COMPACTNESS OF THE GAIN PARTS OF THE LINEARIZED
BOLTZMANN OPERATOR WITH WEAKLY CUTOFF KERNELS

C. DAVID LEVERMORE AND WEIRAN SUN

AsstracT. We prove arL.P compactness result for the gain parts of the linearizedzBwnn collision
operator associated with weakly cfitaollision kernels that derive from a power-law intermoliecu
potential. We replace the Grad ctitassumption previously made by Caflisch [1], Golse and Padipau
[7], and Guo [11] with a weaker local integrability assuropti This class includes all classical kernels
to which the DiPerna-Lions theory applies that derive fromgjpulsive inverse-power intermolecular
potential. In particular, our approach allows the treathodéiboth hard and soft potential cases.

1. INTRODUCTION

The linearized Boltzmann collision operator arises in tiueg of fluid dynamical approximations
to solutions of the Boltzmann equation. That equation guwéne kinetic densit¥ (v, x,t) of a gas
composed of identical particles with velocities RP and positionsc € RP at timet > 0 as [3, 4]

(1.1) HF +Vv-VF = B(F, F),

where the collision operat®(F, F) is given by

(1.2) B(F,F) = ff (F1F" — F1F) b(w, v1 — V) dw dv; .
SD-1xRD

Herew € SP-1is a unit vector, d is the usual rotationally invariant Lebesgue measurg"oh, while
F1, F’, F1, andF are the densit¥ (-, x, t) evaluated at the velocitie$, V', v;, andv respectively. Here
(v;, V') are the velocities after an elastic binary collision beawavo molecules that had the velocities
(v1, V) before the collision, or vice versa. Because both momergndenergy are conserved in an
elastic collision, one can expregsandv’ in terms ofv; andv as

(2.3) Vi=vi—ww- (V1 —V), V=V+oww-(V1-V),

where the unit vectow € SP~* is parallel to the deflectiong — v; andv’' — v, and is thereby normal
to the plane of reflection. The part 8{(F, F) involving F; andF’ is called the gain term, while the
part involvingF; andF is called the loss term.

By Galilean invariance and rotational invariance, evenssical collision kerndb(w, v; — V) has
the general form [3]

_ Vi —V

Vi =V~
whereX > 0 is the diferential scattering cross-section. When the moleculesanspheres of mass
m and radius, thenb has the form

b(w,vi = V) = |vi = VIZ(Jw - nl, v, — V),

(2rg)P

(1.4) b(w,v1—V) = |w - (vi = V)| om
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When the molecules are point particles with a repulsiverintgecular potential proportional to*
for somek > 0, wherer is the intermolecular distance, then the keimbhs the factored form

(1.5) b(w, V1 — V) = b(w - ) vy — V¥,

whereb is an even function ofy - n andg = 1 - 282 < 1. Notice that the hard sphere kernel (1.4)
can be put into this form witg = 1. The caseg < 0,8 = 0, andB > 0 are respectively referred to as
the “soft”, “Maxwell”, and “hard” potential cases. A

In this paper we assume that the collision keimkés the factored form (1.5) whelbeand satisfy

(1.6) b(w-n) e LY(dw),  -D <g.

These assumptions are necessanbftoy be locally integrable in all of its variables. This is nedd
to seperately make sense of the gain and loss pa#@§FfF) for all continuous, rapidly decaying.
They include the so-called “super hard” kernels corespunth > 1, which do not arise classically.
The first assumption in (1.6) is a so-called small deflectiotof€ condition because thie that is
derived from microscopic physics has a nonintegrable sangyatw - n = 0 due to the large number
of grazing collisions. Grad [10] observed that these gigazmllisions should not appreciablyfact
the macroscopic dynamics, and therefore proposed that giegularities can be cufon order to
make analysis of the Boltzmann equation more tractable sirfed| deflection cutl condition in (1.6)
is much weaker than the one introduced by Grad, which regjthiab vanish likejw-n| asjw-n| — 0.
It is therefore sometimes called the weak d¢bitondition. In order to apply the DiPerna-Lions theroy
of global renormalized solutions [5] to the Boltzmann eguratvith kernels in the factored form (1.5),
it is necessary to impose our assumptions (1.6) and als@tarecthaiB < 2.

Now let M denote the Maxwellian given by

1
i v

(1.7) M(v) =

PRE

We consider the linearized Boltzmann operafodefined by
(1.8) Lf :—%B(M,Mf):ff (f+ fo— " = f)) b(w, v1 — V) dw M1dv; .
§D-1xRD

This case is general because any Maxwellian can be put ietéotm (1.7) by applying a Galilean
transformation to make its bulk velocity zero and a resgatihunits to make its mass density and
temperature equal to unity, and because the collision tgeBgF, F) commutes with Galilean boosts
and is homogeneous under rescalings of density and terapetratits. This last fact is a consequence
of the factored form (1.5) db. Finally, also without loss of generality, we normaltzeo that

(1.9) b(w-n)dw = 1.

sD-1
We decompose the linearized Boltzmann oper#iais
(110) Lf :a(V)(l +7<1—7<2—7<3)f,

where the attenuation cfiienta(v) is given by

(2.12) av) = f f b(w, v1 — V) dw Mdv, ,
§D-1xRD
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while the loss operatok; and the gain operatofs, and%; are given by

1
7<1f = % ffSD_lx]RD fl b(a),V]_ —V) dw M]_ dV]_,

1 ,
(112) 7<2f = W fSD—lXRD f b((,l), Vi — V) dw M1 dVl ,

1 /
‘7(3f = W LDlXRD fl b((,l), Vi — V) dw M, dV1 .

The main result of this paper is the following.

Main Theorem. Let the collision kernel b have the factored form (1.5) antis§aconditions (1.6).
Then for every [ (1, ) and every j= 1, 2, 3the operator

(1.13) K; : LP(aMdv) — LP(aMdv) is compact

The first result of this kind was given by Hilbert in the samegran which he introduced what we
now call the Hilbert expansion [13]. For the hard sphere aa$® = 3 he applied his new theory of
integral operators to essentially show that for the operiite: K; — K, — K3 one has

(1.14) ak : L>(Mdv) —» L2(Mdv) is compact

More precisely, what he showed was isometrically equivtaiehis. Also for the hard sphere case
in D = 3, Hecke [12] gave a variant of Hilbert's result by showingttthe kernel ofK® is Hilbert-
Schmidt inL?(aMdv), and Carleman [2] improved upon this by showing that thexéeof K2 is
Hilbert-Schmidt inL2(aMdv). Grad [10] extended Hilbert’s result to the Maxwell anddhpotential
casesp € [0,1], by introducing his small deflection cutccondition. This allowed him to adapt
Hecke’s argument and show that the kernelast}? is Hilbert-Schmidt inL2(Mdv). By using similar
methods, Caflisch [1] extended Grad’s result (1.14) to tliemuential case by treating Grad ctito
kernels withg € (-1,1] in D = 3, and Golse and Poupaud [7] established #ias compact over
L2(aMdv) for Grad cutdf kernels withs € (-2, 1] in D = 3. By using an approach that is closer to
our own, Guo [11] extended Caflisch’s result for Grad €éukernels to the full rangg € (-3,1] in
D = 3. Our approach allows us to replace the Grad fwondition with the weaker cufbcondition
given in (1.6). We do so for general dimension

The most important application of such compactness resaieen to establish Fredholm alter-
native results for the linearized collision operatorindeed, Grad showed that for Grad diiternels
with s € [0, 1] the operator/ satisfied a Fredholm alternative id(Mdv). For soft potential case this
does not hold, but it was pointed out by Golse and Poupaud] 'rﬂn{ﬂ%‘L still satisfies a Fredholm
alternative inL2(aMdv). Fredholm alternatives and their related coercivity siplay an impor-
tant role in establishing hydrodynamic limits of the Bol@nm equation [4]. We mention that the
Fredholm alternative has been established?{@Mdv) for an even broader class of collision kernels
without any small deflection cutibassumption by Mouhot and Strain [16] using &etlient approach,
thereby improving upon an earlier result of Pao [17]. Ouultegields a Fredholm alternative in
LP(aMdv) for everyp € (1, =), but we require the weak cufacondition. ThisLP Fredholm alterna-
tive is used in [15] to prove an incompressible Navier-Sgdiit for the Boltzmann equation for the
class of collision kernels considered here, thereby extgrttie results of Golse and Saint-Raymond
[8, 9] for Grad cutdt kernels withg < [0, 1].

2. CoMPACTNESS PROOF

2.1. Preliminaries. We begin with a basic fact that illustrates why the operatgrdefined by (1.12)
and the spacds’(aMdv) are natural for this study.
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Lemma 2.1. Let the collision kernel b have the factored form (1.5) antisfaconditions (1.6). Then
for every pe [1, 0] and every j= 1, 2, 3the operator

(2.1) K; : LP(aMdv) — LP(aMdv) is bounded with%llgie) < 1.
Proof. First letp € (1, c0) and sefp” € (1, c0) such that; + - = 1. For everyf, g € C,(R") we have
(2.2) f gk, f aMadv = fff g fi bdw Mydv; Madv.

RP SP-1xRDxRD

An application of the Holder inequality then yields

1 1
f |g?<1f|a|\/|dvg(fff 19l bdew Mldledv)p (fff 1,17 b dew My Mav]
RD SD-1xRDxRD SP-1xRDxRD

= [19llee @amay | FllLr@may) -

This inequality extends to everfy € LP(aMdv) andg € LP (aMdv) by a density argument. By the
Reisz Representation Theorem we see that assertion (2.K}) fleolds with||%|lg.s < 1 for every
p € (1, ). The extension to every € [1, o] follows because (2.2) holds for evefye L(aMdv)
andg € L*(aMdv) or for everyf € L*(aMdv) andg € L(aMdv). The proofs of assertion (2.1) for
¥, andKz go similarly. O

Remark. This proof does not require the kerr#lo, v; — V) to have the factored form (1.5). Rather,
it only requires that the attenuation ¢beienta(v) given by (1.11) exists.

Given Lemma 2.1, our Main Theorem follows by a straightfahaterpolation argument once we
show that the compactness assertion (1.13) holdp fer2. We will use the following compactness
criterion [14], which is a generalization of the classicdbidrt-Schmidt criterion.

Lemma 2.2. LetK be an integral operator given by
K10 = [ K@) V) dutv).
RD

wheredu(V) is a o-finite, positive measure ov&P. Let the kernel Kv, ') be symmetric in v and v
and for some Ek [1, 2] satisfy the bound

(2.3) Kl = ( [, ( [, kvt dﬂ(\/))r du(V)] <o,

where r € [2, o] satisfiest + £ = 1. Let pp* € [r,r"] satisfy% + pi = 1. Then for every & LP(du)
and ge L” (du) one has

@a) [ o KFI) < [ [ KO) 1) g0 dutv) ) < IRl s il

wherebyX : LP(du) — LP(du) is bounded withK]|gwey < [IKll.=r. Moreover, if re (1,2] then
K : LP(du) — LP(du) is compact.

The bounded (2.4) for eithgr = r or p = r* is simply obtained by two applications of the Holder
inequality. Its extension to evegye [r, r*] then follows by interpolation. The assertion tli@tmaps
LP(dw) into itself and the bound ojiK||g » are consequences of the Riesz Representation Theorem.
The compactness assertion holds because whgi, 2] the finite-rank kernels are dense in the space
L™ (du; L' (du)) whose norm is defined by (2.3). The classical Hilbert-Siclimompactness criterion
is the special case= 2. The above criterion often becomes easier to meegass closer to 1.
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2.2. Compactness of the Loss Operator. In this section we establish that the loss operé&toris
compact fromL?(aMdv) to L?(aMdv). We begin with the following lemma, which plays a central
role in our compactness proofs for the operatiiis K>, and%.

Lemma 2.3. Let H € L*(dv) such that H> 0, H # 0, and(1 + |[v|)'H € L*(dv) for every r> 0. Let
v > —D and define

(2.5) h(v) = fR ) Ivi — V| H(vy) dv; .

Then he C(RP) and there exist positive constantsa@dC such that

(2.6) C@+V) <h(v)<C(1+|v)", foreveryveRP.

Proof. First consider the case where 0. From the elementary bounds

(2.7) Vi = V2 < (L+ M) @+ M) < (L+ va)?(@+v)?, foreveryveRP,

and the facH > 0, we directly obtain the upper bound

) = [ e HE v < [ (e b O b (1 )

which yields the upper bound of (2.6).
Next, the bounds (2.7) and the fadt> 0 imply that (1+ [v])™ vy — V] H(v1) < (1 + |v4])” H(v1).
The Lebesgue Dominated Convergence Theorem thereforeespht the positive function

Lohy 1 o
(L+ M) (L+ V) fRD Ivi — V" H(v1) dvq,

is continuous oveRP and satisfies
h(v) f f
= lim vi — V" H(vy) dvy = H(v;)dv; > 0.
AL T My M (1+ V) Vi = V" H(v1) dv o (V1) dvy >
The function (2.8) is thereby bounded away from zero, whetkb lower bound of (2.6) follows.

Now consider the case whene (-D, 0). From the elementary bounds (2.7) and the Fct O,
we directly obtain the lower bound

[ vy ey v @y < [ = ) s = ),

which yields the lower bound of (2.6).

Next, because/” € (LP + L9) while H € (LP n LY) for everyp € (1, %) andq e (%, o), classical
results on convolutions [6] show thiate Co(RP). The function (2.8) is therefore continuous oRe.
Let s> D andCs < oo such that|(1 + |v|)SH(v)||Lm < Cs. Then for every nonzero e RP we have

h(v) W ColVP
(1+|v|)v‘(1+|v|)vf Ve - |1|)S V= (1+||)7f M= I T wwas

wherev = v/|v| andv; = [vjw;. By rotatlonal invariance, the integral on the rlght harksabove is
independent 0f."Moreover, by classical-function” approximation estimates we can show

(2.8)

lim sup f wy — ) ———— Cavl® = f Cs dv; < oo
< 1 — W, = — v -
Moo (1 + | |)7 |V|—>°° 1+ |V||W1|)s go (1 +|va))®

The function (2.8) is thereby uniformly bounded, whereby tipper bound of (2.6) follows. |

Compactness oK; is a direct result of Lemmas 2.2 and 2.3.
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Theorem 2.1. Let the collision kernel b have the factored form (1.5) antis§a conditions (1.6).
Then

(2.9) % : L2(@aMdv) — L% (aMdv) is compact

Proof. Whenb has the factored form (1.5) and satisfies (1.6) then with tirenalization (1.9) the
attenuation ca@cient defined by (1.11) takes the form

(2.10) a(v) = f Ivi — v Mydvy ,
RD
while the loss operatoK; defined by (1.12) takes the form

(211) Wlf(V) = LD Kl(V, V]_) f(V]_) ayMdv, ,

where the kerneKy(v, v4) is given by
1 Vi — v

b(w, Vi — V) dw =

KV = 2 et Jeos = avay)

By Lemma 2.3 withtH = M andy = g there exist positive constanty andC, such that

(2.12) C. 1+ My <aV) <Cayd+V)’, foreveryveRP.
Becauses € (—D, ), there exists € (1, 2] such thapr € (-D, ). Direct calculation shows that

(213) (f |K1(V Vl)l M, dVl) = ( ) (f Vi — V|'8r er dV]_ .
By Lemma 2.3 withH = a'""M andy = gr there exist positive constar@s andC;, such that
C (1+Mm)y < f vi — v al"Mydv; < C, (1 + V)", foreveryveRP.
RD

When this estimate is combined with estimate (2.12), we ee 2.13) that

1 _1
Cr T C/
0<=— < (f IK1(V, Vo) alMldvl) < C_r < oo, foreveryveRP.
RD

a —a
In particular, we see tha; € L*(aMdv; L'(aMdv)) c L"(aMdv; L"(aMdv)), where: + £ = 1,
Because the kernd{,(v, v;) thereby satisfies condition (2.3) for somee (1,2], upon applying
Lemma 2.2 withp = 2 we see that assertion (2.9) holds. O

2.3. Compactness of the Gain Operators. The remainder of this paper establishes that the gain
operatorsk, and%; are compact fronh2(aMdv) to L2(aMdv). In this section we reduce the proof to
technical lemmas that will be proved in later sections.

Theorem 2.2. Let the collision kernel b have the factored form (1.5) ants§a conditions (1.6).
Then for j= 2,3

(2.14) K, : L (aMdv) — L*(aMdv) is compact
Proof. We see from definition (1.12) ok, andX; and the factored form (1.5) dfthat
Ko (V) = L f f(v) b(w - n) [vy — V¥ dw My dvy,
a(v) §D-1xRD
(2.15) 1 i
TGf(V) = — f f(v}) b(w - n) vy — VI dw My dv; .
a(v) §D-1xRD
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We employ expressions for the kernels of these operatoiitasita those introduced by Grad [10].
Because/, v; andb are even functions ab, the integrals ovew in (2.15) are just twice the integrals
over the regionw - n > 0. It then follows from (1.3) that in this region we have thertities

V=P =V =P+ IV =2, (-V)-(V-V) =0,
_V-v)-w-y) v -V
V=VvIivi-V V-V V-
VP = V2 + 2V (V) = V) + 2V (V = V) + V) = V2 + IV = V2.

From these identities it can be shown that the gain oper#&eend’; have the forms

(2.16)

@17 Kt = [ K AW . Kl = [ Kl v) T M
RD RD

where, df their diagonals, the symmetric kernélg(v, v') andKs(v, v;) are given by

B
KalWV) = = (Y + 1V =) sy 5( v - ] dy,

a(v) a(v') Jyiw-y) v — Pt VIVIZ + [V = V]2

(2.18) o
2 V, —V[I° + |Z°)? "
K3(V, \/gl.) — (l 1 | | | ) e_%|Z|2_Z,W;L b |Z| dZ
a(v) a(vy) Jzi v 125 VIV, = V2 + |72

with the vectorsv' (v, v') andw; (v, v;) defined by

2 _y. VIZ—V - V-V -v Vi[2=V, v
(2.19) v\/:|"| v\/+| | vv’ lell vy \'4 1

V' — V2 V' — VP2 vy — VP2 vy — V2

These vectors have minimum norm on the lifles s(v' —v) : se R} and{v+s(v; —V) : se€ R}
respectively. In (2.18) the variables of integratioandz are identified ay = v; —vandz=v - v.

The compactness €, and; is established by showing that they are each the limit of asece
of compact operators. We construct the approximating sempseby truncations. Specifically, for
everyR > 0 ande > 0 we construct the operat(ﬁ‘ég’R and7(§’R by replacing the kernels in (2.17) by
the doubly truncated symmetric kernels that are respégtieen by

2 (Y2 + v — v2)*

a(V) a(V/) yL(V-V) |V’ - V|D_l

. IV — V|
X b( ) Liv —visepve-w) A,

VIVEZ + v = V2

B
2 (Vi =W +129)? 50
KE,R(V’V') 1 Lo —f 1 g 21d%zw
3 1 {M<R} HV{I<R} a(v) a(V/l) 20(v, ) |zP-1

e_ % |Y|2—YW

KSRV, V) = Lyer Liviry

(2.20)

X b( - i ) L, ~viselvi-viy Liizselvs-wy dZ,
VIV = V2 + |72

where 15 denotes the indicator function of a st The fact that the operatof&;™ and K5 are

compact ovet_2(aMdv) for everyR > 0 ande > 0 will follow from Lemma 2.4, which is stated and

proved in Section 2.4. The fact that the operafig§S' and& R approximatek, andk; ase — 0 and

R — oo will follow from Lemma 2.5, which is stated and proved in Sent2.5. Because the compact

operators are a closed subspac8(@f?), we thereby obtain the compactnesg®fand . O
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Remark. When this result is combined with the compactness of thedpssatork; overL?(aMdv)
provided by Theorem 2.1, and the boundedneds,0<,, and overLP(aMdv) for everyp € [1, o)
provided by Lemma 2.1 then our Main Theorem follows by a statiéhterpolation argument.

2.4. Compactness of the Approximating Operators. In this section we establish the compactness
of the approximating operatoﬂég’R and7<§’R. We have the following.

Lemma 2.4. Let K5® and K5 be the operators with kernels;R(v, v') and KSR(v, v;) respectively
given by (2.20). Then

(a) K5 L2(aMdv) — L2(aMdv) is compact;
(b) K57 : L2(@aMdv) — L?(aMdv) is compact.

Proof. The normalization (1.9) and a change of variables yields

(2.21) 1= fs ) b(w - n) dw = 2|sP? fo : b(cos@)) sin@)°2do.

D

We will use this fact to bound the kernéd$ (v, v') andK$®(v, v;) in such a way that the compactness
of the operatorg;™ and & will follow from Lemma 2.2.

We first establish assertion (a). By employing the pointwisende ¥ < e:WF on the
integrand in definition oK;R(v, V') given by (2.20), we reduce the resulting bounding inteyad
single radial integral ovey|. By introducing the change of variables

IV = Vi do _dyl
v v cosp)sing) I
we may use (2.21) to express the resulting pointwise bound as

2V — VP
'a(v)a(v)

(2.22) cosf) =

R w2 _
K3 (V. V) < Ljvi<r Livicr ez |§°2|

2 e sin@) \P-1 do
< [ cost)Bleost) (S23) Lot 5555 5

< Liy<r Livi<ry a(v) a(v) R

Becauséw'| < |v|, we therefore have the pointwise bounds
v —vf e
a(v)a(v) eb+

Up to a constant factor, this upper bound has the same forky@sv;). Following the proof of
Theorem 2.1, there exists (1, 2] such thapr € (-D, «) and

0< KSRW,V) <

1 E% elRZ
r 2
KE,R ,Vrr ’M/d\/ < r
[ C, 7

whereC, andC_ are the same constants appearing in the proof of TheorenB@chuse the symmet-

ric kerneIKgR(v,v’) thereby satisfies condition (2.3) for some& (1, 2], upon applying Lemma 2.2
with p = 2 we see that assertion (a) holds.

We now establish (b), which asserts the compactne$&6f: L2(@aMdv) — L?(aMdv) in a similar
way. By employing the pointwise bousd2¥*-y% < et on the integrand in definition &ESR(v, vy)

< oo, foreveryveRP,
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given by (2.20), we reduce the resulting bounding integrah tsingle radial integral ovey. By
introducing the change of variables

v, — Vi d _da

JV, B+’ cosP)sin@) 12

we may use (2.21) to express the resulting pointwise bound as

(2.23) sing) =

2|V’ - V|ﬂ 1,7 (2
KE,R(V’V/) < 1 R 1 v I<R 1 §|V\/1| SD—Z
3 1 {M<R} HIvyI<R} a(V) a(v&) | |
X f : sin@) ™ b(cos@)) 1 Loy ——20
o {cos)>e} H{sin@)>e} COSG) Siﬂ(@)
|V§L - V|'8 1w 12 1
= HM<R} HV{I<R} a(v) a(V;L) emaxD+5,1)

Becausew;| < |v|, we therefore have the pointwise bounds

v, - e
a(v) a(vgL ) €max{D+,8,1} :

0< K$R(v, ) <

This upper bound has the same form as the upper bound we ethtfaink,(v, v)sR. By arguing as
we did to establish (a), we see that assertion (b) also fslfoem Lemma 2.2. |

2.5. Convergence of the Approximating Operators. In this section we show that the remainder
operatorsk, — K5 and % — KSR can be made arbitrarily small. Their kernels have the form

Ka(v, V) = KSR(v, V) = Ky(v, V) + KSR(v, V),
Ka(v, vp) = K§R(v, V) = Ky(v, vp) + K5R(v, v))

where

—e 2V —vC-D 12w IV -V
KoV, V) = ——— f Vi — P &S Ly —~vi<epp—wiy AY,
aVv)av)  Jyiw-y VIVZ+ IV = W2
_ 2V — v[©-D
KR, V) = (1 - Lyer Livicr) —————
A ( (<Rl Lovi R}) av) a(v)
x f vy — VP e-%'ylz-y-WB( V-
YLy VIYEZ + v =2
. —e 2 vy — VP . Z
(2 24) KS(V, V;L) — , | 1 D_ll e—%lZIZ—Z-W;L b | |
a(v)a(vy) Joi-y 12 VIZZ+ 1V, = V2
X (1= Liv-vioeha—vi Ligseha—vy ) 02
2
a(v) a(vy)

V=V 12 s g 1
X f ——-e @ ip Ly -visehva—viy Liizisetvs-viy A2
ZL(v;—v) |Z|

VIV = VIZ + |Z?

) Liv—viseva-wj Ay,

KSR ) = (1= Liwern Liym)
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Let 7C,, KiR, X5, and KR denote the operators with the kernBIg(v, v'), KS¥(v, V'), Ky(v, v;), and
Kg’R(v, v;) respectively. In the following lemma we show that

€l0

D0 K g

STR

D0 [y,

— 0.

7 (12

Its statement and proof employs th&aMadv) inner product, which we denote

<g,h>énghal\/ldv.
R

B(L?) B(L?) B(L?)

Lemma 2.5. For everyn > 0 there existsp > 0 such that for every g, & L?(aMdv) ande € (0, )
we have

) (9% 1)| < 7 llzaman 1 llzcamay -
(i) [(9 %5 F)| < 7 l1gleqanaon I ey -

Moreover, for every > 0 there exists R> 0 such that for every g, € L?(aMdv) and R> R. we have
(i) |(g Ks™t)| < nllgllaman il zaman -
V) (9, K5 F)| < 7 laaman Il ey -

Proof. (i) Define the nonnegative measure € b(w, v; — v) dw M; dv; M dv. Then

(0 Ror)| < [ 16O L S
SP-1xRPxRP

1
= (fff FV)? L —visetvi-wy dﬂ) 191l 2@man) -
SP-1xRPxRP

In order to estimate the first factor on the right-hand sidthefabove inequality, we use the change
of variables ¢, v;) = (V',v;) and the symmetries of the measuyetd obtain

(] P st [[[ 0P e e
SP-1xRDxRD SP-1xRDxRD
- [ ifr My,
RD
where becauseud= |v; — Vi b(w - n) dw My dv; M dv, we can expresa<(v) as
(2.27) )= [ [ =B 1) Ly o M.
SD-1xRD

By assumption (1.6) thzft(w -n) € LY(dw), we have for every > 0, there existg, > 0 such that

(2.25)

(2.26)

b(w - N) Ly —viceiyy vy Ao = b(w - N) Ljonizq dow < 17 for everye € (0, &) .

sD-1 §Db-1

We then see from (2.27) that for everg (0, &) we have

@) <7 [N My = P,
R

which by (2.26) implies that

ffL\D—IXRDXRD |f(\/)|2 1{|v’—v|35|v1—v|} d:u < 772 || f ||52(a|v|dv) .
Upon placing this bound into (2.25), we establish (i).
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(ii) The proof of (ii) is similar to that of (i). From (2.24), &vsee that

(2.28) Kg, ?;fﬂ < fffs;l - lgW)I 1 (vl (1 — Liv-vsevi-wy 1{|\/l—v|>e|v1—v|})dﬂ <li+13,

where
£ = ff f O (V)] L eerv St
SD-1xRDXRD
15 = ff f 19 TE(VDI Ly, -vi<eva—vi Ot -
SD-1xRDXRD

We use the Schwarz inequality and the symmetries:.dbcestimatd | as

; ;
HE ( i O Ly e dﬂ) ( i A% dﬂ)
SP-1xRPxRP SP-1xRDxRP
1

_ ( f gW)Ra(y) Mdv) T
RD

wherea‘(v) is defined by (2.27). By arguing as in the proof of (i), thexestse; > 0 such that for
everye € (0, ), we havea“(v) < %nza(v). Therefore, for every € (0, 1), we have

(2.29)

(2.30) 15 < 3 7119llizama 1 Fllzamay) -
The estimate fols is similar to that for{. The smallness df comes from the fact that there exists
€, > 0 such that for every € (0, ;) we have

fD . b(a) . n) l{|\/1_v|5€|v1_v|} dw = b((,l) . n) 1{1—|cu~n|2552} dw < %1772 .
§D-

§Db-1

which implies that

(2.31) 15 < 2 7119llizama I Fllz@amay) -
Upon settings; = min{e;, e,} and placing bounds (2.30) and (2.31) into (2.28), we esthijii).
(iii) Next, we estimate(g, K™ )| with e fixed.

@32) [a R )< [[[ oI @ Dyt Lo G < 1574157,
SP-1xRDxRD

where

|§’R = ﬂf lg(V)[ | (V)] LRy v —visepvi-vi du,
SP-1xRDxRP

|Z’R = ﬂf 9T (V) Livisr Liv—viselva—wiy Ot -
SP-1xRDxRP

By the change of variables,(/) — (V, V), itis clear that boundini’R is equivalent to bounding’R.
Therefore, we will only show how to bourig®.
For everym > 0, we can bounds® as

(2.33)

eR eR,
(2.34) 155 < I+ ™M,
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I = f f f O£ O7)] Lo
SP-1xRDxRD

J;’R’m= fff IO (V)] Lv—visetvi—viy Livi=Ry Lipvaj<m A -
§D-1xRDXRD

We boundJ" and J5®™ separately.
We use the Schwarz inequality, the normalization (1.9),thedact thatVl; 1,i>m < € 3™ v/Mj to

estimatel" as
%
< (fff I9(V)IZ Ljvyismy dﬂ) 111l L2(amav)
SP-1xRPxRD

%
(2.36) = (fD lg(v))? (fD Vi = VP Ly om M1 dVl) M dV) 11 1l L2(amav)
R R

1 3
< g (fD |g(V)|2 (fD Vi — VPP VM dVl) M dV) 1 llL2amay) -
R R

By Lemma 2.3 there exists a positive const@nsuch that

f Vi = VP YMrdvy < Cla(y).
R

Therefore, estimate (2.36) yields

where

(2.35)

_1
I < Cre 4™ gl z(amay I Fllzama
If we choosem large enough so thaei™ < %77, then
(2.37) I7 < 27 l9lli2amay 1 FllLzamay) -

Next, we show that for every fixelandm we can makelgRm arbitrarily small by takingR large
enough. First observe that in the get — v| > €|v; — v|} we have

Vi =il = [V =V > €lv; — V],

which implies thatv;| > e[vi — V| — |v1]. We can thereby choodelarge enough so that in the set
{IV —V| > elvi —VI} N {IM > R} N {]v4] < m} we have

Vil > elvi — VI = [va| > eIVl = (1 + €)lva| > eR— (1 + €)m > ZeR.

(eR? .
For every suchR we use the fact that/M’M; 1., . =, < € 3 e 3% to estimatels*™ as
1 V> ) 2

d
JRM = f f fs - (I9W)IVM) (1F I VM?) Ly viseh-vi Liviary Lisj<m ﬁ
du
< 19V VM) (IF (V) VM) L, o ey Lypugem) ——
ffLDlXRDxRD(g() )( V) ) (> ) “Hhat<m VM'M
_ f f f (1901 VM) (I (V)] VM) Ly ) L /MMy bleo cvy v
SP-1xRDxRD
Sauil| (1901 VM) (1T I VW) L €3 b v dv.
SP-1xRPxRD

:

(2.38)
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The Schwarz inequality, the change of varialg ') — (vi,V), and the normalization (1.9) give

IR < £ ( f f f 19(V)> M 1y, 1<m b dew dvldv)
SP-1xRDxRD
x( f f f |f(\/)|2M'e-%M'2bdwdvldv)
SP-1xRDxRD
_(R? 2 :
[ ([ - ] )
%
X (f |f(V)[? (f vy — vf g aliP dvl) M dv) .
RD RD

By Lemma 2.3 there exists a positive const@ansuch that

_1y2
f Vi = VP Lyypem vz < Coa(v), f vi — v e M dv; < Cra(v).
RD RD

Therefore, estimate (2.39) yields

(2.39)

Rm G
7 < Coem = | dllizamay |l Fllizamay) -

If we chooseR large enough so thﬂze‘% < %77, then

(2.40) I3 < 2719l zaman 1 Fllegamay -

By combining estimates (2.37) and (2.40) into (2.34), Wertnﬂg’R as
(2.41) 157 < 2 nligllaman I fllczamay -

The bound OHZ’R is identical to that fong’R. It therefore follows from (2.32) that for every> 0
there exist®R. > 0 such that (iii) holds for everRR > R..

(iv) The proof of (iv) closely follows that of (iii). First, & have

(2.42) Kg 7?36’Rf>’ < f f fg oo SV (2 = Lywer Livi<r) Livg vty Loy O

<IER+IER

R = ff f OO )] L v e Gt
SP-1xRPxRP

|§’R: Hf |9(V)||f(\/1)|1{|\/1|2R}1{|\/1—v|>e|v1—v|} du .
SP-1xRPxRP

The change of variablew,(;) — (v;,Vv) shows that boundin@]g’R is equivalent to boundingg’R.
Therefore we only need to boumgf. As we did in (2.34-2.35), this estimate begins with the lsbun

<[] O (R Lo G
SP-1xRDxRD
+ ff f 19T (VDI L, —visetva vty Livizry Lipuyf<my e -
SP-1xRDxRD

The above integrals are bounded as in (2.36—2.37) and . 88)yrespectively. Hence, for aay- 0,
there existdR, > 0 such that (iv) holds for eve® > R.. To avoid repetition, we omit these details.

where

(2.43)
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We have now shown that all the remainders associated witagheoximations oK, andK; can
be made arbitrarily small. This completes the proof of Len#ta and thereby finishes the proof of
Theorem 2.2. By the remark at the end of Section 2.3, thisedtablishes our Main Theorem. O

Remark. The Main Theorem remains true if one replaces the assumttairihe collision kerneb
has the factored form (1.5-1.6) with the assumption biestisfies the bounds

blw.vi—V) < blw-m)(vi-v"+ v =),  aWv)>ad+ My,

for someB > @ > -D, b € L}(dw) andd > 0, where the attenuation cieienta is given by (1.11).
Because we do not know of any additional physical collisiemkls (ones derived from a classical
intermolecular potential) that would be included by thisigalization, we do not present its proof.
The proof is similar to the one given above, only longer beeahere are more terms to estimate.
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