∫∫∫

SD−1×RD×RD

|g(v)| | f (v′1)| 1{|v′−v|≤ǫ |v1−v|} dµ ,

I ǫ2 =
∫∫∫

SD−1×RD×RD
|g(v)| | f (v′1)| 1{|v′1−v|≤ǫ |v1−v|} dµ .

We use the Schwarz inequality and the symmetries of dµ to estimateI ǫ1 as

I ǫ1 ≤
(∫∫∫

SD−1×RD×RD
|g(v)|2 1|v′−v|≤ǫ |v1−v| dµ

) 1
2
(∫∫∫

SD−1×RD×RD
| f (v′1)|2 dµ

) 1
2

=

(∫

RD

|g(v)|2 aǫ(v) Mdv

) 1
2

‖ f ‖L2(aMdv) ,

whereaǫ(v) is defined by (2.27). By arguing as in the proof of (i), there exists ǫ1 > 0 such that for
everyǫ ∈ (0, ǫ1), we haveaǫ(v) ≤ 1

4η
2a(v). Therefore, for everyǫ ∈ (0, ǫ1), we have

(2.30) I ǫ1 ≤ 1
2 η ‖g‖L2(aMdv) ‖ f ‖L2(aMdv) .

The estimate forI ǫ2 is similar to that forI ǫ1. The smallness ofI ǫ2 comes from the fact that there exists
ǫ2 > 0 such that for everyǫ ∈ (0, ǫ2) we have

∫

SD−1
b̂(ω · n) 1{|v′1−v|≤ǫ |v1−v|} dω =

∫

SD−1
b̂(ω · n) 1{1−|ω·n|2≤ǫ2} dω ≤ 1

4η
2 ,

which implies that

(2.31) I ǫ2 ≤ 1
2 η ‖g‖L2(aMdv) ‖ f ‖L2(aMdv) .

Upon settingǫ0 = min{ǫ1, ǫ2} and placing bounds (2.30) and (2.31) into (2.28), we establish (ii).

(iii) Next, we estimate
∣∣∣〈g, K̃ ǫ,R2 f 〉

∣∣∣ with ǫ fixed.

(2.32)
∣∣∣∣
〈
g, K̃ ǫ,R2 f

〉∣∣∣∣ ≤
∫∫∫

SD−1×RD×RD
|g(v)| | f (v′)| (1− 1{|v|<R}1{|v′ |<R}

)
1{|v′−v|>ǫ |v1−v|} dµ ≤ I ǫ,R3 + I ǫ,R4 ,

where

(2.33)
I ǫ,R3 =

∫∫∫

SD−1×RD×RD

|g(v)| | f (v′)| 1{|v|≥R} 1{|v′−v|>ǫ |v1−v|} dµ ,

I ǫ,R4 =

∫∫∫

SD−1×RD×RD

|g(v)| | f (v′)| 1{|v′ |≥R} 1{|v′−v|>ǫ |v1−v|} dµ .

By the change of variables (v, v′) 7→ (v′, v), it is clear that boundingI ǫ,R4 is equivalent to boundingI ǫ,R3 .
Therefore, we will only show how to boundI ǫ,R3 .

For everym> 0, we can boundI ǫ,R3 as

(2.34) I ǫ,R3 ≤ Jm
1 + Jǫ,R,m2 ,
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where

(2.35)
Jm

1 =

∫∫∫

SD−1×RD×RD
|g(v)| | f (v′)| 1{|v1|≥m} dµ ,

Jǫ,R,m2 =

∫∫∫

SD−1×RD×RD
|g(v)| | f (v′)| 1{|v′−v|>ǫ |v1−v|} 1{|v|≥R} 1{|v1|<m} dµ .

We boundJm
1 andJǫ,R.m2 separately.

We use the Schwarz inequality, the normalization (1.9), andthe fact thatM11{|v1|≥m} ≤ e−
1
4m2 √

M1 to
estimateJm

1 as

(2.36)

Jm
1 ≤

(∫∫∫

SD−1×RD×RD

|g(v)|2 1{|v1|≥m} dµ

) 1
2

‖ f ‖L2(aMdv)

=

(∫

RD
|g(v)|2

(∫

RD
|v1 − v|β 1{|v1|≥m} M1 dv1

)
M dv

) 1
2

‖ f ‖L2(aMdv)

≤ e−
1
4m2

(∫

RD
|g(v)|2

(∫

RD
|v1 − v|β

√
M1 dv1

)
M dv

) 1
2

‖ f ‖L2(aMdv) .

By Lemma 2.3 there exists a positive constantC1 such that
∫

RD

|v1 − v|β
√

M1 dv1 ≤ C2
1 a(v) .

Therefore, estimate (2.36) yields

Jm
1 ≤ C1e

− 1
4m2 ‖g‖L2(aMdv) ‖ f ‖L2(aMdv) .

If we choosem large enough so thatC1e−
1
4m2
< 1

4 η, then

(2.37) Jm
1 ≤ 1

4 η ‖g‖L2(aMdv) ‖ f ‖L2(aMdv) .

Next, we show that for every fixedǫ andm we can makeJǫ,R,m2 arbitrarily small by takingR large
enough. First observe that in the set{|v′ − v| > ǫ |v1 − v|} we have

|v′1 − v1| = |v′ − v| > ǫ |v1 − v| ,
which implies that|v′1| > ǫ |v1 − v| − |v1|. We can thereby chooseR large enough so that in the set
{|v′ − v| > ǫ |v1 − v|} ∩ {|v| ≥ R} ∩ {|v1| < m} we have

|v′1| > ǫ |v1 − v| − |v1| ≥ ǫ |v| − (1+ ǫ)|v1| ≥ ǫR− (1+ ǫ)m> 1
2ǫR.

For every suchR we use the fact that
√

M′1M1 1{|v′1|> ǫR2 } ≤ e−
(ǫR)2

32 e−
1
8 |v
′
1|

2
to estimateJǫ,R,m2 as

(2.38)

Jǫ,R,m2 =

∫∫∫

SD−1×RD×RD

(
|g(v)|

√
M

) (
| f (v′)|

√
M′

)
1{|v′−v|>ǫ |v1−v|} 1{|v|≥R} 1{|v1|<m}

dµ
√

M′M

≤
∫∫∫

SD−1×RD×RD

(
|g(v)|

√
M

) (
| f (v′)|

√
M′

)
1{|v′1|> ǫR2 } 1{|v1|<m}

dµ
√

M′M

=

∫∫∫

SD−1×RD×RD

(
|g(v)|

√
M

) (
| f (v′)|

√
M′

)
1{|v′1|> ǫR2 } 1{|v1|<m}

√
M′1M1 bdω dv1 dv

≤ e−
(ǫR)2

32

∫∫∫

SD−1×RD×RD

(
|g(v)|

√
M

) (
| f (v′)|

√
M′

)
1{|v1|<m} e

− 1
8 |v
′
1|

2
bdω dv1 dv .
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The Schwarz inequality, the change of variable (v′1, v
′) 7→ (v1, v), and the normalization (1.9) give

(2.39)

Jǫ,R,m2 ≤ e−
(ǫR)2

32

(∫∫∫

SD−1×RD×RD

|g(v)|2 M 1{|v1|<m} bdω dv1 dv

) 1
2

×
(∫∫∫

SD−1×RD×RD

| f (v′)|2M′ e−
1
4 |v
′
1|

2
bdω dv1 dv

) 1
2

= e−
(ǫR)2

32

(∫

RD
|g(v)|2

(∫

RD
|v1 − v|β 1{|v1|<m} dv1

)
M dv

) 1
2

×
(∫

RD

| f (v)|2
(∫

RD

|v1 − v|β e−
1
4 |v1|2 dv1

)
M dv

) 1
2

.

By Lemma 2.3 there exists a positive constantC2 such that∫

RD
|v1 − v|β 1{|v1|<m} dv1 ≤ C2 a(v) ,

∫

RD
|v1 − v|β e−

1
4 |v1|2 dv1 ≤ C2 a(v) .

Therefore, estimate (2.39) yields

Jǫ,R,m2 ≤ C2 e−
(ǫR)2

32 ‖g‖L2(aMdv) ‖ f ‖L2(aMdv) .

If we chooseR large enough so thatC2e−
(ǫR)2

32 < 1
4 η, then

(2.40) Jǫ,R,m2 ≤ 1
4 η ‖g‖L2(aMdv) ‖ f ‖L2(aMdv) .

By combining estimates (2.37) and (2.40) into (2.34), we bound I ǫ,R3 as

(2.41) I ǫ,R3 ≤
1
2 η ‖g‖L2(aMdv) ‖ f ‖L2(aMdv) .

The bound onI ǫ,R4 is identical to that forI ǫ,R3 . It therefore follows from (2.32) that for everyǫ > 0
there existsRǫ > 0 such that (iii) holds for everyR> Rǫ.
(iv) The proof of (iv) closely follows that of (iii). First, we have

(2.42)

∣∣∣∣
〈
g, K̃ ǫ,R3 f

〉∣∣∣∣ ≤
∫∫∫

SD−1×RD×RD

|g(v)| | f (v′1)|
(
1− 1{|v|<R}1{|v′1|<R}

)
1{|v′1−v|>ǫ |v1−v|} 1{|z|>ǫ |v1−v|} dµ

≤ I ǫ,R5 + I ǫ,R6 ,

where

(2.43)
I ǫ,R5 =

∫∫∫

SD−1×RD×RD

|g(v)| | f (v′1)| 1{|v|≥R}1{|v′1−v|>ǫ |v1−v|} dµ ,

I ǫ,R6 =

∫∫∫

SD−1×RD×RD

|g(v)| | f (v′1)| 1{|v′1|≥R}1{|v′1−v|>ǫ |v1−v|} dµ .

The change of variables (v, v′1) 7→ (v′1, v) shows that boundingI ǫ,R6 is equivalent to boundingI ǫ,R5 .
Therefore we only need to boundI ǫ,R5 . As we did in (2.34–2.35), this estimate begins with the bound

I ǫ,R5 ≤
∫∫∫

SD−1×RD×RD
|g(v)| | f (v′1)| 1{|v1|≥m} dµ

+

∫∫∫

SD−1×RD×RD

|g(v)| | f (v′1)| 1{|v′1−v|>ǫ |v1−v|} 1{|v|≥R} 1{|v1|<m} dµ .

The above integrals are bounded as in (2.36–2.37) and (2.38–2.40) respectively. Hence, for anyǫ > 0,
there existsRǫ > 0 such that (iv) holds for everyR> Rǫ. To avoid repetition, we omit these details.



14 C. DAVID LEVERMORE AND WEIRAN SUN

We have now shown that all the remainders associated with theapproximations ofK2 andK3 can
be made arbitrarily small. This completes the proof of Lemma2.5, and thereby finishes the proof of
Theorem 2.2. By the remark at the end of Section 2.3, this alsoestablishes our Main Theorem. �

Remark. The Main Theorem remains true if one replaces the assumptionthat the collision kernelb
has the factored form (1.5-1.6) with the assumption thatb satisfies the bounds

b(ω, v1 − v) ≤ b̂(ω · n)
(
|v1 − v|α + |v1 − v|β

)
, a(v) ≥ â (1+ |v|)β ,

for someβ > α > −D, b̂ ∈ L1(dω) andâ > 0, where the attenuation coefficienta is given by (1.11).
Because we do not know of any additional physical collision kernels (ones derived from a classical
intermolecular potential) that would be included by this generalization, we do not present its proof.
The proof is similar to the one given above, only longer because there are more terms to estimate.
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