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Abstract

The computation of compressible flows becomes more challenging when
the Mach number has different orders of magnitude. When the Mach number
is of order one, modern shock capturing methods are able to capture shocks
and other complex structures with high numerical resolutions. However, if the
Mach number is small, the acoustic waves lead to stiffness in time and exces-
sively large numerical viscosity, thus demanding much smaller time step and
mesh size than normally needed for incompressible flow simulation. In this
paper, we develop an all-speed asymptotic preserving (AP) numerical scheme
for the compressible isentropic Euler and Navier-Stokes equations that is uni-
formly stable and accurate for all Mach numbers. Our idea is to split the
system into two parts: one involves a slow, nonlinear and conservative hyper-
bolic system adequate for the use of modern shock capturing methods, and
the other a linear hyperbolic system which contains the stiff acoustic dynam-
ics, to be solved implicitly. This implicit part is reformulated into a standard
pressure Poisson projection system, and thus possesses sufficient structure for
efficient fast Fourier transform solution techniques. In the zero Mach number
limit, the scheme automatically becomes a projection method-like incompress-
ible solver. We present numerical results in one and two dimensions in both
compressible and incompressible regimes.

1 Introduction

We are interested in the efficient numerical simulation of unsteady compressible
flows with all range of Mach numbers. These flows arise in many physical appli-
cations, including atmospheric modeling, magnetohydrodynamics, and combustion.
When the Mach number is of order one, modern shock capturing methods provide
high resolution numerical approximations to shocks and other complex flow struc-
tures. However, when the Mach number is small, near the so-called incompressible
regime, there is a wide gap between the speeds of the flow and the acoustic waves,
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the latter of which is often unimportant in the incompressible regime. In the in-
compressible regime, standard explicit shock-capturing methods require the time
step to scale inversely with the maximum wave speed in the system for stability,
which greatly overresolves the solution in time. Furthermore, these shock captur-
ing methods will introduce numerical diffusions that scale with the inverse of the
wave speeds around discontinuities, which requires overresolution in space in order
to ensure that the numerical diffusion does not dominate the solution or physical
viscosity for high Reynolds number flows.

Our goal is to develop all-speed flow simulators that work in all regimes of Mach
number, including both compressible and incompressible regimes and their mix-
ture. As a first step, in this paper, we focus on the compressible isentropic Euler
and Navier-Stokes equations of gas dynamics. It was shown by Klainerman and Ma-
jda [21] that solutions to these equations converge to solutions of the incompressible
equations in the limit when the Mach number goes to zero. The major difference
between compressible and incompressible systems lies in the pressure term. In the
compressible case, the pressure is determined by the equation of state of the system
and plays an important role in the flux terms of the conservation law, and is the
source of the acoustic waves in the system. However, in the limiting incompressible
equations the pressure term acts as a Lagrange multiplier to enforce the incompress-
iblity condition and is in fact an asymptotic perturbation of the physical pressure
from the compressible equations.

The development of computational methods for nearly incompressible (small
Mach number flows) has attracted great attention for many years. Much of the
early literature in this area focused on preconditioning techniques for steady state
problems. In fact, Chorin’s artificial compressiblity approach [4] sought to avoid the
difficulties of the pressure term in the incompressible equations by solving a form
of the compressible low Mach number system, which has much clearer boundary
conditions. It was later recognized [29] that these ideas could be used to calculate
steady states of incompressible flows. Later studies applied these ideas to com-
pute solutions to low Mach number flow by introducing preconditioning matrices
to symmetrize the system in terms of a set of non-conservative variables [1, 14].
However, these methods assume that the flow is already in the low Mach number
regime and thus cannot accurately compute problems where the Mach number is
of order unity. Guillard and Viozat [13] followed the asymptotic analysis of Klain-
erman and Majda [21] to show that the artificial numerical dissipation in upwind
methods for the Euler equation are what causes the method to perform poorly in
the low Mach number limit, and use the preconditioner of Turkel [29] to alter the
dissipation terms in their method to capture the correct limit. Colella and Pao [5]
used the Hodge decomposition to split the method into incompressible and irrota-
tional components and obtained a method that is applicable to the broader regime
of flows with Mach number less than one. However, the accuracy breaks down at
the higher Mach numbers and it does not capture the correct speeds of the acoustic
waves in regimes where they become important. This work was later extended by
Gatti-Bono and Colella in the context of atmospheric flows [11].

Other approaches have sought to develop all-speed methods, which are suited
to both fully compressible and low Mach number regimes. Harlow and Amsden
[15] sought to extend the staggered-mesh MAC scheme for incompressible flows
[16] to compressible flows. Their method, the Implicit Continuous-fluid Eulerian
(ICE) method, iteratively solves an implicit second-order wave equation to update
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the density and pressure terms. However, this scheme is not conservative and has
difficulties in capturing strong shocks. Inspired by this work, Degond and Tang
[8] split the stiff pressure term with a numerical parameter to derive a nonlinear
elliptic equation for the density updates that acts similarly to a classical incom-
pressible projection on the system. Klein [22] presents a predictor-corrector type
method based on pressure variables at each order in the asymptotic expansion of
the pressure. Osher et al. [19] developed a method using a second order precondi-
tioner algorithm that captured the correct shock speed and suppressed oscillations
in multi-fluid systems. However, in low Mach regimes this method still requires
temporal resolution of the Mach number for stability.

In this paper, we present a new numerical method for the solution of the isen-
tropic Euler and Navier-Stokes equations that is valid for all Mach numbers (namely
the all-speed property). It allows the use of standard conservative shock capturing
methods that are necessary for the compressible regime, yet the method is shown to
be Asymptotic Preserving (AP) [17] in the zero Mach number limit. An Asymptotic
Preserving method is a method that preserves, at the discrete level, the asymptotic
passage from one model to another. Specifically, if the time and spatial steps ∆t
and ∆x are kept fixed, as the small scale parameter goes to zero, the method au-
tomatically transforms to a stable discretization of the limiting model. In our case
here, the limiting scheme, when the Mach number goes to zero, becomes a good
incompressible solver similar to a second order projection method. By adequately
splitting the compressible Euler/Navier-Stokes equations into a compressible, non-
stiff nonlinear hyperbolic system and a stiff linear acoustic wave system which can be
easily handled by a fast Fourier transform based Poission solver, our method allows
the use of sound speed (essentially the reciprocal of the Mach number) independent
time and spatial steps.

The asymptotic-preserving approach was first introduced in the context of lin-
ear transport in diffusive regimes [18, 12, 24], and have since been extended to
many other areas such as fluid and diffusion limits of kinetic models and relax-
ation methods for hyperbolic systems. In [7], Degond, Jin, and Liu studied the
time discretization of Asymptotic Preserving methods for several compressible flow
problems by means of a Hodge-like decomposition. While our work was inspired by
this research, we capture the low Mach number limit in a different fashion.

Our paper is organized as follows. In section 2, we review the details of the
low Mach number limit of the isentropic Euler equations and make a close study of
the difficulties encountered by standard hyperbolic shock capturing methods in this
regime. In section 3 we propose a hyperbolic splitting of the system to separate the
fast acoustic waves from the low-speed hyperbolic flow. The fast acoustic sytem is a
linear hyperbolic system with constant coefficients, which can be solved implicitly,
while the relatively slow system contains the flow dynamics and is solved using an
explicit shock capturing central scheme. We then perform an asymptotic analysis to
show that the scheme becomes an incompressible scheme in the low Mach number
limit. In section 4 we provide numerical results on a number of problems in both
compressible and incompressible regimes, and the paper is concluded in section 5.
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2 Low Mach number limit of the isentropic Navier-
Stokes equations

The isentropic Navier-Stokes equations in general spatial dimension are given by

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρu⊗ u) +∇p(ρ) = µ∆u

p(ρ) = Aργ

Here, ρ is the density of the fluid, m = ρu is the momentum of the fluid, µ is the
dynamic viscosity of the fluid, and p(ρ) is the pressure. Typically air is composed
of N2 and O2, which gives γ = 1.4, and we take A = 1 for simplicity. One can also
obtain the shallow water equations by setting γ = 2 and A = g/2. To obtain the
Euler equations, set µ = 0.

To describe the low Mach number (incompressible) limit, one scales the equa-
tions in the following manner. Let x0, t0, ρ0, p0, u0 be a set of characteristic scales
for the variables in the equations. The dimensionless variables are then given by
x̂ = x/x0, t̂ = t/t0, etc. . Inserting these into the equations (and dropping the hats),
one obtains the nondimensionalized equations

ρ0
t0

ρt +
ρ0u0

x0
∇ · (ρu) = 0

ρ0u0

t0
(ρu)t +

u2
0ρ0
x0

∇ · (ρu⊗ u) +
p0
x0

∇p =
u0µ

x2
0

∆u

p0p = ργ0ρ
γ .

Using the fact that u0 = x0/t0, one has

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρu⊗ u) +
p0

ρ0u2
0

∇p =
1

Re
∆u

p0
ργ0

p(ρ) = ργ .

Here Re = ρ0u0x0

µ is the dimensionless Reynolds number, which measures the ratio

between the inertial and diffusive forces in the system. p0 scales as ργ0 , as expected
from the equation of state. What remains to be determined is the term in front of the
pressure. Since the speed of sound is given by c2 = γp/ρ, one has c20c

2 = γp0p
ρ0ρ

, and

thus one defines the dimensionless reference Mach number to be ε2 =
γu2

0

c2
0

=
ρ0u

2
0

p0
.

The nondimensionalized equations then take the form

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρu⊗ u) +
1

ε2
∇p =

1

Re
∆u (1)

p = ργ .

2.1 The low Mach number limit

To determine the asymptotic behavior as ε → 0, one takes an asymptotic expansion
of the variables as

ρ = ρ(0) + ε2ρ(2) + . . .
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for small ε, and look at the balances within the equations. At O
(

1
ε2

)

, one has the
balance

∇p(0) = 0 ⇒ p(0)(x, t) = p(0)(t) ⇒ ρ(0) = ρ(0)(t),

i.e., the leading order pressure (and hence density) are constant in space.
Next, use this fact to enforce incompressiblity. The O(1) equations are

∂tρ
(0) +∇ · (ρ(0)u(0)) = 0 (2)

∂t(ρ
(0)u(0)) +∇ · (ρ(0)u(0) ⊗ u(0)) +∇p(2) = 0. (3)

Incompressibility is enforced using the boundary conditions. Three types of bound-
ary conditions that give incompressiblity are listed below.

1. Wall boundary condition. The problem takes place in a bounded domain
Ω with fixed walls. In this case u · n = 0 on ∂Ω. Thus, if one integrates the
density equation over the domain one obtains

|Ω|∂tρ
(0) + ρ(0)

∫

Ω

∇ · u(0) = 0

∂tρ
(0) = −

ρ(0)

|Ω|

∫

Ω

∇ · u(0)

∂tρ
(0) = −

ρ(0)

|Ω|

∫

∂Ω

u(0) · n

∂tρ
(0) = 0.

The last step comes from applying the boundary condition. Thus the density
does not change and one sets ∇ · u(0) = 0.

2. Periodic boundary condition. This result is similar to the above. Inte-
grating over the domain gives

|Ω|∂tρ
(0) + ρ(0)

∫

Ω

∇ · u(0) = 0

∂tρ
(0) = −

ρ(0)

|Ω|

∫

Ω

∇ · u(0)

∂tρ
(0) = −

ρ(0)

|Ω|

∫

∂Ω

u(0) · n

∂tρ
(0) = 0.

The last step cancels out because the velocities are the same at opposite ends
of the box, while the normal vectors point in opposite directions, thus giving
the cancellation. Again one gets that ∇ · u(0) = 0.

3. Open boundary. In this case, one needs to have some sort of far-field
boundary condition — usually this is enforced on the pressure. By assuming
that this does not change with time (which makes sense, as it is just a general
background pressure), one gets that P (0)(t) = P0 = ρ(0), and thus ∂tρ

(0) = 0,
giving ∇ · u(0) = 0.

5



One consequence of these results is that incompressibility comes from a global pro-
cedure — a numerical scheme that hopes to capture it will have to take this into
account.

Thus, assuming one of these boundary conditions one has that ρ(0) is constant in
space and time and the incompressiblity condition is satisfied for the leading order
velocity. Next, looking at the O(1) momentum equation

ρ(0)∂tu
(0) + ρ(0)∇ · (u(0) ⊗ u(0)) +∇p(2) =

1

Re
∆u(0),

using the incompressiblity found above gives

∇ · u(0) = 0

∂tu
(0) + (u(0) · ∇)u(0) +

1

ρ(0)
∇p(2) =

1

Re
∆u(0),

which is the incompressible Navier-Stokes equation.

2.2 Numerical difficulties in the low Mach number limit

Standard finite volume shock-capturing hyperbolic solvers have difficulties in the
low Mach number regimes. The compressible equations have acoustic waves that
scale as O(1ε ) which require temporal resolution for stability. Furthermore, artificial
viscosity on the order of the wave speeds is also introduced to suppress numerical
oscillations across shocks and contact discontinuities. Thus, for a desired spatial
accuracy, one must also resolve the waves in space. This is prohibitively expensive
to undertake as the underlying incompressible system does not admit these acoustic
waves, and the relevant time scale of interest is that of the fluid velocity u. We
illustrate these problems by looking at the one-dimensional Euler system with a
simple local Lax-Friedrichs finite volume method, for simplicity, though the same
issues will arise with other standard choices for the numerical flux.

ρn+1
j − ρnj

∆t
+

mn
j+1 −mn

j−1

2∆x
−

λj+1/2

2∆x
(ρnj+1 − ρnj ) +

λj−1/2

2∆x
(ρnj − ρnj−1) = 0

mn+1
j −mn

j

∆t
+

(m2/ρ)nj+1 − (m2/ρ)nj−1

2∆x
+

1

ε2
pnj+1 − pnj−1

2∆x

−
λj+1/2

2∆x
(mn

j+1 −mn
j ) +

λj−1/2

2∆x
(mn

j −mn
j−1) = 0.

Here λj+1/2 = max{λj , λj+1}, where λj is the maximum wave speed based on the
values in cell j.

The maximum wave speed of the system is λmax = |umax| ±
1
ε

√

p′(ρmax) (where
umax and ρmax are the values at the point where the maximum wave speed is
reached); thus one needs

∆t = ν
∆x

λmax
= ν

∆xε

ε|umax|+
√

p′(ρmax)
= O(ε∆x)

for some 0 ≤ ν ≤ 1 to satisfy the CFL condition for stability. Futhermore, the
numerical diffusion, while local, will at least at one point be given by

∆xλmax

2
=

∆x

ε

(ε|umax|+
√

p′(ρmax))

2ν
.
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Thus one needs ∆x = o(ε) for accuracy purposes, ensuring that the numerical diffu-
sion does not dominate the solution. A further consequence of this is that one now
needs ∆t = o(ε∆x) = o(ε2). This is unacceptable, as the limiting incompressible
equations only have a timestep restriction of ∆t = O(∆x), independent of ε.

3 The all-speed asymptotic-preserving method for

the isentropic Navier-Stokes equations

3.1 All-speed asymptotic-preserving schemes

Our goal is to develop a method that preserves, at the discrete level, the asymptotic
passage from the compressible equations to the incompressible equations without re-
solving the spatial and temporal scales associated with the acoustic waves, which are
unimportant in the limit. In particular, the numerical method should demonstrate
this discrete asymptotic limit by being consistent with a method for the incompress-
ible equations in the low Mach number limit. This discrete limit is taken with spatial
and temporal steps fixed, with only the reference Mach number parameter driven to
zero. A method that satisfies these properties is said to be asymptotic-preserving
(AP) [17].

We stress that we want to obtain an all-speed scheme, in other words, a scheme
that gives correct solutions for any reference Mach number ε, not just in the low
Mach number regime. Therefore, we need to construct a scheme robust for all
regimes. To this end, we work in conservative variables, to ensure that the scheme
can capture shocks in the compressible regimes, (i.e., Mach number of order unity).
On the other hand, incompressible solvers typically have an implicit global projec-
tion step that calculates an intermediate velocity field and pressure to update the
velocity equations. This suggests that our overall scheme should be semi-implicit,
weaving together these features of the two systems.

3.2 A Hyperbolic splitting

Looking at the compressible system (1), there are two scales that we need to re-
solve: the (fast) acoustic wave scale and the (slow) convection scale, which contains
the underlying incompressible dynamics. Therefore, we split the system into two
systems. First, write the N-S equations as

∂tρ+ α∇ · (ρu) + (1− α)∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇

(

p(ρ)− a(t)ρ

ε2

)

+
a(t)

ε2
∇ρ =

1

Re
∆u (4)

The slow dynamics evolves according to the system

∂tρ+ α∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇

(

p(ρ)− a(t)ρ

ε2

)

=
1

Re
∆u, (5)
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and the fast dynamics is governed by the system

∂tρ+ (1− α)∇ · (ρu) = 0

∂t(ρu) +
a(t)

ε2
∇ρ = 0 (6)

The key idea is to split the stiff pressure term. We subtract off a linear piece a(t)ρ,
to be determined below, and add it back in fast system. The splitting parameter
0 < α < 1 determines how much of the momentum is seen by each system. As we
will see, some momentum is necessary in the fast system to ensure incompressibility.

The choice of the splitting parameter a(t) is motivated by hyperbolicity. In the
two-dimensional case, for example, the wave speeds of (5) in the x direction are

λ = u, u±

√

(1− α)u2 +
α(p′(ρ)− a(t))

ε2

where u is the first component of u, so if we choose

a(t) = min
x

p′(ρ)

for our pressure splitting term, we ensure that the wave speeds will always be real,
and thus the slow system is hyperbolic. As we will see in the asymptotic analysis
later, in the low Mach number limit the fast system (6) will force variations in ρ
to be small, and thus the wave speeds of the slow system will be O(1). We can
discretize this system using any shock-capturing hyperbolic solver, noting that the
wave speeds are no longer stiff which avoids the dissipation and time step problems
seen in the original system (1). The fast dynamics, contained in (6), are simply a
linear hyperbolic system with constant coefficients, which leads to a straightforward
implicit implementation.

3.3 Time discretization of the split systems

For a first order in time scheme, we can write the system in a simple semi-implicit
form

ρn+1 − ρn

∆t
+ α∇ · (ρu)n + (1 − α)∇ · (ρu)n+1 = 0 (7)

(ρu)n+1 − (ρu)n

∆t
+∇ · (ρu⊗ u)n +∇

(

p(ρ)− a(t)ρ

ε2

)n

+
a(t)

ε2
∇ρn+1 =

1

Re
∆un

(8)

To obtain second order in time, we use a two-level Adams-Bashforth discretiza-
tion for the explicit, slow terms and Crank-Nicholson for the fast, implicit terms
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ρn+1 − ρn

∆t
+ α∇ ·

(

3

2
(ρu)n −

1

2
(ρu)n−1

)

+ (1− α)∇ ·

(

(ρu)n+1 + (ρu)n

2

)

= 0

(9)

(ρu)n+1 − (ρu)n

∆t
+∇ ·

(

3

2
(ρu⊗ u)n −

1

2
(ρu⊗ u)n−1

)

+∇
3

2

(

p(ρ)− a(t)ρ

ε2

)n

−
1

2
∇

(

p(ρ)− a(t)ρ

ε2

)n−1

+
a(t)

ε2
∇
ρn+1 + ρn

2
=

1

Re
∆

(

3

2
un −

1

2
un−1

)

. (10)

Degond and Tang [8] noted that one can rewrite the momentum equation in (10)
in terms of (ρu)n+1 and insert it into the density equation, obtaining an elliptic
equation for ρn+1:

ρn+1 − ρn

∆t
+ α∇ ·

(

3

2
(ρu)n −

1

2
(ρu)n−1

)

+ (1− α)∆t∇ · (ρu)n −
(1 − α)∆t

2
∇ · ∇ ·

(

3

2
(ρu⊗ u)n −

1

2
(ρu⊗ u)n−1

)

−
(1− α)∆t

2
∇ · ∇

(

3

2

(

p(ρ)− a(t)ρ

ε2

)n

−
1

2

(

p(ρ)− a(t)ρ

ε2

)n−1
)

−
(1− α)∆t

2
∇ ·

a(t)

ε2
∇
ρn+1 + ρn

2

=
(1− α)∆t

2
∆

(

3

2
∇ · un −

1

2
∇ · un−1

)

(11)

This system is now a Helmholtz equation for the unknown variable ρn+1, and the
terms from the previous steps can be pushed to the right hand side as source terms.
If the right spatial discretization is chosen, this system can be solved efficiently
for ρn+1 using Fast Fourier Transform techniques. An important feature of this
Helmholtz equation is that it is uniformly elliptic for any ε [6, 9]. The updated
momentum (ρn+1un+1) is then obtained from the momentum equation (10).

Note that, while popular in many incompressible solvers, we do not discretize
the diffusion terms using Crank-Nicholson. This is done for two reasons: first
of all, because it involves the velocity rather than the momentum, and thus it is
a nonlinear function of the conservative variables if this term is calculated fully
implicitly, which would require iterations. More importantly, if treated implicitly
this term will appear in the elliptic equation (11) for the updated density and thus
disallows the application of the fast spectral solver for the updated density and
pressure. Furthermore, for high Reynolds number flow, where Re >> 1, an explicit
diffusion term is clearly adequate [10].

3.4 The L2 stability

To check the stability, we write the method as a semi-implicit method

Un+1 − Un

∆t
+AUn +BUn+1 = 0.
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We have the following Lemma

Lemma 3.1 If both methods

Un+1 − Un

∆t
+A(Un) = 0,

Un+1 − Un

∆t
+BUn+1 = 0

are stable, then the original method is also stable.

Proof
Method Un+1 = (I −∆tA)Un is stable iff

‖I −∆tA‖ ≤ 1 + c1∆t.

Method Un+1 = (I +∆tB)−1Un is stable iff

‖(I +∆tB)−1‖ ≤ 1 + c2∆t.

Thus the combined method Un+1 = (I +∆tB)−1(I −∆tA)Un is stable iff

‖(I +∆tB)−1(I −∆tA)‖ ≤ ‖(I +∆tB)−1‖‖(I −∆tA)‖ ≤ 1 + C∆t.

Therefore, so long as the fast slow systems are individually stable, the combined
scheme will also be stable.

3.5 Spatial discretization of the split systems

For simplicity, assume a uniform grid with spacing ∆x and define φij = φ(xi, yj)
for any variable φ, where (xi, yj) = (12∆x+ i∆x, 1

2∆x+ j∆x). We also assume for
ease of explanation a rectangular domain.

The fast system (6) is discretized in space using central differences:

∇ · (ρu)n+1
i,j = (1 − α)Dx

0 (ρu)
n+1
i,j + (1− α)Dy

0 (ρv)
n+1
i,j (12)

an

ε2
∇ρn+1

i,j =
an

ε2
∇0ρ

n+1
i,j

Here Dx
0φi,j =

φi+1,j−φi−1,j
2∆x , Dy

0φ =
φi,j+1−φi,j−1

2∆x , are the central difference op-

erators, ∇0φi,j =

(

Dx
0φi,j

Dy
0φi,j

)

is the natural extension to the central difference

gradient, and an is the value of a(t) = min p′(ρ) at time t = tn.
We discretize the convective flux terms in (5) using a second order central scheme

[23], which is a higher-order extension of the Lax-Friedrichs scheme. This choice is
by no means unique — any standard shock-capturing scheme will be sufficient. We
take the conservative discretization,

F(Un
i,j) =

Hn
i+1/2,j −Hn

i−1/2,j

∆x
+

Hn
i,j+1/2 −Hn

i,j−1/2

∆x
, (13)

where

Hn
i+1/2,j =

1

2
(f(Un

i+1/2,j,+) + f(Un
i+1/2,j,−)− λn

i+1/2,j(U
n
i+1/2,j,+ − Un

i+1/2,j,−))

(14)

λn
i+1/2,j = max

{

σ

(

∂F

∂U
(Ui+1/2,j,+)

)

, σ

(

∂F

∂U
(Ui+1/2,j,−)

)}

. (15)
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σ is the spectral radius of the Jacobians in (15), i.e., the maximum wave speed. Here
f is the relevant flux function from the slow system (5) chosen for x and y fluxes as
needed. The edge values Ui±1/2,j at each interface are reconstruced component-wise
using the generalized minmod limiter, with θ ∈ [1, 2],

σn
j = minmod

(

θ
un
i+1,j − un

i,j

∆x
, θ

un
i,j − un

i−1,j

∆x
,
un
i+1,j − un

i−1,j

2∆x

)

(16)

un
i+1/2,j,+ = un

i+1,j −
∆x

2
σn
i+1,j , un

i+1/2,j,− = un
i,j +

∆x

2
σn
i,j . (17)

Note here that in central schemes, the slope limiter is based on conserved variables
rather than a local characteristic decomposition.

The CFL condition for this scheme is, at first order, following [23]

λ∆t

∆x
≤

1

8
, (18)

and for the second order Adams-Bashforth-Crank-Nicolson scheme it is

λ∆t

∆x
≤

1

2

1

16
. (19)

This follows from the fact that we now have 16 terms involved in the evaluation of
the flux terms, and the additional 1

2 factor is a restriction from the Adams-Bashforth
stability region. While this CFL constant is restrictive, it is important to notice that
it is independent of ε. In fact, as we will see below from the numerical results, the
method performs best in the low Mach number limit when we take α = O(ε2). In
this case the wave speeds λ are given by λ = O(|u|) and we have the CFL condition

∆t ≤
1

64
max |u|∆x.

3.6 Boundary and initial conditions

Our example boundary conditions listed in section 2 only gave the boundary con-
ditions for u, not ρ. To remedy this, we artifically enforce a boundary condition
of ∂ρ/∂n = 0 on ∂Ω. In the following analysis we will also assume a solid wall
boundary with u · n = 0 on ∂Ω. For the Navier-Stokes case, we extend this to the
no-slip boundary condition u = 0 on ∂Ω.

We enforce these boundary conditions by using ghost cells, setting

ρ−1 = ρ0, u−1 = −u0, (ρu)−1 = −(ρu)0. (20)

This results in a second order approximation of the boundary condition.
We only consider initial data of the form

ρ(0,x) = ρ0 + ε2ρ(2)(x) + . . .

∇ · u(0, x) = O(ε). (21)

This initial data converges to admissible initial data of the limiting incompressible
equation.

One thing to note is that this is not a projection scheme for general initial data.
In fact, general initial data will implicitly containO(1/ε) acoustic waves that require
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resolution in space and time for accuracy and stability. This situation could reflect
a poor choice of terms in nondimensionalization, as the behavior of the solution
is compressible, not incompressible. However, in certain cases, such as when the
Mach number is not excessively small, the scheme could offer some speedup over
a standard solver in that it can take much larger timesteps due to the fact that
the acoustic wave term is treated implicitly, and the explicit solver only needs to
advance the remaining part of the waves.

3.7 The discrete low Mach number limit

Next, we show that in the limit ε << 1 this solver automatically transforms into an
incompressible solver. In the following, we will write ∇0 as the standard centered
difference gradient operator and ∇̃ as the shock-capturing difference operator from
(14).

We write

ρni,j = ρ
n,(0)
i,j + ε2ρ

n,(2)
i,j + . . . (22)

(ρu)ni,j = (ρu)
n,(0)
i,j + ε2(ρu)

n,(2)
i,j + . . . (23)

pni,j = p
n,(0)
i,j + ε2p

n,(2)
i,j + · · · = (ρ

n,(0)
i,j )γ + ε2γ((ρ

n,(0)
i,j )γ−1ρ

n,(2)
i,j ) + . . . (24)

We skip ε1 in the expansion because there are no O
(

1
ε

)

terms in the discrete equa-
tions.

We now look at how the terms balance at each order in ε. For small ε, the
O
(

1
ε2

)

terms are given by

an

4∆x
(ρ

n+1,(0)
i+1,j − ρ

n+1,(0)
i−1,j + ρ

n,(0)
i+1,j − ρ

n,(0)
i−1,j) = 0

an

4∆x
(ρ

n+1,(0)
i,j+1 − ρ

n+1,(0)
i,j−1 + ρ

n,(0)
i,j+1 − ρ

n,(0)
i,j−1) = 0

⇒ ρ
n+1,(0)
i+1,j − ρ

n+1,(0)
i−1,j = −(ρ

n,(0)
i+1,j − ρ

n,(0)
i−1,j) = 0, ρ

n+1,(0)
i+1,j = ρ

n+1,(0)
i−1,j

⇒ ρ
n+1,(0)
i,j+1 − ρ

n+1,(0)
i,j−1 = −(ρ

n,(0)
i,j+1 − ρ

n,(0)
i,j−1) = 0, ρ

n+1,(0)
i,j+1 = ρ

n+1,(0)
i,j−1

This result comes from the fact that the leading order density was constant at the
previous timestep, consistent with the initial condition (21).

A straightforward application of the boundary conditions (20) gives ρ
n+1,(0)
i,j =

ρn+1
0 , ∀i, j, a constant in space but not necessarily in time. Next one needs to show

incompressibility, and this is where the α terms in the splitting become important.
The O(1) equation for the density is given by

ρ
n+1,(0)
i,j − ρ

n,(0)
i,j

∆t
+ α(∇̃0

(

3

2
(ρun)−

1

2
(ρu)n−1

)

+
1− α

2
(∇0 · (ρ

n+1,(0)
i,j u

n+1,(0)
i,j ) +∇0(ρ

n+1,(0)
i,j u

n,(0)
i,j ) = 0

Note that ∇̃ reduces to ∇0 in this case, as the density jump at the interface is
zero due to the contant profile of ρ(0), resulting in a numerical dissipation term of

12



λn
i+1/2,j(ρ

(0),n
i+1/2,j,+−ρ

(0),n
i+1/2,j,−)) (note that the dissipation would not be of this form

if a slope limiter based on a local characteristic decomposition is used).
We now do the discrete analog of the integrals done in section 2.1 by summing

this equation over all i, j. Recalling that the leading order density is a constant and
noting that the flux terms telescope and the resulting boundary terms cancel out,
these result in

N2ρn+1
0 −

∑

i,j

ρ
n,(0)
i,j = 0

⇒ ρn+1
0 =

1

N

∑

i,j

ρ
n,(0)
i,j , (25)

where N is the total number of grid points in each direction. This merely says that
the new density is a constant and is simply equal to the average value of the density
at the previous time step. Furthermore, as the density in the previous time step
was also constant to leading order in space this says that the two coincide, so the
density is also constant in time as was seen in the continuous case.

Using this result, the density terms cancel out and we are left with

3

2
α∇0 ·(ρ

(0)u(0))n−
1

2
α∇0 ·(ρ

(0)u(0))n+(1−α)ρn+1,(0)1

2
(∇0 ·(u

n+1,(0)+un,(0))) = 0.

As we assumed the initial velocity field was incompressible to O(ε), the terms from
the tn step drop out and we are left with ∇0 ·u

n+1,(0) = 0, the discrete incompress-
iblity condition for un+1,(0).

Finally, we can derive an equation for the density correction term ρn+1,(2) (and
hence the incompressible pressure p(2)) by looking at the O(1) terms in the elliptic
equation reformulation (11).

ρn+1,(0) − ρn,(0)

∆t
+ α∇0 ·

(

3

2
(ρu)n,(0) −

1

2
(ρu)n−1,(0)

)

+ (1 − α)∆t∇0 · (ρu)
n,(0)

−
(1 − α)∆t

2
∇0 · ∇̃ ·

(

3

2
(ρu⊗ u)n,(0) −

1

2
(ρu⊗ u)n−1,(0)

)

−
(1 − α)∆t

2
∇0 · ∇̃

(

3

2

(

p(ρ)− anρ

ε2

)n,(0)

−
1

2

(

p(ρ)− anρ

ε

)n−1,(0)
)

−
(1 − α)an∆t

2
∇0 · ∇0

ρn+1,(2) + ρn,(2)

2

=
1

Re

(1 − α)∆t

2
∇0 ·∆

(

3

2
un,(0) −

1

2
un−1,(0)

)

(26)

Again, we have used the fact that ∇̃ = ∇0 for the explicit flux terms in the leading
order density equation. We can rewrite this as

−
an

4∆x2
(ρ

n+1,(2)
i+2,j + ρ

n+1,(2)
i−2,j + ρ

n+1,(2)
i,j+2 + ρ

n+1,(2)
i,j−2 − 4ρ

n+1,(2)
i,j ) = φ(Un,(0), Un+1,(0)),

where φ collects all the explicit or known terms. This is simply a Poisson equation
for ρn+1,(2). Using the expansion of the pressure (24) and the definition of an,
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one has that anρ(2) = p(2). Using this fact and the knowledge of the previous
steps’ leading order density and incompressibiliy one obtains a discretization of the
pressure Poisson equation

−∆2p
(2) =−∇0 · ∇̃ ·

(

3

2
(ρu⊗ u)n,(0) −

1

2
(ρu⊗ u)n−1,(0)

)

(27)

+
1

Re
∇0 ·∆0

(

3

2
un,(0) +

1

2
un−1,(0)

)

. (28)

Here, ∆0 is the standard centered second order Laplacian, and ∆2 is the second
order centered Laplacian with stencil of size 4∆x generated by ∇0 · ∇0. In the
continuous case, the divergence and Laplacian would commute and the diffusion-
type term would drop out due to incompressibility, but this is not necessarily true
at the discrete level. We also note that the explicit pressure term drops out, as the
modified explicit pressure 1

ε2 (p(ρ)− a(t)ρ) has a simple Taylor expansion for small
ε of

p̃ε =
1

ε2
((ρ0)

γ + γε2(ρ0)
γ−1ρ

n+1,(2)
i,j − an(ρ0 + ε2ρ

n+1,(2)
i,j )).

For convex equations of state (such as the one we are using), an is found at ρmin :=
ρ†, which will not deviate much from ρ0. Thus we have

an := p′(ρ†) = γργ−1
0 + γ(γ − 1)ε2ργ−2

0 (ρ† − ρ0) = γργ−1
0 +O(ε4),

as ρ† − ρ = O(ε2). Therefore,

1

ε2
((ρ0)

γ + γε2(ρ0)
γ−1ρ

n+1,(2)
i,j − an(ρ0 + ε2ρ

n+1,(2)
i,j )) =

1

ε2
(1 − γ)ργ−1

0 .

Thus the explicit pressure becomes a constant in the low Mach number limit. In
principle, one can also subtract a constant derived from the density (such as the
average or minimum density) to ensure that this constant background pressure
does not become too large, but in practice it does not really matter because this
pressure term is only seen as a derivative, so the background constant value does
not matter. Thus we have found that, to O(1), the modified pressure in the slow
system (5) becomes constant in space in the low Mach number limit.

For the momentum equations, at O(1)

u
n+1,(0)
i,j − u

n,(0)
i,j

∆t
+ ∇̃

(

3

2
u
n,(0)
i,j ⊗ u

n,(0)
i,j −

1

2
u
n−1,(0)
i,j ⊗ u

n−1,(0)
i,j

)

+∇0
1

2
(p

n+1,(2)
i,j + p

n,(2)
i,j ) =

1

Re
∆0

(

3

2
u
n,(0)
i,j −

1

2
u
n,(0)
i,j

)

This is an equivalent (conservative) formulation of the incompressible momen-
tum equation.

Remark 3.1.1 When the second-order formulation (7)–(8) is used, the implicit
terms contribute no numerical dissipation to the system, i.e. the only numerical
dissipation is the O(1) contribution from the explicit, slow flux terms. We sketch
the proof of this in one dimension; the proof for higher dimensions is similar.
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The terms of the semi-implicit formulation from the fast system are

ρn+1
j − ρnj

∆t
+ (1− α)

1

2

(

(ρu)n+1
j+1 − (ρu)n+1

j−1

∆x
+

(ρu)nj+1 − (ρu)nj−1

∆x

)

= 0

(29)

(ρu)n+1
j − (ρu)nj

∆t
+

a

ε2
1

2

(

ρn+1
j+1 − ρn+1

j−1

∆x
+

ρnj+1 − ρnj−1

∆x

)

= 0. (30)

Note that for ε << 1 one can assume that a is constant to leading order. One needs
to make sure that numerical dissipation does not dominate when ε is small.

Define the discrete energy functional

Ln+1 =

N
∑

j=1

(

ρn+1 − ρn

∆t

)2

+
(1− α)a

ε2

(

1

2

(

ρn+1
j+1 − ρn+1

j−1

2∆x

)

+

(

ρnj+1 − ρnj−1

2∆x

)

)2

.

By taking the time difference of (29) and the divergence of (30), summing over the
domain, and using summation by parts, one can derive that

Ln+1 − Ln = 0,

which implies that the implicit terms introduce no numerical dissipation into the
solution.

In summary, the limiting incompressible scheme is

ρ
(0)
i,j = ρ0 (31)

∇0 · u
(0)
i,j = 0 (32)

−∆2p
(2) = −∇0 · ∇̃ ·

(

3

2
(ρu⊗ u)n,(0) −

1

2
(ρu⊗ u)n−1,(0)

)

+
1

Re
∇0 ·∆0

(

3

2
un,(0) +

1

2
un−1,(0)

)

(33)

u
n+1,(0)
i,j − u

n,(0)
i,j

∆t
+ ∇̃

(

3

2
u
n,(0)
i,j ⊗ u

n,(0)
i,j −

1

2
u
n−1,(0)
i,j ⊗ u

n−1,(0)
i,j

)

+∇0
1

2
(p

n+1,(2)
i,j + p

n,(2)
i,j ) =

1

Re
∆0

(

3

2
u
n,(0)
i,j −

1

2
u
n,(0)
i,j

)

. (34)

This is a second order version of a projection type method [3, 28].

3.8 The fast solver for ρn+1

One can efficiently solve the elliptic equation (11) using fast Fourier transform
(FFT) based solvers. Here we will sketch the basic idea for the homogeneous Neu-
mann boundary conditions; for further details on the development of these methods
see Swarztrauber [27], and for futher information on using FFT techniques on dif-
ferent gridding systems and boundary conditions, see Bradford [2].
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The basic idea is to expand the solution in trigometric functions that are con-
sistent with the boundary conditions. The expansion derived below is for a cell-
centered grid with the homogeneous Neumann boundary conditions, but it is rel-
atively straighforward to find an expansion for other typical boundary conditions.
For a system with N grid points placed at xi+1/2,j+1/2 = (12∆x+ i/N, 12∆x+ j/N)
on (0, 1) × (0, 1) and homogeneous Neumann boundary conditions for ρ, we ex-
pand using cos(πk(j + 1/2)/N), k = 0, . . . , N − 1. Therefore, we assume ρn+1

i,j =
N−1
∑

k=0

ˆρk,j cos(πk(i + 1/2)/N). Sticking this into the elliptic equation (11) for ρn+1

and using the orthogonality of the basis functions give

ρ̂k,j(1 + 4
(1− α)a∆t2

16ε2∆x2
sin2(πk/N))−

(1− α)a∆t2

16ε2∆x2
(ρ̂k,j+2 + ρ̂k,j−1) = φ̂k,j .

Here, φ̂k,j is the transformed right-hand side in the expansion functions chosen.
This gives a tridiagonal system for solving ρ̂k,j , which is then transformed back

onto the grid. Determination of the coefficients φ̂k,j is done through the use of the
staggered Fourier transforms [2], as is the inverse transform back to the physical
grid. The boundary conditions are automatically built into this framework by the
choice of the basis function.

In two dimensions, this transform only needs to be done along one space di-
mension. The resulting system will be tridiagonal, and can thus be solved in O(N)
steps. Therefore, the overall computational cost is O(N logN).

4 Numerical results

4.1 Compressible flow examples (ε = O(1))

Experimentation with the artificial splitting parameter α in compressible regimes
(i.e. ε = O(1)) showed that there is little effect on the solution unless α is chosen
close to 0. In the compressible examples below, we show results for α = 0.5. The
timestep is chosen according to the CFL condition (19).

1D Riemann problem
First, we will demonstrate the method in a compressible regime, i.e., where

the Mach number is O(1). We start with a 1-d Riemann problem with the initial
condition

ρ(x, 0) =

{

3.0 x < 1/2

1.0 x ≥ 1/2
u(x, 0) = 0 (35)

We discretize this problem with 100 points and choose ε = 1, γ = 1.4, and θ = 1
(the minmod slope limiiter) for a spatially second order scheme. The results are
found in Figure 1. The scheme captures the correct shock speed.

Strong shock wave
Next, we test a strong shock to check that the scheme captures the correct wave

speed. Inspired by the example from [19], we take the initial data

ρ(x, 0) =

{

10.0 x < 1/2

20.0 x ≥ 1/2
u(x, 0) =

{

2000.0 x < 1/2

0.0 x ≥ 1/2
(36)
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Figure 1: 1D Riemann problem with initial data (35). ε = 1, γ = 1.4, α = 0.5. The
solid line is the true solution.

We use 500 points and set ε = 1, γ = 1.4, θ = 1. The results are given in Figure 2.
Again, the scheme appears to be able to capture the correct shock speed, though the
strength of the shock demands a large amount of numerical diffusion which smears
the peak of the strong shock.
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(b) ρu

Figure 2: Solution to initial data (36) at T = 0.001 with ε = 1 and α = 0.5. The
solid line is the true solution.

2D Riemann problem
We also run a test on a 2D Riemann problem inspired by the initial data in [25]

for the full Euler equations. Here we set ε = 1, γ = 1.4, and choose the initial data
as

ρ(x, y, 0) =

{

0.5323 x < 1/2, y ≥ 1/2, 1.5 x ≥ 1/2, y ≥ 1/2
0.138 x < 1/2, y < 1/2, 0.5323 x ≥ 1/2, y < 1/2

u(x, y, 0) =

{

1.206 x < 1/2, y ≥ 0, 0 x ≥ 1/2, y ≥ 1/2
1.206 x < 1/2, y < 1/2, 0 x ≥ 1/2, y < 1/2

(37)

v(x, y, 0) =

{

0 x < 1/2, y ≥ 0, 0 x ≥ 1/2, y ≥ 1/2
1.206 x < 1/2, y < 1/2, 1.206 x ≥ 1/2, y < 1/2
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This initial data results in four shock waves, as seen in figure 3. As in the 1D case,
and we take 50 points in each direction. The results are given in Figure 3.
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Figure 3: Density plot of 2D Riemann problem with initial data (37). ε = 1, γ =
1.4, α = 0.5.

4.2 Low Mach number limit examples (ε << 1)

In all of the examples below, the numerical experimentation has revealed that choos-
ing α = ε2 provides good results in small ε regimes.

Periodic flow
First, we test a simple problem with periodic boundary conditions, to divorce

the AP property from any boundary peculiarities. This example was used in [8].
The initial conditions and constant γ are



















ρ(0, x, y) = 1 + ε2 sin2(2π(x + y))

u(0, x, y) = sin(2π(x − y))

v(0, x, y) = sin(2π(x − y))

γ = 2

(38)

The initial velocity field is divergence free, and the density field is constant at leading
order. We fix the Reynolds number at Re = 100, the spatial step at ∆x = 1/32,
and the temporal step at 2.5 × 10−4, and look at ε values of 0.1 and 10−4. Figure
4 compares the solution given by the AP scheme at T = 1 to a highly resolved
solution. In both cases we see that there is little error between the two, especially
in the ε = 10−4 case, where ∆x grossly underresolves ε.

Vortex-in-a-box
Next, we test a similar case that was used in [5]. This is the so-called “vortex
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Periodic flow test, Re = 100, ε = 0.1
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Periodic flow test, Re = 100, ε = 0.0001

x

y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) ε = 0.0001.
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(c) ε = 0.1.
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(d) ε = 0.0001.
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(e) ε = 0.1.
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(f) ε = 0.0001.

Figure 4: Results for periodic flow test case (38). Left column: ε = 0.1. Right
column: ε = 10−4. Top row: stream function of solution with ∆x = 1/16. Middle
row: error in u. Bottom row: error in v
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in a box”, given by



















ρ(0, x, y) = 1− ε2

2 tanh(y − 1/2)

u(0, x, y) = 2 sin2(πx) sin(πy) cos(πy)

v(0, x, y) = −2 sin(πx) cos(πx) sin2(y)

γ = 1.4

(39)

The boundary condition is now a no-slip boundary condition (u = 0 on ∂Ω). We
again fix the Reynolds number at Re = 100, the spatial step at ∆x = 1/64, and the
temporal step at 2.5× 10−4, and drive ε to zero. The solution at T = 0.125 using
the AP scheme is compared to a highly resolved solution in Figure 5.

Backward facing step flow
Next, we test a problem with non-zero velocity boundary conditions. We ex-

amine the case of flow over a backward facing step, as found in [26]. The com-
putational domain for this problem is Ω = [0, L] × [−0.5, 0.5]. A no-flow bound-
ary condition (u, v) · n̂ = 0 is given for the step (x = 0,−0.5 ≤ y ≤ 0) and
the top and bottom walls. The velocity in the left, inflow boundary is given by
(u, v) = (12y(1− 2y), 0) on (x = 0, 0 ≤ y ≤ 0.5) and the outflow velocity is given as
(u, v) = (−3y2 + 3/4, 0), (x = L,−0.5 ≤ y ≤ 0.5) These boundary conditions are
slowly ramped up from time 0 to time 1 by the function 1

2 (1−cos(πt)). A Neumann
boundary condition for the density (and thus the pressure) is enforced on all of the
boundaries.

In Figure 6, we compare the AP scheme solution for ε = 0.01 and a Reynolds
number of 100 with the incompressible solution computed by Liu et al in [26]. We
take ∆x = 1/16, ∆t = 9.765× 10−4 and a channel of length L = 8.

In comparing the solution in Figure 6, we see that the reattachment point of the
circulation region behind the step matches with the results found in [26].

5 Concluding remarks and future work

We proposed a new numerical method for solution of the compressible isentropic
Euler (and Navier-Stokes) equations that is stable and accurate for any Mach num-
ber. The method is based on a hyperbolic splitting that splits the compressible
Euler equations into a slowly moving nonlinear conservative hyperbolic system and
a fast moving stiff linear acoustic system. The slow part is suitable for modern
shock capturing methods, while the stiff acoustic system is solved implicitly with a
fast Poisson solver as in a typical projection type method for incompressible flows.
This scheme allows the use of time step and space mesh size independent of the
Mach number. When the Mach number goes to zero it effectively becomes a second
order projection type method for incompressible flows, a property called asymptotic-
preserving. Numerical results in one and two space dimensions demonstrate that
the scheme is adequate in both compressible and incompressible regimes, capturing
shocks with a high resolution in the compressible regime and the incompressible
features for small Mach numbers. We also showed that the scheme can offer some
speedup in some cases where the initial data that does not follow the low Mach
number limit.

In future work, we will seek to extend this approach to the full Euler (and
Navier-Stokes) equations. These equations have different structure, and developing
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Vortex in a box, Re = 100, ε = 0.1
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(a) Stream function ε = 0.1.

Vortex in a box, Re = 100, ε = 0.0001
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(b) Stream function ε = 0.0001.
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(c) u error, ε = 0.1.
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(d) u error, ε = 0.0001.
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(e) v error, ε = 0.1.
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(f) v error, ε = 0.0001.

Figure 5: Results for vortex in a box flow (39) at T = 0.125. Left column: ε = 0.1.
Right column: ε = 10−4. Top row: stream function of solution with ∆x = 1/16.
Middle row: error in u. Bottom row: error in v
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Backward−facing step, Re = 100
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Figure 6: Left: Contour plot of streamfunction for backwards step flow with ε =
0.01,∆x = 1/N = 1/16 = 0.0625,∆t = 9.765× 10−4,Re = 100, γ = 1.4, α = ε2 and
θ = 1 at T = 20. Right: Contour plot of streamfunction from [26]. The AP scheme
captures the reattachment point of the circulation region.

a similar splitting may prove to be more difficult as the incompressibility condi-
tion is enforced through the equation of state rather than the mass conservation
equation. The limiting incompressible equations for this system allow for variable
density, as opposed to constant density in the isentropic case. This could prove
to be an important development in the simulation of two-phase flows such as bub-
bles in water, mostly incompressible flows with regions of high compressibility such
as underwater explosions, or atmospheric flows. We will also look to extend this
work to adaptive time and spatial stepping to allow it to transition between com-
pressible and incompressible regimes as the situation warrants, such as cases where
the fast compressible waves leave the computational domain leaving incompressible
conditions in their wake.
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