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Abstract

The multi-mode approximation is presented to compute the interior
wave function of Schrödinger equation. This idea is necessary to handle
the multi-barrier and high dimensional resonant tunneling problems
where multiple eigenvalues are considered. The accuracy and efficiency
of this algorithm is demonstrated via several numerical examples.

Key words. Schrödinger equation, numerical scheme, resonant tun-
neling, multi-mode approximation, high dimension

1 Introduction

The resonant tunneling diode(RTD) is a diode with a resonant tunneling
structure in which electrons can tunnel through some resonant states at
certain energy levels. It has been widely studied both theoretically and
experimentally[7, 8, 10] for its important role in constituting different func-
tions of the nanoscale semiconductor devices, e.g. integrated circuit, micro-
processor, memory devices, wide-band wired and wireless communications[19,
24]. The RTD is made up of two large reservoirs and an active region. The
reservoirs, which are highly conducting, can be used for exchanging electrons
with external electrical circuit. The active region can be a double barrier,
triple barrier, quantum well, quantum wire, quantum dot, etc.

Since the length scale is small in RTD, quantum effects should be con-
sidered. Therefore a general approach to model such device is through the
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Schrödinger equation for wave function coupled to Poisson equation for the
electric potential [18].

There are two primary issues in the numerical simulation. One is the
numerical integration of the Schrödinger equation, e.g. finite difference
method[16, 17], spectral type method[5, 6, 20], the WKB-scheme[3, 4], and
the Gaussian beam method[12, 13]. The other is the reduction of energy grid
points[4, 9, 21]. Besides these, the artificial boundary conditions[1, 2, 15],
the dimensionality reduction[22, 3], the Gummel iteration[11, 21] and many
other related topics are investigated.

The well known numerical difficult in RTD is that the curve of transmis-
sion coefficient versus energy tends to be singular in the vicinity of resonant
energies. Therefore, a very fine energy mesh is needed to capture the cor-
rect integral of the density, which results a large supplementary numerical
cost for computing these Schrödinger equations. In order to deal with this
problem, an adaptive energy mesh method was developed in [21]. But it still
consume lots of computational resource since the mesh should be very fine
near the resonant energies. Moreover, it doesn’t work for the time dependent
case because the resonances move.

Lately, the one mode approximation[4, 14, 23] was proposed to compute
the density. The method decompose the wave function into an exterior
part and an interior part. The exterior part is smooth in energy mesh
and thus does not require a fine energy mesh. The interior part can be
well approximated by its projection on the resonant states. The one-mode
approximation does save the computational cost, but this approximation
may not work for some applications, e.g. multiple barrier problem and high
dimensional problem.

In present paper, we present the multi-mode approximation to overcome
these difficulties. The one dimensional problems is discussed in Section 2.
In Section 3, it is extended for high dimensions. We conduct numerical
examples in Section 4 to verify the accuracy numerical methods. In Section
5, we give some discussion on the algorithm efficiency. Finally, we make the
conclusive remarks in Section 6.

2 The one dimensional stationary algorithm

Consider the dimensionless Schrödinger equation with open boundary con-
dition on the domain [a, b]

−1
2ϵ

2φ′′
p + V φp = Ea

pφp, (p ≥ 0)

ϵφ′
p(a) + ipφp(a) = 2ip,

ϵφ′
p(b)− i

√
p2 + 2(V (a)− V (b))φp(b) = 0,

(2.1)
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for electron injected at x = a with momentum p ≥ 0 and
−1

2ϵ
2φ′′

p + V φp = Eb
pφp, (p ≤ 0)

ϵφ′
p(b) + ipφp(b) = 2ip,

ϵφ′
p(a)− i

√
p2 + 2(V (b)− V (a))φp(a) = 0,

(2.2)

for electron injected at x = b with momentum p ≤ 0. Here

Ea
p =

1

2
p2 + V (a), Eb

p =
1

2
p2 + V (b),

φp(x) is the wave function, ϵ is the re-scaled Planck constant, and the elec-
trostatic potential V is split into the external potential Ve and the self-
consistent potential Vs:

V (x) = Ve(x) + Vs(x).

The self-consistent potential Vs satisfies the Poisson equation{
V ′′
s (x) = − 1

ε0
(n(x)− nD(x)) ,

Vs(a) = Vs(b) = 0,
(2.3)

in which ε0 is the dielectric constant, nD is the doping density, and the
electronic density n(x) is given by

n(x) =

∫ +∞

−∞
g(p) |φp(x)|2 dp. (2.4)

In the integral, g(p) is the statistics of the electrons injected at x = a or
x = b, e.g. the Fermi-Dirac statistic. The external potential(Figure 1)

Ve(x) = Vb(x) + Vw(x) + Va(x),

is a summation of quantum barrier, quantum well

Vb(x) = V01[a2,b2], Vw(x) = −V01[c1,d1]∪[c2,d2]∪···∪[cF ,dF ],

and the applied bias

Va(x) = −V1

(
x− a1
b1 − a1

1[a1,b1) + 1[b1,b]

)
.

Here V0 ≥ 0 and V1 ≥ 0 denotes the height of the barrier and the amplitude
of the applied bias respectively. And we have

a < a1 < a2 < c1 < d1 < · · · < cF < dF < b2 < b1 < b.

To solve the stationary Schrödinger-Poisson equations (2.1)-(2.4) itera-
tively, there are mainly three steps:
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Figure 1: The external potential Ve(x).

1. Compute the wave function φl
pk
(x) from V l

s (x) with different momen-
tum pk by solving the Schrödinger equation (2.1)-(2.2).

2. Numerical integrate the quantity g(pk)
∣∣φl

pk
(x)
∣∣2 into the density nl(x)

with the integration formula (2.4).

3. Compute the self-consistent potential at next iteration V l+1
s (x) from

nl(x) by solving the poisson equation (2.3).

Here l denotes the times of iteration and {pk} gives the energy mesh dis-
cretization. In this paper, we focus on improving the first step, which is
to implement the multi-mode approximation into the numerical schemes for
(2.1)-(2.2). For the second and the third step, we refer readers to the adap-
tive mesh approach for the integration[4, 21] and the Gummel iteration for
the coupling[11, 21].

2.1 Multi-mode approximations

To concentrate on the multi-mode approximation for the Schrödinger equa-
tion, we ignore the effect of the self-consistent potential Vs(x) = 0, and
only inject electron at x = a with momentum p ≥ 0. Then we rewrite the
equation (2.1) as 

−1
2ϵ

2φ′′
p + Veφp =

1
2p

2φp,

ϵφ′
p(a) + ipφp(a) = 2ip,

ϵφ′
p(b)− i

√
p2 + 2V1φp(b) = 0.

(2.5)

The transmission coefficients versus energy is defined by

T (E) =

√
E + V1

E
|φp(b)|2 ,
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with E = 1
2p

2. Following the previous paper [4, 9, 14, 23], we decompose
the wave function φp into an exterior part φext

p and an interior part φint
p ,

φp(x) = φext
p (x) + φint

p (x).

The exterior wave function is defined as the solution of
−1

2ϵ
2∂xxφ

ext
p + (Vb + Va)φ

ext
p = 1

2p
2φext

p ,

ϵ∂xφ
ext
p (a) + ipφext

p (a) = 2ip,

ϵ∂xφ
ext
p (b)− i

√
p2 + 2V1φ

ext
p (b) = 0.

(2.6)

Since φext
p is smooth on the energy direction p, it can be computed initially on

a coarse mesh of p and then interpolated for finer requirements [4]. Then the
interior wave function satisfies the nonhomogeneous Schrödinger equation

−1
2ϵ

2∂xxφ
int
p + Veφ

int
p = 1

2p
2φint

p − Vwφ
ext
p ,

ϵ∂xφ
int
p (a) + ipφint

p (a) = 0,

ϵ∂xφ
int
p (b)− i

√
p2 + 2V1φ

int
p (b) = 0.

(2.7)

The direct simulation of (2.7) is waste of computational resource. Instead,
we approximate it by the multi-mode form

φint
p (x) =

N∑
n=1

θn(p)

λn − 1
2p

2
ϕn(x). (2.8)

Here ϕn(x) is the non trivial solution of the eigenvalue problem
−1

2ϵ
2∂xxϕ+ Veϕ = λϕ,

ϵ∂xϕ(a) + i ∗√2λϕ(a) = 0,

ϵ∂xϕ(b)− i ∗
√

2(λ+ V1)ϕ(b) = 0,

(2.9)

here ∗
√
z denotes the determination of the square root which is holomorphic

on C\iR− and defined as follows: for z = ρeiθ, with ρ > 0 and θ ∈
(
−π

2 ,
3π
2

)
,

∗
√
z =

√
ρei

θ
2 . The complex eigenvalue λ = ER − iΓ/2 has necessary a non

vanishing imaginary part. Taking (2.8)-(2.9) into (2.7) leads to the linear
system for the coefficients θn(p):

N∑
n=1

⟨ϕn, ϕn′⟩θn(p) = −⟨Vwφ
ext
p , ϕn′⟩. (2.10)

Here ⟨·, ·⟩ denotes the inner product. Since equation (2.9) is nonlinear eigen-
value problem, the eigenfunctions are not orthogonal to the others. It is easy
to see that the multi-mode approximation is consistent with the one mode
approximation.

Remark 2.1 Note the boundary conditions are different in (2.7) and (2.9),
but this is still a good approximation. The detailed explanation can be found
in [4].

Remark 2.2 The numerical method of non trivial eigenvalue problem (2.9)
can be found in [4, 9]. For this reason, we do not discuss here.
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3 Generalization to higher dimensions

The idea of multi-mode approximation can be generalized to higher dimen-
sions naturally. Here we take the 2d problem as an example to explain the
necessary processes. The high dimensional cases can be dealt with similarly.
Consider the 2d Schrödinger equation

−1

2
ϵ2 (∂xxφE + ∂yyφE) + Ve(x, y)φE = EφE , (3.1)

on computational domain Ω = [a, b]× [−d, d]. Let ∂Ω = Γd ∪ Γa ∪ Γb with

Γd =
{
(x, y)

∣∣ x ∈ [a, b], y = ±d
}
,

Γa =
{
(a, y)

∣∣ y ∈ [−d, d]
}
,

Γb =
{
(b, y)

∣∣ t ∈ [−d, d]
}
.

Then the boundary conditions are

φE(x, y)|Γd
= 0,

ϵ∂xφE(a, y) =
∑

E>Ea
m

i
√

2(E − Ea
m)(2am − φa

E,m)χa
m(y) +

∑
E≤Ea

m

√
2(Ea

m −E)φa
E,mχa

m(y),

ϵ∂xφE(b, y) =
∑

E>Eb
m

i
√

2(E − Eb
m)φb

E,mχb
m(y)−

∑
E≤Eb

m

√
2(Eb

m − E)φb
E,mχb

m(y). (3.2)

Here (E∗
m, χ∗

m(y)) (∗ = a, b) are solutions of the eigenvalue problem{
−1

2ϵ
2∂yyχ

∗(y) + Ve(∗, y)χ∗(y) = E∗χ∗(y),
χ∗(±d) = 0, ⟨χ∗(y), χ∗(y)⟩ = 1.

(3.3)

We also have

φE(a, y) =

∞∑
m=1

φa
E,mχa

m(y), where φa
E,m = ⟨φE(a, y), χ

a
m(y)⟩,

φE(b, y) =

∞∑
m=1

φb
E,mχb

m(y), where φb
E,m = ⟨φE(b, y), χ

b
m(y)⟩.

The coefficients of incoming waves am and the energy E are given here. The
external potential

Ve(x, y) = Vb(x, y) + Vw(x, y) + Va(x, y)

is also a summation of quantum barrier, quantum well

Vb(x, y) = V01Ωb
, Vw(x, y) = −V01Ω1∪Ω2∪···∪ΩF

and the applied bias

Va(x, y) = −x− a

b− a
V1(y).
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Here V0 ≥ 0 and V1(y) ≥ 0 denotes the height of the barrier and the ampli-
tude of the applied bias respectively. And we have

Ωf ⊂ Ωb ⊂ Ω (1 ≤ f ≤ F ), Ωf ∩ Ωf ′ = ∅ (1 ≤ f < f ′ ≤ F ).

Similarly with the one dimensional case, we decompose the wave function
φE into an exterior part φext

E and an interior part φint
E ,

φE(x, y) = φext
E (x, y) + φint

E (x, y).

The exterior wave function is defined as the solution of

−1

2
ϵ2
(
∂xxφ

ext
E + ∂yyφ

ext
E

)
+ (Vb + Va)φ

ext
E = Eφext

E , (3.4)

with the same condition as (3.2). And the interior wave function satisfies
the nonhomogeneous Schrödinger equation

−1

2
ϵ2
(
∂xxφ

int
E + ∂yyφ

int
E

)
+ Veφ

int
E = Eφint

E − Vwφ
ext
E , (3.5)

with the boundary condition

φint
E (x, y)

∣∣
Γd

= 0,

ϵ∂xφ
int
E (a, y) = −

∑
E>Ea

m

i
√

2(E − Ea
m)φint,a

E,mχa
m(y) +

∑
E≤Ea

m

√
2(Ea

m − E)φint,a
E,mχa

m(y),

ϵ∂xφ
int
E (b, y) =

∑
E>Eb

m

i
√

2(E − Eb
m)φint,b

E,mχb
m(y)−

∑
E≤Eb

m

√
2(Eb

m − E)φint,b
E,mχb

m(y).

(3.6)

Then we approximate it by the multi-mode form

φint
E (x, y) =

N∑
n=1

θn(E)

λn − E
ϕn(x, y). (3.7)

Here ϕn(x, y) is the non-trivial solution of the eigenvalue problem

−1

2
ϵ2 (∂xxϕ+ ∂yyϕ) + Veϕ = λϕ, (3.8)

with the boundary condition

ϕ(x, y)|Γd
= 0,

ϵ∂xϕ(a, y) = −
∑

Reλ>Ea
m

i ∗
√

2(λ− Ea
m)ϕa

mχa
m(y) +

∑
Reλ≤Ea

m

∗
√

2(Ea
m − λ)ϕa

mχa
m(y),

ϵ∂xϕ(b, y) =
∑

Reλ>Eb
m

i ∗
√

2(λ− Eb
m)ϕb

mχb
m(y)−

∑
Reλ≤Eb

m

∗
√

2(Eb
m − λ)ϕb

mχb
m(y).

(3.9)
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Taking (3.7)-(3.9) into (3.5)-(3.6) leads to linear system for the coefficients
θn(E):

N∑
n=1

⟨ϕn, ϕn′⟩θn(E) = −⟨Vwφ
ext
E , ϕn′⟩. (3.10)

4 Numerical examples

In this section, we give two numerical examples to verify the accuracy of the
method. The ‘true’ solution of the Schrödinger equation (2.5) and (3.1)-(3.2)
is solved by the finite difference method using small enough mesh size.

Example 4.1: Consider the 1D Schrödinger equation (2.5) on the compu-
tational domain [0, 1] with parameters

a1 = 0.1, a2 = 0.27, b2 = 0.73, b1 = 0.9,

F = 2, c1 = 0.33, d1 = 0.47, c2 = 0.53, d2 = 0.67,

V0 = 2, V1 = 1.45, ϵ = 0.035.

This is a double barrier model. We give the curve of transmission coefficients
T (E) in Figure 2(Upper). From the figure, we can see three peaks. They
correspond to the fourth to sixth eigenvalues of (2.9), see Figure 3. We plot
the absolute and relative l2 error of the wave function

eNa (p) =

∥∥∥∥∥φp(x)− φext
p (x)−

N∑
n=1

θn(p)ϕn(x)

∥∥∥∥∥
l2

,

eNr (p) =

∥∥∥φp(x)− φext
p (x)−

∑N
n=1 θn(p)ϕn(x)

∥∥∥
l2

∥φp(x)∥l2
,

with different energy E = 1
2p

2 and number of mode N in Figure 2(Lower).
Here the space mesh size is fixed as ∆x = 1

800 . We can see the multi-mode
approximation gives more accurate solutions. In Table 1, we output the
relative errors with different space mesh size ∆x and energy E = 1

2p
2 for

N = 3. We can see the errors decay with respect to mesh size ∆x. The
convergence rate is about first order. This can be improved by specially
handing the discontinuity of the external potential Ve(x) in the eigenvalue
problem (2.9) and make use of a higher order numerical integral in (2.10).

Remark 4.1 Note the real part of first three eigenvalues are negative, but
there is almost no interaction with the incoming wave on the left with mo-
mentum p ≥ 0. Therefore, we ignore these eigenvalues in the multi-mode
approximation.
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Figure 2: Example 4.1, the upper figure is the transmission coefficients T (E),
the lower figures are absolute error eNa (p) and relative error eNr (p) of wave
function for N = 1, 2, 3.
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Figure 3: Example 4.1, the first six eigenvalues λn and absolute value of
eigenfunctions |ϕn(x)| to the nonlinear eigenvalue problem (2.9).
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E = 0.2 E = 0.4 E = 0.6 E = 0.8 E = 1.0
∆x = 1

200 6.10% 6.99% 9.03% 8.69% 8.52%
∆x = 1

400 3.60% 3.63% 4.39% 4.86% 5.47%
∆x = 1

800 2.04% 1.99% 2.49% 3.07% 4.43%

Table 1: Example 4.1, the relative errors with different space mesh size ∆x
and energy E = 1

2p
2 for N = 3.

Remark 4.2 The convergence rate in Table 1 is not exact first order. The
reason is that there are mainly two parts of the error. The first part error
comes from the discretization of space which related to ∆x. Another part
error comes from the spectral decomposition which related to N . Since we
fixed N = 3, the spectral decomposition error would effect or even dominate
the total error when the discretization error is small during the space mesh
size ∆x is reducing.

Example 4.2: Consider the 2D Schrödinger equation (3.1)-(3.2) on the
computational domain Ω = [0, 1]× [−0.5, 0.5] with parameters

Ωb = ([0, 1]× [−0.5,−0.3]) ∪ ([0, 1]× [0.3, 0.5]) ∪ ([0.2, 0.8]× [−0.3, 0.3]) ,

F = 1, Ω1 = [0.4, 0.6]× [−0.1, 0.1], V0 = 1, V1(y) = 0, ϵ = 0.1.

Then we have
Ea

m = Eb
m, χa

m(y) = χb
m(y),

to the eigenvalue problems (3.3). In Table 2, we output their first eight
eigenvalues. From which we can believe that M = 8 is accurate enough for
the boundary conditions (3.2), (3.6) and (3.9) when E ≤ 1. We also plot
the first three eigenfunctions of (3.8)-(3.9) in Figure 4, which correspond to
the resonance effect. In Figure 5, we plot the absolute and relative l2 error
of the wave function

eNa (E) =

∥∥∥∥∥φE(x, y)− φext
E (x, y)−

N∑
n=1

θn(E)ϕn(x, y)

∥∥∥∥∥
l2

,

eNr (E) =

∥∥∥φE(x, y)− φext
E (x, y)−

∑N
n=1 θn(E)ϕn(x, y)

∥∥∥
l2

∥φE(x, y)∥l2
,

with different energy E and number of mode N . Here the space mesh size
is fixed as ∆x = ∆y = 1

200 and the incoming waves in (3.2) are given by

(I) a1 = 1, am = 0(m ̸= 1), see Figure 5(Upper),

(II) a2 = 1, am = 0(m ̸= 2), see Figure 5(Lower).

From the figure, we can draw the same conclusion as in Example 4.1.
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Figure 4: Example 4.2, the first three eigenvalues λn and absolute value of
eigenfunctions |ϕn(x, y)| to the nonlinear eigenvalue problem (3.8)-(3.9).
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Figure 5: Example 4.2, absolute error eNa (E) and relative error eNr (E) of
wave function for N = 1, 2, 3.
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m 1 2 3 4 5 6 7 8
Ea

m 0.027 0.109 0.245 0.431 0.663 0.925 1.159 1.289

Table 2: Example 4.2, the first eight eigenvalues of (3.3).

5 Discussion for algorithm efficiency

In this section, we discuss the algorithm efficiency in computing the elec-
tronic density n(x). To compute the integral (2.4) numerically

n(x) =

∫ +∞

−∞
g(p) |φp(x)|2 dp,

we need to first discretize the energy mesh then compute φp(x) for each en-
ergy mesh point E = 1

2p
2. Because φp(x) would be very large near the reso-

nant energy, the energy mesh should resolve these peaks to acquire enough
accuracy. There are mainly four methods to compute n(x).

1. The multi-mode approximation.

(a) Solve the nonlinear eigenvalue problem (2.9) to get the smallest
Ke resonant energies and the related eigenfunctions. The space
mesh size is ∆x, and the following steps are the same.

(b) Compute Nc times nonhomogeneous Schrödinger equation (2.6)
to get these exterior wave functions φext

p . Here Nc also denote
the number of energy nodes for coarse mesh.

(c) Interpolate on the energy direction KeNa times to get the ad-
ditional exterior wave functions φext

p on a refined energy mesh.
Here Na denotes the number of added energy nodes we need for
each single resonant energy.

(d) Construct the interior wave functions using equation (2.8) and
(2.10). The number of interior wave functions we need to solve is
equal to the total number of the energy node on the refined mesh
Nc +KeNa. The space mesh for the interior wave functions φint

p

should be ∆x.

2. The nonuniform energy grid method. Assume that we prior know
where the resonant energy is, then we can design the best nonuniform
energy grid. The number of node on the nonuniform energy grid is
Nc+KeNa. Then we solve Nc+KeNa times full Schrödinger equation
(2.5) on space mesh ∆x to get φp. In practical simulation, this method
can not be applied unless the resonant energy are prior known.

3. The adaptive mesh on energy grid method. In the beginning, we don’t
know how to design the nonuniform energy grid. The adaptive mesh

12



method would detect and rebuild the energy mesh. Then, we need to
compute no less than Nc+KeNa times full Schrödinger equation (2.5)
on space mesh ∆x to get φp.

4. The full method. We directly compute Nf time full Schrödinger equa-
tion (2.5) space mesh ∆x to get φp. Here Nf related to a very fine
energy mesh and Nf ≫ Nc, Nf ≫ KeNa.

In all these method, we ignore the last step: compute the integral (2.4) to
get the electronic density n(x). Because this computational cost is minor
compare to other steps. It is easy to see the computational cost of the last
three methods are

nonuniform grid<adaptive mesh<full method.

Our goal is to show that the computational cost satisfies

multi-mode approximation<nonuniform grid<full method,

so that the nonuniform is more efficient than the adaptive mesh method in
practically simulation. This will be done analytical in Subsection 5.1 and
numerically in Subsection 5.2.

5.1 A rough estimate of the computational time

Let M = [ 1
∆x ], here [x] gives the nearest integral to real number x. For

solving a M ×M linear sparse system, we write the computational cost as
L(M). For conjugate gradient method L(M) = P1M , with P1 related to the
numbers of iteration and the averaged element number in each row of the
matrix. For a standard interpolation method, we write the computational
cost as P2, which related to the number of nodes used in the interpolation.
Now we estimate the computational cost of the d dimension problem for the
multi-mode approximation and the nonuniform energy grid method.

1. The multi-mode approximation. The computational cost of each steps
are list here

Cmm,a ≈ KeKiL(Md),

Cmm,b ≈ NcL(Md),

Cmm,c ≈ KeNaP2M
d,

Cmm,d ≈ (KeNa +Nc)M
d.

Here Ki comes from solving the nonlinear eigenvalue (2.9). If we use
the New-like algorithm, Ki denotes number of the iterations. There-
fore the total computational cost is

Cmm ≈ (KeKi +Nc)L(Md) + (KeNa(1 + P2) +Nc)M
d.
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estimate cost CPU time l2 error
multi-mode approximation 1.00 48.6s 2.06%

nonuniform grid 2.02 97.7s 2.21%
full method (Nf,1 = 500) 4.02 202.0s 4.12%
full method (Nf,2 = 1000) 8.05 400.7s 1.70%

Table 3: Example 5.1, comparisons of the multi-mode approximation,
nonuniform grid method and the full method.

2. The nonuniform energy grid method. The total computational cost is

Cne ≈ (KeNa +Nc)L(Md).

3. The full method. The total computational cost is

Cfm ≈ NfL(Md).

In later subsection, we will compare this result with the experiment tests.

5.2 The numerical experiments of the computational time

In this subsection, we give two numerical examples to verify the efficiency
of the method. The reference solution is computed on a very small energy
mesh and space mesh. We use conjugate gradient method to solve the linear
system. The linear interpolation is used here, with P2 ≈ 10. And Ki = 6
would be good enough to give an accurate iteration solution of the eigenvalue
problem (2.9).

Example 5.1: Consider the same condition in Example 4.1, the other
parameters are

d = 1, ∆x = 1
1600 , M = 1600, P1 ≈ 280,

Ke = 3, Nc = 100, Na = 50, Nf,1 = 500, Nf,2 = 1000,

g(p) = 3
5 log(1 + e

10−25p2

8 ).

In Table 3, we output the estimate computational cost, practical computa-
tional time and the relative l2 error of the electronic density n(x) for different
methods. From the table, we can see the multi-mode approximation is more
efficient.

Example 5.2: Consider the same parameters as in Example 4.2, the other
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estimate cost CPU time l2 error
multi-mode approximation 1.00 1.9× 104s 2.81%

nonuniform grid 1.85 3.7× 104s 2.55%
full method 8.43 1.5× 105s 2.70%

Table 4: Example 5.2, comparisons of the multi-mode approximation,
nonuniform grid method and the full method.

parameters are

d = 2, ∆x = 1
400 , M = 400, P1 ≈ 2200,

Ke = 3, Nc = 100, Na = 40, Nf = 1000,

g1(E) =

{
0, E < Ea

1
3
5 log(1 + e

5−25E
4 ), E ≥ Ea

1 ,

g2(E) =

{
0, E < Ea

2
3
5 log(1 + e

5−25E
4 ), E ≥ Ea

2 .

Then the electronic density are given by

n(x, y) =

∫ +∞

0

(√
2

E − Ea
1

g1(E)
∣∣φ1

E(x, y)
∣∣2 +√ 2

E − Ea
2

g2(E)
∣∣φ2

E(x, y)
∣∣2)dE,

here φs
E(x) (s = 1, 2) is the solution to equation (3.1)-(3.2) with as =

1, am = 0(m ̸= s). In Table 4, we output the estimate computational
cost, practical computational time and the relative l2 error of the electronic
density n(x, y) for different methods. From the table, we can draw the same
conclusion as in Example 5.1.

6 Conclusion

In this paper, we developed the multi-mode approximation to compute the
Schrödinger equation, that is the basic mode for the RTD. This kind of
approximation can handle multiple barrier problems and high dimensional
situations. Several examples are given to demonstrate the accuracy and
efficiency of this numerical method.

Acknowledgement

During this research, H. Wu benefited from a Post Doc position supported by
the Conseil regional Midi Pyrénées (http://www.midipyrenees.fr/) entitled
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