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Abstract. In this work, the multiscale problem of modeling fluctuations in boundary layers in
stochastic elliptic partial differential equations is solved by homogenization. Homogenized equations
for the covariance and variance of the solution of stochastic elliptic PDEs are derived. In addition
to the homogenized equations, a scaling law for the covariance and variance as the cell size tends to
zero is given. For the homogenized problems, existence and uniqueness results and a priori bounds
are given and further properties are proven. The multiscale problem stems from the modeling of the
electrostatics in nanoscale field-effect sensors, where the fluctuations arise from randomly distributed
charge concentrations in the cells of a boundary layer. Finally, numerical results and a spectral
approximation are presented.
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1. Introduction. The motivation for the present study of stochastic elliptic
pde stems from the desire to model field-effect nano-sensors and hence to understand
their physics. Elliptic equations, such as the Poisson equation and the linearized
Poisson-Boltzmann equation, are the basic equations for their electrostatics, and the
stochastic equations considered here make it possible to study fluctuations and noise
in nanostructures. Furthermore, a multiscale problem is inherent in these nanoscale
structures and it is solved by homogenization.

First, we introduce the physical problem. Recently, nanoscale field-effect biosen-
sors [19–21, 24] and gas sensors [16, 22] have been demonstrated experimentally. A
schematic diagram of such a sensor structure is shown in Fig. 1. The length scale of
the biomolecules is in the Angstrom or nanometer range, whereas the length of the
nanowire is in the micrometer range. This gives rise to a multiscale problem, since it
is not possible to resolve both the boundary layer and the whole simulation domain
using a single numerical grid.

This simulation problem also gives rise to a stochastic problem, since binding and
unbinding events (in the case of biosensors) or chemical reactions (in the case of gas
sensors) occur in the boundary layer. Additionally, the movement of the molecules
in the boundary layer can be modeled by calculating their electrostatic free energy
and by using a Boltzmann distribution [11]. These effects imply that the charge
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Fig. 1. Schematic diagram of a typical structure considered in this work. A nanowire field-
effect sensor consists of a semiconductor nanowire with two contacts at the left and at the right,
a boundary layer split into cells containing random charge distributions due to biomolecules or gas
molecules, and a bulk liquid or atmosphere. Here the r- and z-axes of a cylindrical coordinate system
are shown. In a DNA sensor, shown here, the immobilized probe molecules are single-stranded DNA
and the target molecules are the complementary strands. After hybridization of the two strands at
the sensor surface to form double-stranded DNA, the charge distribution in the biofunctionalized
boundary layer is changed and hence it modulates the conductance of the semiconductor transducer.
The conductance is measured between the two contacts on the left and on the right.

concentration in the boundary layer should be modeled by a random variable.
In previous work, we used deterministic pde models and solved the multiscale

problem for the deterministic Poisson equation −∇ · (A∇uε) = ρε in [12]. There,
homogenization made it possible to replace the fast varying charge concentration ρε
in the boundary layer by two interface conditions for the electrostatic potential and
field. The interface conditions are essentially determined by the surface charge density
and the dipole moment density of the boundary layer. Of course the homogenization
problem −∇ · (Aε∇uε) = ρ can be treated by the method of two-scale convergence
resulting in a homogenized equation and a cell problem [1,18].

In this work, we consider the stochastic Poisson equation

−∇ ·
(
A(x)∇uε(x, ω)

)
= ρ(x,

x

ε
, ω)

and generalizations thereof [4,15,17]. Here ω is a random variable and ε� 1 is ratio
of the size of a cell in the boundary layer to the size of the simulation domain. The
ultimate goal, when the model equation is a stochastic pde, is to calculate the ratio

Eu√
σ2u

,

where u is the solution of the stochastic pde and E and σ2 are the expectation and
variance operators with respect to ω. Hence this ratio of expectation and standard
deviation is a dimensionless quantity and it is often called the signal-to-noise ratio.
In engineering applications such as, e.g., field-effect sensors, the stochastic pde is
the stochastic linearized Poisson-Boltzmann equation and the signal-to-noise is to be
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maximized. The results in §3 show that it is straightforward to find a deterministic
pde for the expectation Eu.

The main result of this work given in §4 is a deterministic equation for the covari-
ance of u after homogenization. This equation immediately yields a way to calculate
the variance and hence the signal-to-noise ratio. As a corollary, we also obtain a
scaling law for the variance and the covariance as ε → 0+. The scaling law has
implications for the design of field-effects sensors, since it allows to calculate noise
levels.

Based on these results, an approximation of the variance and covariance of the
solution is derived in §5 based on a spectral expansion [2]. The quality of the ap-
proximation is investigated in the leading example of the Laplace operator and an
improvement is proposed.

This paper is organized as follows. In §2, the general operator for stochastic
Poisson-type equations is introduced. In §3, a result for the expectation of weak
solutions is given. In §4, the homogenization problem is defined and solved. The main
result is the limiting equation for the covariance after homogenization; corollaries are
given and some important properties of the limiting equations are shown. In §5, a
spectral approximation for the covariance is given. Then, in §6, numerical results are
presented and the spectral approximation in investigated. Finally, §7 concludes the
paper.

2. The model equations. We consider linear stochastic pde of the form

Lu(x, ω) = ρ(x, ω) (1)

on a domain U ⊂ Rd, where x is the spatial variable, ω is a random variable defined
on the probability space (Ω,Σ, P ), ρ is a given function, u is the unknown, and L
is a linear differential operator with respect to x. An important special case is the
Poisson-Boltzmann equation

−∇ ·
(
A(x)∇u(x)

)
= ρf (x) + ρm(x), (2a)

ρm(x) :=
∑
j∈I

zjcj(x)q exp
(
−zjq(u(x)− φF )/(kBT )

)
, (2b)

where A is the permittivity, u is the electrostatic potential, ρf is the concentration of
fixed charges, and ρm is the concentration of mobile charges according to a Boltzmann
distribution. I is the set of charge species (ions in liquids or electrons and holes in
semiconductors), zj ∈ Z is the valence of species j, cj is the bulk concentration
of species j, q is the elementary (proton) charge, φF is the Fermi level, kB is the
Boltzmann constant, and T is the temperature. Here the bulk concentration depends
on the position x meaning that only certain sub-domains are accessible by the mobile
charges. For physical systems like 1:1 electrolytes and positive and negative charge
carriers in semiconductors, we set I := {−1,+1} and zj := j and we assume c−1(x) =
c1(x) =: c(x). This yields

ρm(x) =
∑

k∈{−1,+1}

kc(x)q exp
(
−kq(u(x)− φF )/(kBT )

)
. (3)

It is well-known that the following result holds for the semilinear Poisson-Boltzmann
equation (2).
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Proposition 1 (Poisson-Boltzmann equation). Suppose that the domain U ⊂ Rd
is open and bounded, that A is uniformly elliptic, that c ∈ R+, that φF ∈ R, and that
ρf ∈ L∞(U). Then the boundary-value problem

−∇ · (A∇u) + c(e(u−φF )/(kBT ) − e−(u−φF )/(kBT ))− ρf = 0 in U,
u = uD on ∂UD,

∂u/∂n = 0 on ∂UN

has a unique solution u ∈ H1(U) ∩ L∞(U). Furthermore, the estimate

min
(

inf
∂UD

uD, φF + kBT sinh−1
( infU ρf

2c

))
≤ u(x) ≤ max

(
sup
∂UD

uD, φF + kBT sinh−1
( supU ρf

2c

))
holds for all x ∈ U .

The Poisson-Boltzmann equation for arbitrary Fermi levels can be linearized as
follows. Taylor expansion of (3) in φ around φ0 yields

ρm(x) = α(x)− γ(x)u(x) +O(u(x)2)

with

α(x) := 2c(x)q sinh
q(φF − φ0)

kBT
+

2c(x)q2φ0

kBT
cosh

q(φF − φ0)

kBT
, (4a)

γ(x) :=
2c(x)q2

kBT
cosh

q(φF − φ0)

kBT
. (4b)

The advantage of this general form is that the expansion point φ0 is not necessarily
equal to the Fermi level φF [11]. Now the choice

Lu(x, ω) := −∇ ·
(
A(x)∇u(x, ω)

)
+ γ(x)u(x, ω), (5a)

ρ(x, ω) := ρf (x, ω) + α(x) (5b)

corresponds to the stochastic linearized Poisson-Boltzmann equation

−∇ ·
(
A(x)∇u(x, ω)

)
+ γ(x)u(x, ω) = ρ(x, ω) in U × Ω, (6a)

u(x, ω) = 0 on ∂U × Ω (6b)

for arbitrary Fermi levels. Much of the following pertains to general linear stochastic
pdes of the form (1), while the leading application is equation (6). Whenever further
assumptions on the operator L are necessary, they include the physical situation of (4)
and (6).

A variational form of (6) is to find u ∈ H := H1
0 (U ×Ω), H being a Hilbert space,

so that a(u, v) = 〈ρ, v〉 for all v ∈ H, where a is the bilinear form

a(u, v) :=

∫
Ω

∫
U

A(x)∇u(x, ω) · ∇v(x, ω) + γ(x)u(x, ω)v(x, ω)dxdP (ω)

and ρ ∈ H−1. Using this weak formulation, it is straightforward to obtain the follow-
ing result.
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Proposition 2. Suppose U is an open and bounded subset of Rd and (Ω,Σ, P )
is a probability space with bounded Ω. Suppose further that A ∈ L∞(U,Rd×d) is
uniformly elliptic and that γ ∈ L∞(U) is nonnegative. Then the boundary-value
problem (6) has a unique weak solution u ∈ H and it depends continuously on ρ ∈
H−1.

Proof. Based on the assumptions, the bilinear form a(u, v) is coercive and bounded
uniformly with respect to ω almost everywhere on U × Ω. Thus the existence and
uniqueness of the weak solution u of (6) in H follows from the Lax-Milgram theorem
and its continuous dependence on the data follows from usual estimate for ‖u‖H .

This weak formulation is an extension of the theory of deterministic elliptic equa-
tions to random fields with finite variance [3–6, 8, 14, 23]. Different choices for the
Hilbert space H are possible and other theories for stochastic elliptic equations have
been developed. There are also different (modeling) choices for the definition of the
multiplication of random fields such as the Wick product [13].

In the following, we consider only operators L that do not depend on the random
variable ω, i.e., A depends only on position. Regarding the physics of the problem,
this means for Poisson-type equations that random fluctuations in the permittivity A
are negligible compared to the random fluctuations in the charge distribution ρ.

3. Calculation of the expectation. We denote the expectation operator with
respect to ω by E and are interested in finding an equation for the expectation Eu of
the solution u of (1). Since the expectation operator E is linear, it formally commutes
with the linear differential operator L, i.e., ELu = LEu holds on U×Ω, and therefore
the expectation Eu is the solution of the equation

L(Eu) = Eρ on U.

It has the same form as the original equation (1) and the expectation Eρ is known.
Thus the calculation of the expectation requires the same computational effort as
solving the associated deterministic equation.

In the proposition below, the formal calculation is verified for the linearized
Poisson-Boltzmann equation.

Lemma 3. Suppose U ⊂ Rd, U is open, ω is a random variable on the probability
space (Ω,Σ, P ), L =

∑
|α|≤n aα∂

α is a differential operator, and u : U × Ω → R is
measurable. Suppose further that∫

U

∫
Ω

|u(x, ω)|dP (ω)dx <∞ or
∫

Ω

∫
U

|u(x, ω)|dxdP (ω) <∞.

Then

LEu(x, ω) = ELu(x, ω)

holds on U .
Proof. It suffices to show that

∂α
∫

Ω

u(x, ω)dP (ω) =

∫
Ω

∂αu(x, ω)dP (ω).

By the definition of the weak derivative, this is equivalent to∫
U

∫
Ω

u(x, ω)dP (ω)∂αφdx = (−1)|α|
∫
U

∫
Ω

∂αu(x, ω)dP (ω)φdx ∀φ ∈ C∞c (U),



6 C. HEITZINGER AND C. RINGHOFER

which holds due to

(−1)|α|
∫
U

∫
Ω

∂αu(x, ω)dP (ω)φdx = (−1)2|α|
∫
U

∫
Ω

u(x, ω)∂αφdP (ω)dx

after using Fubini’s theorem and partial integration. Fubini’s theorem can be applied
because of the assumption, because the Lebesgue measure is σ-finite, and because
every probability measure is σ-finite.

Proposition 4. Suppose u ∈ H1
0 (U × Ω) is the weak solution of the linearized

Poisson-Boltzmann equation from Proposition 2. Then the expectation Eu is the
unique weak solution of the deterministic boundary-value problem

L(Eu) = Eρ,

Eu = 0 on ∂U.

Proof. Using the Cauchy-Schwarz inequality, we find∫
Ω

∫
U

|u(x, ω)|dxdP (ω) ≤ C‖u‖L2(U×Ω) <∞,

since u ∈ L2(U × Ω) and U and Ω are bounded. Therefore Lemma 3 can be applied.

4. The multiscale problem and homogenization. The multiscale problem
and the boundary layer are described first. Then the main result is derived by giv-
ing a homogenization procedure. The resulting limiting equations are investigated
regarding their main properties.

4.1. The boundary layer and its fine structure. We choose a Cartesian
coordinate system with coordinates x = (x1, x2, x3) and the simulation domain U is
the bounded and open subset U := (−L1, L1) × (0, L2) × (0, L3) ⊂ R3 (cf. Fig. 1).
The boundary layer is located on the positive side of the plane x1 = 0 so that x1

is the direction normal to the surface and x2 and x3 are parallel to the surface.
The boundary layer at x1 ≥ 0 is characterized by the charge concentrations ρ(x, ω)
which exhibits a randomized and fast varying spatial structure. Since the fine spatial
structure cannot be resolved due to computational restraints – especially in view of
the stochastic nature of the problem –, the goal is to replace the original problem (6)
by a homogenized problem.

We proceed by dividing the two-dimensional interface at x1 = 0 into periodically
repeated two-dimensional cells Ck by defining

Ck := C(k2,k3) := [εk2, ε(k2 + 1))× [εk3, ε(k3 + 1))

for k = (k2, k3) ∈ Z × Z. The cells Ck are of size ε2 so that they cover the whole
interface, i.e.,

[0, L2)× [0, L3) ⊂
⋃

1≤k2≤K2
1≤k3≤K3

Ck

holds with K2 := dL2/εe and K3 := dL3/εe. We use multi-indices k = (k2, k3) with
k2 ∈ {0, . . . ,K2 − 1} and k3 ∈ {0, . . . ,K3 − 1} for the cells Ck, and we denote the
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total number of cells in the boundary layer by K := K2K3 and the index set of the
cell indices by K := {(0, 0), . . . , (K2 − 1,K3 − 1)} so that |K| = K.

Three-dimensional cells are denoted by [0, L1] × Ck. The positive real number
ε � 1 denotes the ratio of the cell size to the whole simulation domain U . We
use a homogenization ansatz where we scale the boundary layer by introducing fast
variables. We stretch the x1-, x2-, and x3-coordinates at the interface x1 = 0 by a
factor of 1/ε and hence obtain the fast variables x1/ε, x2/ε, and x3/ε in contrast to
the slow variables x1, x2, and x3. The idea of the multiscale ansatz is to write the
function ρ(x1, x2, x3) as a function ρ̂ of both the fast and the slow variables, i.e.,

ρ(x1, x2, x3) = ρ̂
(x1

ε
,
x2

ε
,
x3

ε
, x2, x3

)
. (7)

The dependence on x2 and x3 includes slow variations in ρ̂ in the boundary layer.
The function ρ̂(x1/ε, x2/ε, x3/ε, x2, x3) is quasi-periodic: it is 1-periodic in the second
argument x2/ε and in the third argument x3/ε, i.e.,

ρ̂
(x1

ε
,
x2

ε
,
x3

ε
, x2, x3

)
= ρ̂

(x1

ε
,
x2

ε
+ k2,

x3

ε
+ k3, x2, x3

)
holds for all integers k2 and k3. This is consistent with the definition of the cells Ck.
Furthermore ρ̂ decays to zero sufficiently fast as x1 → ∞, i.e., the charges in the
boundary layer are concentrated close to the interface at x1 = 0. These considerations
motivate the following definition.

Definition 5 (boundary-layer function). Suppose U ⊂ R3. A function ρ ∈
L2(U) is called a boundary-layer function if it can be written in the form

ρ(x1, x2, x3) = ρ̂
(x1

ε
,
x2

ε
,
x3

ε
, x2, x3

)
,

where ρ̂ is 1-periodic in its second and third arguments and limx1→∞ ρ(x1, x2, x3) = 0
holds.

We now describe the charge concentration ρ(x, ω) in the boundary layer more pre-
cisely in terms of the random variable. For each cell Ck, there is a random variable ωk
so that the charge concentration ρk of cell Ck depends on ωk. In reality, the different
states of the random variable ωk correspond to the presence of different molecules and
to different orientations thereof the boundary layer. We define the random variable

ω := (ω1, . . . , ωK)

that includes the states of all cells in the boundary layer. Using these definitions, we
write the charge concentration ρ of the whole boundary layer as

ρ(x, ω) =
∑
k∈K

χk(x)ρk(x, ωk),

where χk(x) = χk(x2, x3) is the characteristic function of the cell Ck, i.e., it equals 1
if (x2, x3) ∈ Ck and 0 otherwise.

4.2. Homogenization and the theorem for the limiting equation. We
start the homogenization procedure with some definitions.

Definition 6 (centered random variable). Let X be a random variable. Then
X̃ := X − EX is called the corresponding centered random variable.
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Definition 7 (joint moment). Suppose α is a multi-index of dimension J :=
dimα. The joint moment Mα of the J random variables Xj is defined as

Mα(X1, . . . , XJ) := E

( J∏
j=1

(Xj − EXj)
αj

)
.

To simplify the calculations, we will use the centered potential ũ and the centered
charge concentrations ρ̃k and ρ̃. For the centered quantities, the identities Eũ = 0,
Eρ̃ = 0, Eρ̃k = 0, and

ρ̃(x, ω) =
∑
k∈K

χk(x)ρ̃k(x, ωk) (8)

hold and we immediately find

Lũ = ρ̃. (9)

The covariance of two random variables X1 and X2 is defined as cov(X1, X2) :=
M(1,1)(X1, X2). To simplify notation, we write

(cov u)(x, y) := cov
(
u(x, .), u(y, .)

)
for the covariance of u evaluated at x and y ∈ U , and we denote the variance of u
calculated at x ∈ U by

(σ2u)(x) := (cov u)(x, x).

Of course the equations cov u = cov ũ and σ2u = σ2ũ holds for the centered covariance
and variance.

Suppose that G is a Green’s function of L on U , i.e.,

LG(x, y) = δ(x− y) ∀x, y ∈ U

holds. Note that L and therefore G are independent of ε. Using the Green’s func-
tion G, the solution ũ of (9) is given by

ũ(x, ω) =

∫
U

G(x, y)ρ̃(y, ω)dy.

To calculate the joint moments of Xj := ũ(xj , ω), we first write the integrand as

J∏
j=1

ũ(xj , ω)αj =

∫
U |α|

J∏
j=1

αj∏
ν=1

(
G(xj , ξjν)ρ̃(ξjν , ω)

)
dξ11 . . . ξ1α1

. . . ξJ1 . . . ξJαJ ,

where |α| =
∑J
j=1 αj , and use (8) to find

Mα

(
ũ(xj , ω)

)
=

∫
Ω

J∏
j=1

ũ(xj , ω)αjdP (ω)

=

∫
Ω

∫
U |α|

J∏
j=1

αj∏
ν=1

(
G(xj , ξjν)

∑
kjν∈K

χkjν (ξjν)ρ̃kjν (ξjν , ωkjν )
)
dξ11 . . . ξJαJdP (ω).
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We denote the characteristic function of the interval [0, 1) by χ and hence we have

χk(x) = χ(k2,k3)(x2, x3) = χ
(x2

ε
− k2

)
χ
(x3

ε
− k3

)
for the characteristic function χk of cell Ck. Now the moment Mα is given by

Mα

(
ũ(xj , ω)

)
=

∫
Ω

∫
U |α|

( J∏
j=1

αj∏
ν=1

G(xj , ξjν)

)
·

·
∑
k11∈K

. . .
∑

kJαJ∈K

χk11(ξ11) · · ·χkJαJ (ξJαJ )ρ̃k11(ξ11, ωk11) · · · ρ̃kJαJ (ξJαJ , ωkJαJ )

dξ11 . . . ξJαJdP (ω)

=
∑
k11∈K

. . .
∑

kJαJ∈K

∫
Ω

∫ ∞
0

∫ ε(k11,2+1)

εk11,2

∫ ε(k11,3+1)

εk11,3

. . .

. . .

∫ ∞
0

∫ ε(kJαJ ,2+1)

εkJαJ ,2

∫ ε(kJαJ ,3+1)

εkJαJ ,3( J∏
j=1

αj∏
ν=1

G(xj , ξjν)

)
ρ̃k11(ξ11, ωk11) · · · ρ̃kJαJ (ξJαJ , ωkJαJ )

dξJαJ ,3ξJαJ ,2ξJαJ ,1 . . . ξ11,3ξ11,2ξ11,1dP (ω).

We use the multiscale ansatz for the boundary-layer function ρ̃k so that

ρ̃k(x, ωk) = ˆ̃ρk

(x1

ε
,
x2

ε
− k2,

x3

ε
− k3, ωk

)
= ˆ̃ρ
(x1

ε
,
x2

ε
− k2,

x3

ε
− k3, εk2, εk3, ωk

)
.

The function ˆ̃ρk depends on the cell index k, whereas ˆ̃ρ depends on the slow vari-
ables x2 = εk2 and x3 = εk3 instead of the cell index. To simplify notation, we write
ρ̃k again for ˆ̃ρk.

For the moment Mα, this yields

Mα

(
ũ(xj , ω)

)
=
∑
k11∈K

. . .
∑

kJαJ∈K

∫
Ω

∫ ∞
0

∫ ε(k11,2+1)

εk11,2

∫ ε(k11,3+1)

εk11,3

. . .

. . .

∫ ∞
0

∫ ε(kJαJ ,2+1)

εkJαJ ,2

∫ ε(kJαJ ,3+1)

εkJαJ ,3

( J∏
j=1

αj∏
ν=1

G(xj , ξjν)

)
·

·ρ̃k11
(ξ11,1

ε
,
ξ11,2

ε
−k2,

ξ11,3

ε
−k3, ωk11

)
· · · ρ̃kJαJ

(ξJαJ ,1
ε

,
ξJαJ ,2
ε
−k2,

ξJαJ ,3
ε
−k3, ωkJαJ

)
dξJαJ ,3ξJαJ ,2ξJαJ ,1 . . . ξ11,3ξ11,2ξ11,1dP (ω).

After substituting

ξ̄jν,1 :=
1

ε
ξjν,1,

ξ̄jν,2 :=
1

ε
ξjν,2 − kjν,2,

ξ̄jν,3 :=
1

ε
ξjν,3 − kjν,3
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and renaming, we find

Mα

(
ũ(xj , ω)

)
= ε3|α|

∑
k11∈K

. . .
∑

kJαJ∈K

∫
Ω

∫ ∞
0

∫ 1

0

∫ 1

0

. . .

∫ ∞
0

∫ 1

0

∫ 1

0( J∏
j=1

αj∏
ν=1

G
(
xj , (εξjν,1, ε(ξjν,2 + kjν,2), ε(ξjν,3 + kjν,3))

))
·

· ρ̃k11(ξ11, ωk11) · · · ρ̃kJαJ (ξJαJ , ωkJαJ )

dξJαJ ,3ξJαJ ,2ξJαJ ,1 . . . ξ11,3ξ11,2ξ11,1dP (ω).

The product involving the Green’s function G on the right-hand side can be simplified
by noting that L and hence G do not depend on ε (apart from the arguments above)
and by supposing that G is smooth enough, which is the case at least when L is a
Laplace-type operator. Since ξjν,i ∈ [0, 1], εξjν,i = O(ε) holds for all i ∈ {1, . . . , d}.
Furthermore, kjν,i = O(1/ε) holds for i ∈ {2, 3} by the definition of Ki and therefore
εkjν,i = O(1). Hence Taylor expansion of the Green’s function G yields

G
(
xj , (εξjν,1, ε(ξjν,2 + kjν,2), ε(ξjν,3 + kjν,3))

)
= G

(
xj , (0, εkjν,2, εkjν,3)

)
+ εξjν · ∇2G

(
xj , (0, εkjν,2, εkjν,3)

)
+O(ε2).

After dropping terms of order ε and higher, we therefore obtain

Mα

(
ũ(xj , ω)

)
= ε3|α|

∑
k11∈K

. . .
∑

kJαJ∈K

∫
Ω

∫ ∞
0

∫ 1

0

∫ 1

0

. . .

∫ ∞
0

∫ 1

0

∫ 1

0( J∏
j=1

αj∏
ν=1

G
(
xj , (0, εkjν,2, εkjν,3)

))
ρ̃k11(ξ11, ωk11) · · · ρ̃kJαJ (ξJαJ , ωkJαJ )

dξJαJ ,3ξJαJ ,2ξJαJ ,1 . . . ξ11,3ξ11,2ξ11,1dP (ω)

and further

Mα

(
ũ(xj , ω)

)
= ε3|α|

∑
k11∈K

. . .
∑

kJαJ∈K

J∏
j=1

αj∏
ν=1

G
(
xj , (0, εkjν,2, εkjν,3)

)
·

·
∫ ∞

0

∫ 1

0

∫ 1

0

. . .

∫ ∞
0

∫ 1

0

∫ 1

0

Mα(ρ̃k11 , . . . , ρ̃kJαJ )dξJαJ . . . ξ11.

This is a general representation of the joint momentMα(ũ(xj , ω)) of ũ(xj , ω) in terms
of the joint moment Mα(ρ̃kjν ) of the data ρ.

To obtain specific results for the covarianceM(1,1) and then for the varianceM(2),
we assume that the molecules in each cell do not affect the molecules in the other cells.
This assumption is satisfied in realistic structures, since their distance is large enough
to ensure full electrostatic screening, and it is well supported by our Monte-Carlo
simulations of screening [7]. Thus we assume that ρ̃k and ρ̃` are independent for
k 6= ` and hence uncorrelated. This means

k 6= ` =⇒ cov
(
ρ̃k(y, .), ρ̃`(z, .)

)
= 0 ∀y, z ∈ U, ∀k, ` ∈ K,
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which implies∫
Ω

ρ̃k(y, ωk)ρ̃`(z, ω`)dP (ω) = δk`

∫
Ω

ρ̃k(y, ωk)ρ̃k(z, ωk)dP (ω) ∀y, z ∈ U,

where δk` is the Kronecker delta. Using this last equation and the definition

R(k, ωk) :=

∫ ∞
0

∫ 1

0

∫ 1

0

ρ̃k(x1, x2, x3, ωk)dx3x2x1, (10)

the covariance simplifies to

(cov u)(y, z) = M(1,1)

(
ũ(y, ω), ũ(z, ω)

)
= ε6

∑
k∈K

∑
`∈K

G
(
y, (0, εk2, εk3)

)
G
(
z, (0, ε`2, ε`3)

)
·

·
∫ ∞

0

∫ 1

0

∫ 1

0

∫ ∞
0

∫ 1

0

∫ 1

0

∫
Ω

ρ̃k(y, ωk)ρ̃`(z, ω`)dP (ω)dz3z2z1y3y2y1

= ε6
∑
k∈K

G
(
y, (0, εk2, εk3)

)
G
(
z, (0, εk2, εk3)

)
·

·
∫ ∞

0

∫ 1

0

∫ 1

0

∫ ∞
0

∫ 1

0

∫ 1

0

∫
Ω

ρ̃k(y, ωk)ρ̃k(z, ωk)dP (ω)dz3z2z1y3y2y1

= ε6
∑
k∈K

G
(
y, (0, εk2, εk3)

)
G
(
z, (0, εk2, εk3)

) ∫
Ω

R(k, ωk)2dP (ωk).

We define

R̄(εk2, εk3) :=

(∫
Ω

R(k, ωk)2dP (ωk)

)1/2

(11)

and convert the Riemann sum over k2 and k3 into a two-dimensional integral over y2

and y3 to find

(cov u)(y, z) ≈ ε4
∫ L3

0

∫ L2

0

G
(
y, (0, x2, x3)

)
G
(
z, (0, x2, x3)

)
R̄(x2, x3)2dx2x3. (12)

Here R̄ is evaluated at the point (x2, x3) that lies in cell k = (k2, k3) determined by
the equations x2 = εk2 and x3 = εk3.

Finally, we apply Ly, i.e., the operator L with derivatives with respect to y, to
find

Ly(cov u)(y, z)

= ε4
∫ L3

0

∫ L2

0

δ(y1, y2 − x2, y3 − x3)G
(
z, (0, x2, x3)

)
R̄(x2, x3)2dx2x3,

and we apply Lz, the operator with respect to z, to find

LzLy(cov u)(y, z)

= ε4
∫ L3

0

∫ L2

0

δ(y1, y2 − x2, y3 − x3)δ(z1, z2 − x2, z3 − x3)R̄(x2, x3)2dx2x3

= ε4δ(y1, z1, y2 − z2, y3 − z3)R̄(y2, y3)2.
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In summary, we have (formally) proved the following result.
Theorem 8 (limiting problem for the covariance). Let ρk be boundary-layer

functions on U and L be a differential operator independent of ε with a smooth Green’s
function G. Then the limiting problem for ε → 0+ for the covariance cov u of the
solution u of the boundary-value problem

Lu(x, ω) = ρ(x, ω)

is the boundary-value problem

LzLy(cov u)(y, z) = ε4δ(y1, z1, y2 − z2, y3 − z3)R̄(y2, y3)2, (13)

where R̄ is given by (11) and (10).
Note that due to the delta distributions on the right-hand side, the equation is

symmetric in y and z.
Corollary 9 (limiting problem for the variance). Under the assumptions of

Theorem 8, the limiting problem for ε→ 0+ for the variance σ2u of the solution u of
the boundary-value problem Lu(x, ω) = ρ(x, ω) is the boundary-value problem

L2
x(σ2u)(x) = ε4δ(x1)R̄(x2, x3)2.

Note that due to the factors δ(y1, z1) and δ(x1) on the right-hand sides, the
covariance and the variance are concentrated at the interface x1 = 0. Regarding the
physics of the problem, R can be interpreted as the surface charge density of the
boundary layer as a function of the slow variables for a given value of ωk. Then R̄2 is
the variance (with respect to the random variable ωk) of the surface charge density R.

Equation (12) in the proof yields the following scaling law.
Corollary 10 (scaling law for the variance and covariance). Under the assump-

tions of Theorem 8, the variance σ2ũ = σ2u and the covariance cov ũ = cov u scale
like ε4 as ε→ 0.

4.3. Existence, uniqueness, and further properties. Having found the lim-
iting problems, the properties of their solutions are investigated here. It is expected
that their solutions, being interpreted as covariances or variances, are unique. A prior
bounds are also given. Furthermore, it is expected that the variance is nonnegative
and the covariance is symmetric.

We start by showing the existence and uniqueness of the solution of the limiting
equation for the variance given in Corollary 9. Suppose that L is an elliptic operator
in divergence form, i.e.,

Lu := −∇ · (A∇u) + b · ∇u+ cu.

This form includes, of course, the linearized Poisson-Boltzmann equation, i.e., the
case where L is given by (5a) and (4). Because of Corollary 9, we consider equations
of the form L2u = f such that the unknown u is the variance. Partial integration
yields that ∫

U

(L2u)vdx = a2(u, v)

holds for all u, v ∈ H2
0 (U) := {w ∈ H2(U) | w = 0 = (A>∇w) · n on ∂U}, where we

have defined the bilinear form a2 as

a2(u, v) :=

∫
U

(Lu)(L∗v)dx
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and

L∗v = −∇ · (A>∇v)−∇ · (bv) + cv

is the adjoint of L. Hence the weak formulation of L2u = f is to find u ∈ H2
0 (U) so

that

a2(u, v) = 〈f, v〉 ∀v ∈ H2
0 (U),

where f ∈ H−2(U).
To show that the bilinear form a2 is coercive, we will need the following lemma.
Lemma 11. Suppose U is a bounded, open subset of Rd with a C2 boundary and

suppose that

Lu := −∇ · (A∇u) + b · ∇u+ cu

is a differential operator, where A ∈ C1(Ū ,Rd×d) is uniformly elliptic with ellipticity
constant θ, b ∈ L∞(U,Rd), and c ∈ L∞(U,R). Suppose further that b = 0 and c ≥ 0
for all x ∈ U or that ‖b‖2L∞ ≤ 4θ infx∈U c holds. Then

u 7→ ‖u‖H2(U) and u 7→ ‖Lu‖L2(U)

are equivalent norms on H2(U) ∩H1
0 (U).

For completeness, the proof is given in Appendix A.
Proposition 12. Suppose U is a bounded, open subset of Rd with a C2 boundary

and suppose that

Lu := −∇ · (A∇u) + cu

is a differential operator, where A ∈ C1(Ū ,Rd×d) is symmetric and uniformly elliptic
and c ∈ L∞(U,R) is nonnegative for all x ∈ U . Then the boundary-value problem

L2u = f in U,
u = 0 on ∂U,

∂u

∂n
= 0 on ∂U

has a unique weak solution u ∈ H2
0 (U) and there is a constant C such that the estimate

‖u‖H2(U) ≤ C‖f‖H−2(U)

holds.
Proof. The operator L is self-adjoint due to A = A>. First, we show that a2 is

continuous, i.e., there is a constant C so that |a2(u, v)| ≤ C‖u‖H2(U)‖v‖H2(U). The
corresponding estimate

|a2(u, v)| =
∣∣∣∣∫
U

(Lu)(L∗v)dx

∣∣∣∣ ≤ ∫
U

|Lu||Lv|dx

≤ ‖Lu‖L2(U)‖Lv‖L2(U) ≤ C‖u‖H2(U)‖v‖H2(U)

follows from the Cauchy-Schwarz inequality and Lemma 11.
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Second, we show that a2 is coercive. Since L is self-adjoint, we find

a2(u, u) =

∫
U

(Lu)(L∗u)dx =

∫
U

(Lu)2dx = ‖Lu‖2L2(U) ≥ C‖u‖
2
H2(U)

due to Lemma 11.
Using the Lax-Milgram theorem now yields the existence and uniqueness of the

solution as well as the estimate.
This proposition implies that the limiting problem for the variance given in Corol-

lary 9 has a unique solution σ2u. Since the solution σ2u is interpreted as a variance,
the question arises if we can show that the solution of the limiting problem is always
nonnegative. Under an additional assumption motivated by the physics of the prob-
lem, a positive answer is given by the following proposition. This assumption is that
far enough away from the finite support of ρ(x, ω), the variance σ2u and its derivatives
vanish since there is no uncertainty, i.e., L(σ2u) vanishes.

Proposition 13. Suppose that v := σ2u ∈ H2
0 (U) is the unique solution of the

limiting problem as in Corollary 9 and Proposition 12. Suppose further that Lv ≥ 0
on ∂U . Then v ≥ 0 in Ū .

Proof. We apply the weak maximum principle for elliptic equations to the limiting
problem

L2v = Lw = ε4δ(x1)R̄(x2, x3)2 ≥ 0,

where w := Lv, to conclude that w ≥ 0 in Ū due to w ≥ 0 on ∂U . Since Lv ≥ 0 and
v = 0 on ∂U , we use the maximum principle again to conclude that v ≥ 0 as claimed.

Since the covariance is by definition symmetric in its two arguments, it is expected
that symmetry is preserved by homogenization, i.e., that the solution cov u of the
homogenized equation (13) in Theorem 8 is symmetric in y and z. This is indeed the
case due to the following proposition. For notational simplicity we write u for cov u.

Proposition 14. Suppose that the boundary conditions of the boundary-value
problem LzLyu(y, z) = f(y, z) and the right-hand side f are symmetric in y and z
and that u is a weak solution of this problem. Then u is symmetric a.e.

Proof. We denote the symmetric part of u(y, z) by v(y, z) :=
(
u(y, z) +u(z, y)

)
/2

and its antisymmetric part by w(y, z) :=
(
u(y, z)− u(z, y)

)
/2. The weak formulation

of the problem is ∫∫
Lyu(y, z)L∗zφ(y, z)− f(y, z)φ(y, z)dyz = 0 (14)

for all test functions φ. Interchanging y and z yields∫∫
Lzu(z, y)L∗yφ(z, y)− f(z, y)φ(z, y)dyz = 0

and swapping Ly and Lz using their adjoints, using the symmetry of f , and replacing
φ(z, y) by φ(y, z) (since the equation holds for all test functions) yields∫∫

Lyu(z, y)L∗zφ(y, z)− f(y, z)φ(y, z)dyz = 0. (15)

Finally subtracting (15) from (14) yields
∫∫

Lyw(y, z)L∗zφ(y, z)dyz = 0 and hence∫∫
w(y, z)L∗yL

∗
zφ(y, z)dyz = 0
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holds for all test functions φ. Therefore the antisymmetric part w vanishes a.e.
Proposition 15. Suppose that U ⊂ Rd is a bounded domain and that ∂U is C2,

suppose that f ∈ L2(U × U), and suppose that Lx = −∇x · (A(x)∇x) is an elliptic
operator with aij ∈ C1(Ū) and that A is uniformly elliptic with constant α. Then the
boundary-value problem

LzLyu(y, z) = f(y, z)

on D × D with homogeneous Dirichlet boundary conditions has a unique solution
u ∈ H1(U × U) and the estimate

‖u‖H1(U×U) ≤
√

2

α2
‖f‖L2(U×U)

holds.
Proof. We use the Lax-Milgram theorem twice. First, we consider the boundary-

value problem Lzw(y, z) = f(y, z) for all y ∈ U . It has a unique solution w(y, .) ∈
H2(U) for all y ∈ U , since f ∈ L2(U × U), and the inequality ‖w‖L2(U×U) ≤
α−1‖f‖L2(U×U) follows immediately.

Second, we consider the boundary-value problem Lyu(y, z) = w(y, z) for all z ∈
U . It has a unique solution u(., z) ∈ H2(U) for all z ∈ U and the usual estimate
‖u(., z)‖H2(U) ≤ α−1‖w(., z)‖L2(U) holds for all z ∈ U .

The problem LyLzu(y, z) = f(y, z) is equivalent to the original problem; we can
use the definition of the weak derivative and Fubini’s theorem to show that Ly and Lz
can be interchanged as in the proof of Lemma 3, since an iterated integral converges.
This yields the symmetric estimate ‖u(y, .)‖H2(U) ≤ α−1‖w(y, .)‖L2(U) for all y ∈ U .

Finally, the last two estimates yield the asserted estimate.

5. Spectral approximation of the covariance and variance. The main idea
of the spectral approximation given here is to approximate the covariance or variance
by using only the most significant of the eigenvalues and eigenfunctions of G. This
eigensystem of G can be calculated using the well-known numerical procedures from
a discretization of L.

Proposition 16. Suppose that U is an open, bounded, and connected subset of
Rd and that the differential operator L has the divergence form

Lu := −∇ · (A∇u) + cu,

where A is uniformly elliptic and symmetric and the coefficients A and c are bounded.
Then the covariance cov u in Theorem 8 is given by

(cov u)(y, z) =

∞∑
j=1

∞∑
k=1

λjλkψj(y)ψk(z)Tjk, (16)

where {λn} and {ψn} are the eigenvalues and eigenfunctions of the Green’s function
of the operator L and the coefficients Tjk are defined as

Tjk := ε4
∫ L3

0

∫ L2

0

ψj(0, η2, η3)ψk(0, η2, η3)R̄(η2, η3)2dη2η3. (17)

Accordingly, the variance σ2u is given by

(σ2u)(x) =

∞∑
j=1

∞∑
k=1

λjλkψj(x)ψk(x)Tjk. (18)



16 C. HEITZINGER AND C. RINGHOFER

Proof. Due to the assumptions, L is self-adjoint. It is well-known that it then has a
countably infinite discrete set of eigenvalues that we call {1/λn} and the corresponding
eigenfunctions {ψn} are an orthonormal basis ofH1

0 (U); the minimum eigenvalue 1/λ1

is simple and has a positive eigenfunction [10, Theorems 8.37 and 8.38].
Regarding the Green’s function G of L, the sets {λn} and {ψn} are the eigenvalues

and eigenfunctions of G, i.e.,

ψn(x) = λnLψn(x) (19)

holds. Since {ψn} is an orthonormal basis, the identity f(x) =
∑∞
n=1〈f, ψn〉ψn(x)

holds and we can apply it to f(x) := δ(x− y) to find

LG(x, y) = δ(x− y) =

∞∑
n=1

ψn(x)ψn(y)

and therefore, using (19), we have

G(x, y) =

∞∑
n=1

λnψn(x)ψn(y).

Since the {ψn} are orthonormal, the last equation yields

〈G(x, .), ψm〉 =

∫
G(x, y)ψm(y)dy = λmψm(x).

To solve equation (13) for the covariance, we consider the right-hand side

f(y, z) := ε4δ(y1, z1, y2 − z2, y3 − z3)R̄(y2, y3)2

and integrate it twice against the Green’s function G of the operators Ly and Lz to
find

(cov u)(y, z) =

∫
U

∫
U

f(η, ζ)G(y, η)G(z, ζ)dηζ

=

∫
U

∫
U

f(η, ζ)

∞∑
j=1

∞∑
k=1

λjψj(y)ψj(η)λkψk(z)ψk(ζ)dηζ

= ε4
∞∑
j=1

∞∑
k=1

λjλkψj(y)ψk(z)Tjk,

where the coefficients Tjk are defined in (17). This concludes the proof.
This proposition shows that the covariance and the variance can be approximated

efficiently by taking a finite double sum in (16) using only the largest eigenvalues λj
and λk. The details of such an algorithm are given in Appendix B. The quality of the
approximation depends on the separation of the first N eigenvalues from the rest. A
numerical example and a proposed improvement are discussed in §6.2 below.

6. Numerical verification. In order to verify the homogenization result in The-
orem 8 and the spectral approximation in Proposition 16 numerically, two numerical
calculations are presented here. Real-world calculations were presented in [11], where
the models and equations of the present work were used to calculate electrostatic
fluctuations in field-effect nanosensors.
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Fig. 2. The integral
∫
U σ

2udx of the variance as a function of the number of realizations in
the case K = 162.

6.1. Numerical verification of the scaling law. For the numerical verifica-
tion, we consider a three-dimensional example. We set U := (0, 1)3 ⊂ R3, define
L := −∆, and use an equidistant grid for the finite-difference discretization of L. For
symmetry, the boundary layer is located at x = 1/2 so that the cells are

Ck = C(k2,k3) = [εk2, ε(k2 + 1))× [εk3, ε(k3 + 1)).

The number of cells in each direction is always chosen as k2 = k3 and as a power of
two; the height of the cells is chosen as ε in accordance with the multiscale ansatz (7),
i.e., the volume of a single cell is always 1/ε3. The boundary conditions are zero
Dirichlet boundary conditions at x1 = 0 and x1 = 1 and zero Neumann boundary
conditions at x2 = 0, x2 = 1, x3 = 0, and x3 = 1.

The charge concentrations ρ(x, ω) are constant and uniformly distributed in the
interval [0, 1] in each cell of the boundary layer; outside of the boundary layer, the
charge concentration vanishes. The numerical verification for a large number of cells in
the boundary layer is hampered by the fact that the direct or Monte-Carlo calculation
of the variance requires many solutions of Lu(x, ω) = ρ(x, ω) for randomly chosen ω.
Calculations for total numbers of cells K ∈ {22, 42, 82, 162} were performed with a
grid size of 1/16 in the finite-difference approximation. To calculate the variance,
8192 realizations were used in all four cases.

To verify that the number of realizations is sufficient for the calculation of the
variance, the integral of the variance over the domain U is shown as a function of
the number of realizations in Fig. 2 for the case K = 162. Fig. 3 shows plots of the
variances for K ∈ {22, 42, 82, 162} after 8192 realizations as the cell size is halved.

The results of the numerical calculations for the parameters described above are
summarized in Table 1. As the number of cells in each direction is doubled in ev-
ery refinement step, i.e., ε is halved, the scaling factor for the variance is given by
Corollary 10 as 1/16. The numerically approximated values of 7.8, 13.3, and 14.0 in
Table 1 agree well with the theoretical value even for these small numbers of cells.
The computational requirements for larger numbers of cells would be enormous due to
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Fig. 3. The variances after 8192 realizations for the four cases K ∈ {22, 42, 82, 162}. The plots
are two-dimensional ones for z = 1/2.

the stochastic nature of the problem, which underlines the importance of Corollary 9
and the scaling law in Corollary 10.

6.2. Numerical results for the spectral approximation. We continue to
consider the Laplace operator and we define the domain to be U := (−1/2, 1/2) ×
(0, 1)2 ⊂ R3. The numerical grid is equidistant with m interior grid points and zero
Dirichlet boundary conditions on ∂U . Therefore the eigensystem of the discretization
has size m3 and the eigenvalues are given by (i2 + j2 +k2)π2 with i, j, k ∈ {1, . . . ,m}.
We denote these eigenvalues by λµ with µ ∈ {1, . . . ,m3} so that λ1 ≥ · · · ≥ λm3 . Due
to the distribution of the eigenvalues, the spectral approximation grows slowly and
usage of nearly the full spectrum in the approximation is necessary to achieve a good
approximation; this is observed in Fig. 4, where the results for m = 9 are shown.

Therefore we propose to improve the approximation by a geometric factor. In
view of (16), we define the geometric factor as

γm,N :=

(∑N
µ=1

∑N
ν=1 λ

2
µλ

2
ν∑m3

µ=1

∑m3

ν=1 λ
2
µλ

2
ν

)1/2

≈ ‖σ
2uN‖2
‖σ2u‖2

,

where σ2uN denotes the truncated double sum defined in (20b). In the double sum, the
largest N eigenvalues are used. Therefore the factor γm,N represents a correction for
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ε number of cells integral scaling factor
in boundary layer of variance for variance

1/2 K = 22
∫
σ2u = 7.0553 · 10−5

7.8
1/4 K = 42

∫
σ2u = 9.0360 · 10−6

13.3
1/8 K = 82

∫
σ2u = 6.7742 · 10−7

14.0
1/16 K = 162

∫
σ2u = 4.8414 · 10−8

Table 1
Overview of the factors in the numerical verification. The predicted scaling factor for the

variance is 16.

0 100 200 300 400 500 600 700

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Fig. 4. The spectral approximation σ2uN (0, 1/2, 1/2) (lower line) and the corrected approxi-
mation σ2uN/γm,N (0, 1/2, 1/2) (upper line) as a function of N for the case m = 9.

the L2-norm of the variance taking into account the (in this case) known distribution of
the eigenvalues. The improvement is shown in Fig. 4, where σ2uN and σ2uN/γm,N at
the middle point of the domain are shown as functions of N , the number of eigenvalues
used in the approximation.

7. Conclusion. In this work we treated the homogenization of boundary layers
in stochastic elliptic partial differential equations. The results are limiting problems
for the covariance and variance of the solution of the stochastic equation. From the
limiting problems we deduced scaling laws for the covariance and variance. Also for
the limiting problems, existence and uniqueness results and a priori bounds were
given, as well as results for definiteness and symmetry. Finally, numerical results
for the scaling law and a spectral approximation with a proposed correction factor
were presented. Applications of this work include the simulation of electrostatics in
nanotechnological devices such as field-effect sensors.
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Appendix A. Proof of Lemma 11.
We first prove that ‖Lu‖L2(U) is indeed a norm. We denote the bilinear form

associated with L by a1(u, v). Due to the assumptions, a1 is continuous.
To see that a1 is coercive, we note the estimate

a1(u, u) ≥ θ‖∇u‖2L2(U) − ‖b‖L∞(U)

(
ε‖u‖2L2(U) + δ‖∇u‖2L2(U)

)
+ ( inf

x∈U
c)‖u‖2L2(U)

= (θ − δ‖b‖L∞(U))‖∇u‖2L2(U) + ( inf
x∈U

c− ε‖b‖L∞(U))‖u‖2L2(U)

with δε = 1/4. If b = 0 and c ≥ 0, the Poincaré inequality ‖u‖L2(U) ≤ C‖∇u‖L2(U)

for u ∈ H1
0 (U) establishes that a1 is coercive. In the second case, i.e., if ‖b‖2L∞ ≤

4θ infx∈U c, we set ε := (infx∈U c)/‖b‖L∞(U) so that the coefficient of ‖u‖2L2(U) van-
ishes. Then δ = ‖b‖L∞(U)/(4 infx∈U c), the coefficient of ‖∇u‖2L2(U) is positive, and
a1 is again coercive.

Having established the existence and uniqueness of the solution, we note that
‖Lu‖L2(U) = 0 implies u = 0 a.e. Therefore ‖Lu‖L2(U) is a norm.

We now show that the two norms are equivalent. First, we show that there is a
constant C so that ‖Lu‖L2(u) ≤ C‖u‖H2(U). Using Hölder’s inequality for sums, we
find

|Lu| ≤ ‖A‖L∞(U)

d∑
i,j=1

|uxixj |+ ‖b‖L∞(U)

d∑
i=1

|uxi |+ ‖c‖L∞(U)|u|

≤ C
( d∑
i,j=1

|uxixj |2 +

d∑
i=1

|uxi |+ |u|2
)1/2

and hence

‖Lu‖2L2(U) ≤ C‖u‖
2
H2(U).

Second, we show that there is a constant C so that ‖u‖H2(U) ≤ C‖Lu‖L2(u). This
follows from the regularity result

‖u‖H2(U) ≤ C‖f‖L2(U) ∀u ∈ H2(U) ∩H1
0 (U).

for elliptic equations Lu = f with unique solutions (see, e.g., [9, Section 6.3]).

Appendix B. Algorithm for the spectral approximation.
The procedure based on Proposition 16 that was used in the calculations in §6.2

is described here.
(i) Given the boundary-value problem (1), let u, f ∈ RM and L ∈ RM×M be

discretizations for the solution u, the inhomogeneity f , and the differential opera-
tor L. Then the discretization of the Green’s function G is given by G = L−1, since
u = L−1f = G

∑
j fjej =

∑
j fjG.,j ≈

∫
f(y)G(x, y)dy = u(x). Since it is too compu-

tationally expensive to compute the Green’s function G = L−1, only the first N ∈ N
eigenvalues and eigenfunctions are used. This yields the approximation

G(x, y) =

∞∑
ν=1

λνψν(x)ψν(y) ≈
N∑
ν=1

λνψν(x)ψν(y) ≈
N∑
ν=1

λνv
ν
i v

ν
j = Gij ,
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where λ1 ≥ · · · ≥ λN holds for the eigenvalues λν and eigenvectors vν of G for all
ν ∈ {1, . . . , N}. Here the index i in vνi denotes the component of the vector vν that
corresponds to the point x after discretization.

(ii) Compute the largest N eigenvalues λν and their eigenvectors vν ofG. These
are smallest N eigenvalues and their eigenvectors of the known matrix L.

(iii) Compute Tµν for µ, ν ∈ {1, . . . , N} in (17) by evaluatingN2 two-dimensional
integrals. This yields

Tµν ≈ ε4
∫ L3

0

∫ L2

0

vµ(0, η2, η3)vν(0, η2, η3)R̄(η2, η3)2dη2η3.

(iv) Compute the covariance or the variance by summing the N2 terms in (16).
The approximations are given by

(cov u)(y, z) ≈
N∑
µ=1

N∑
ν=1

λµλνv
ν(y)vµ(z)Tµν , (20a)

(σ2u)(x) ≈ σ2uN (x) :=

N∑
µ=1

N∑
ν=1

λµλνv
ν(x)vµ(x)Tµν . (20b)
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