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Abstract This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB)
model of plasma physics. This model consists of the pressureless gas dynamics equations
coupled with the Poisson equation and where the Boltzmann relation relates the potential
to the electron density. If the quasi-neutral assumption is made, the Poisson equation is re-
placed by the constraint of zero local charge and the model reduces to the Isothermal Com-
pressible Euler (ICE) model. We compare a numerical strategy based on the EPB model to a
strategy using a reformulation (called REPB formulation). The REPB scheme captures the
quasi-neutral limit more accurately.
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1 Introduction

The goal of this paper is to analyze various schemes for the Euler-Poisson-Boltzmann model
of plasma physics. The Euler-Poisson-Boltzmann (EPB) model describes the plasma ions
through a system of pressureless gas dynamics equations subjected to an electrostatic force.
The electrostatic potential is related to the ion and electron densities through the Poisson
equation. The Boltzmann relation provides a non-linear relationship between the potential
and the electron density which allows to close the system. More precisely, the Euler-Poisson-
Boltzmann model is written as

on+V.(nu) =0, (1.1)

m(d,(nu)+V - (nu @ u)) = —enVeo, (1.2)
L RN

—A¢p = p <n n exp(kBT>). (1.3)

Here, n(x,t) > 0, u(x,t) € R? and ¢ (x, t) € R stand for the ion density, ion velocity and
electric potential respectively, which depend on the space-variable x € R¢ and on the time
t > 0. We suppose that the ions bear a single positive elementary charge ¢ and we denote
by m, their mass. The electron temperature 7 is supposed uniform and constant in time.
€y and kp respectively refer to the vacuum permittivity and the Boltzmann constant. The
operators V, V- and A are respectively the gradient, divergence and Laplace operators and
u @ u denotes the tensor product of the vector u with itself. n* is usually fixed by either
imposing zero total charge

N ep(x,t) _
/]Rd<n(x,t)—n exp( kT >>dx—0,

or by assuming that the net charge is zero at a given point x* (for instance at the boundary):

n(x*,t)—n*exp(e(ﬁk(x Z)> 0.
8T

For simplicity, this work is restricted to dimension d = 1 but the concepts extend to dimen-
sions d > 2 without additional difficulties and numerical applications will be reported in
future work.

The ion pressure force is neglected. This is a commonly made assumption in plasma
physics [6, 24] for elementary text books of plasma physics. The inclusion of an ion pressure
term would not modify the subsequent analysis and is omitted for simplicity. Additionally,
the pressureless system has interesting multi-valued solutions which are lost in the case of
the non-pressureless model [4, 9, 22, 23, 27-30].

If the quasi-neutral assumption is made, the Poisson equation (1.3) is replaced by the

constraint of zero local charge:
. ep
n=n"exp| — ),
P\ksT
In this context, we can write
k kT
nVe = n* exp<ke¢T>V¢> ‘; v<n*exp<%)> BTvn, (1.4)
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and the quasi-neutral Euler-Poisson-Boltzmann model coincides with Isothermal Compress-
ible Euler (ICE) model:

on+V.-(u)=0,
m(d;(nu) +V - (nu@u))+VnkgT) =0.

The passage from EPB to ICE can be understood by a suitable scaling of the model,
which highlights the role of the scaled Debye length:

X kT \'"?
=2 AD=<6222*) : (1.5)

where L is the typical size of the system under consideration. A, measures the spatial scale
associated with the electrostatic interaction between the particles. The dimensionless pa-
rameter A is usually small, which formalizes the fact that the electrostatic interaction occurs
at spatial scales which are much smaller than the usual scales of interest. However, there
are situations, for instance in boundary layers, or at the plasma-vacuum interface, where the
electrostatic interaction scale must be taken into account. This means that the choice of the
relevant macroscopic length L may depend on the location inside the system and that in
general, the parameter A may vary by orders of magnitude from one part of the domain to
another one. The scaling will be presented in more detail in Sect. 2.

This paper is concerned with discretization methods for the EPB model in situations
where A can vary from order one to very small values. Therefore, the targeted schemes must
correctly capture the transition from the EPB to the ICE models. With this objective in mind,
we will compare two strategies: a first one which uses the EPB model in its original form,
and a second one which reformulates the EPB model in such a way that it explicitly appears
as a perturbation of the ICE model.

This reformulation, called reformulated Euler-Poisson-Boltzmann (REPB) model, is
equivalent to the EPB model and is given by (see Sect. 2)

on+V-(nu)=0, (1.6)
m@©0;(nu) +V-(nmu@u))+VnkgT)

kgT |Ve|?
=—60V<7A¢+ 5 >+eov-(v¢®v¢), (1.7)

e N ep

In this way, the ICE appears at the left-hand side of (1.6), (1.7). The scaling analysis will
show that the right-hand side of (1.7) is of order A? and is therefore negligible (if the gradi-
ents of the potential are smooth) in the limit A — 0.

The goal of this paper is to propose and analyze two schemes for the EPB model which
provide the correct ICE limit when A — 0: the first one is based on the initial EPB for-
mulation and the second one, on the REPB reformulation. Both schemes use a time-semi-
discretization which is implicit in the Poisson equation and in the source terms of the mo-
mentum equation. For the EPB-based scheme, this discretization is classical [20]. For both
systems, in spite of its implicit character, the recursion can be solved in an explicit way.
For the space operators a simple shock-capturing method is used, namely the Local Lax-
Friedrichs or Rusanov scheme [15, 26, 33].
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In Sect. 3, we present the discretizations and show that both schemes are Asymptotic-
Preserving. The Asymptotic-Preserving property can be defined as follows. Consider a sin-
gular perturbation problem P* whose solutions converge to those of a limit problem P°
when A — 0 (here P* is the EPB model and P is the ICE model). A scheme Py, for prob-
lem P* with time-step § and space-step £ is called Asymptotic Preserving (or AP) if it is
stable independently of the value of A when A — 0 and if the scheme P(S , obtained by letting
A — 0in P}, with fixed (8, 1) is consistent with problem P°. This property is illustrated by
the commutative diagram below:

COR
pP{, —— p*

r—0 i r—0
(8,h)—0

PSO,h — po

The concept of an AP scheme has been introduced by S. Jin [21] for diffusive limits of
kinetic models and has been widely expanded since then.

In Sect. 3, we will perform a linearized stability analysis which shows that both schemes
are stable independently of A in the limit § — 0, provided that the usual CFL condition of
the ICE model is satisfied. However, the scheme based on the REPB formulation has sev-
eral advantages over the one based on the EPB form. A first advantage lies in the fact that
the hydrodynamic part of the EPB model is a pressureless gas dynamics model, which is
weakly unstable and can produce delta concentrations (see e.g. [2, 3, 5, 7, 8]). By contrast,
the hydrodynamic part of the REPB is the usual ICE model, which is strongly hyperbolic,
and which is much more stable than the pressureless gas dynamics model. A second ad-
vantage is the fact that the limit A — O of the REPB-based scheme provides a conservative
discretization of the ICE model, while that of the EPB-based scheme leads to a scheme in
non-conservative form. We can expect that the accuracy of the PB-based scheme degrades
when A < 1 for solutions involving discontinuities, which is not the case for the REPB-
based scheme.

To illustrate the theoretical findings, one-dimensional numerical simulations are pre-
sented in Sect. 5, following a discussion of the spatial discretization in Sect. 4. First, setting
A =1, analytic solutions can be derived in the form of solitary waves thanks to the Sagdeev
potential theory [6]. Both schemes are compared to these analytical solutions, and show a
similar behavior, with a slightly larger numerical diffusion in the case of the REPB scheme.
Then a Riemann problem test case consisting of two outgoing shock waves is investigated.
In the A < 1 regime, the REPB scheme captures the right hydrodynamic shocks while the
EPB scheme develops spurious oscillations. This confirms the better behavior of the REPB
scheme in the A < 1 regime. Finally, a test-problem related to multivalued solutions and
proposed in [29, 30] is investigated. In this case, both schemes shows a similar behavior.
To summarize, the REPB scheme captures well the A <« 1 limit but is slightly more dif-
fusive in the A = O(1) regime. But the extra numerical diffusion is mild and then shows
that the REPB scheme is superior to and should be preferred over the EPB scheme in most
situations.

We conclude this section by some bibliographical remarks. The Euler-Poisson-Boltz-
mann model has been recently analyzed in the context of sheath dynamics [28] and multi-
valued solutions have been computed using level set methods [29, 30]. Numerical schemes
for the quasi-neutral limit of plasma problems has been the subject of vast literature, mostly
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for the Vlasov-Poisson equation and for Particle-in-Cell (PIC) methods. It is virtually im-
possible to cite all relevant references and we only refer to the seminal ones [11, 25, 31, 32].
For fluid models of plasmas, the literature is comparatively less abundant. We can refer to
the pioneering work [20], and more recently to [10, 12, 34, 35]. Recently, AP-schemes for
the two-fluid Euler-Poisson model [13, 16] or Vlasov-Poisson model [1, 18] in the quasi-
neutral limit have been proposed. The drift-fluid limit of magnetized plasmas has also been
considered [17, 19] as well as other applications such as small Mach-number flows [14].
However, none of these works is concerned with Boltzmannian electrons.

2 The EPB Model and the Scaling

In this section we present a derivation of the EPB model from the two fluid Euler-Poisson
system and we introduce its scaling. From now on, we will restrict ourselves to one-
dimensional models.

2.1 Derivation of the EPB Model

We consider a plasma composed of two species of charged particles: positively charged ions
and electrons. The ions are supposed singly charged. The modeling of such a plasma by
means of fluid equations uses a system of compressible Euler equations for each species,
coupled by the Poisson equation. We denote by m, , the ion and electron masses, n; . the
ion and electron densities and u; . the ion and electrons mean velocities. We denote by e
the elementary charge (i.e. the ion charge is +e > 0 and the electron charge is —e < 0).
We assume that the ion temperature is negligible so that the ions follow a pressureless gas
dynamics model. Electrons are assumed isothermal with a non-zero constant and uniform
temperature 7,. Then the electron pressure law satisfies p, = n.kgT, where kg denotes the
Boltzmann constant. The balance laws for both species are given by

on; + 0 (nju;) =0, 2.1)

m; (3 (nju;) + 9, (nu7)) = —en; 0,9, (2.2)

0ne + 0 (neu,) =0, (2.3)

Mo (3 (neue) + 0y (neul)) + 3y (nekpT.) = en o, (2.4)

where ¢ denotes the electric potential. It satisfies the Poisson equation:
—€0d; =e(n; —n,), (2.5)

where ¢ is the vacuum permittivity.
The electrons being much lighter than the ions, it is legitimate to take the limit m, — 0
in the electron momentum equation. In this limit, we formally obtain:

Oy (nckpT,) =en,oc¢.

Integration with respect to x leads to the Boltzmann relation:

n,=n"* exp(keq; >, (2.6)
Ble
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where n* is fixed by some condition (e.g. vanishing total charge or vanishing local charge
at one given point such as a boundary point, see Sect. 1). The Boltzmann relation shows
that the electron density automatically adjusts to the potential. The EPB model therefore
consists of the ion mass and momentum conservation equations (2.1), (2.2), the Poisson
equation (2.5) and the Boltzmann relation (2.6). With a change of notation n; — n, u; — u,
m; — m, T, — T, we find the EPB model (1.1)—(1.3) which has been introduced in Sect. 1.

We note that, in the present one-dimensional setting, the electron velocity u, can be com-
puted from the electron density equation (2.3), thanks to the value of n, and therefore, of
¢, obtained by the resolution of the EPB model. Therefore, the computation of u, is decou-
pled from the computation of the other unknowns #»;, u; and ¢ involved in the EPB model
and will be discarded in the present work. In two or higher dimensions, the computation of
u, requires the resolution of the electron momentum equation, which takes the form in the
small electron mass limit:

0 (neue) +V-(nu.® ue) + ”eVllf =0, (27)

where ¥ = limmeﬁo(m;1 (kgT Inn, — eg)). The quantity ¥ plays the same role as the pres-
sure in the incompressible Euler equation. It is computed thanks to the electron density
equation (2.3) which appears as a (non-zero) divergence constraint on u,. In this sense,
the limit m, — 0 is similar to the ‘low Mach-number’ limit of isentropic compressible gas
dynamics. However, the question of the resolution of (2.7) is left to future work.

2.2 Scaling of the EPB Model

In this section, we return to the EPB model in the form (1.1)—(1.3) and, with the notations
of Sect. 1, we introduce a scaling of the physical quantities. Let x, fy, 1o, ¢o and ngy be
space, time, velocity, potential and density scales. Scaled position, time, velocity, potential
and density are defined by X = x/xo,  =1/ty, it = u/ug , ¢ = —¢/¢o and i = n/ng. We
choose xg to be the typical size of the system (for instance an inter-electrode distance or the
size of the vacuum chamber). The velocity scale is chosen equal to the ion sound speed uy =
(kgT/m)"?>. We note that the ion sound speed is constructed with the ion mass but with the
electron temperature. This is clear from the ICE model (see Sect. 1). We also choose ny = n*.
Finally, ¢o = kpT /e is the so-called thermal potential. Note that we have introduced a sign
change in the potential scaling because we find it more convenient to work in terms of the
electron potential energy rather than in terms of the electric potential.
Inserting this scaling and omitting the bars gives rise to the EPB model in scaled form:

an* + 8, (n*u*) =0, (2.8)
3, (n*uh) + 8, *ulut) = n* o, ¢, (2.9)
W2t =n* —e (2.10)

where A is the scaled Debye length (1.5).

It will be useful to consider the linearized EPB model about the state defined by n* =1,
u* =0, ¢* = 0 (which is obviously a stationary solution). Expanding n* = 1 +&7*, u* = e’
and ¢* = eg*, with e < 1 being the intensity of the perturbation to the stationary state, and
retaining only the linear terms in ¢, we find the linearized EPB model:

9, + 9,1 =0, 2.11)
8t = 0,9, (2.12)
222pr =it + ¢t (2.13)
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Introducing 7*, ii*, ¢, the partial Fourier transforms of 2%, ii*, ¢* with respect to x, we are
led to the system of ODE’s:

an* +ign* =0, (2.14)
diir = iEP”, (2.15)
—12EP ="+ ¢ (2.16)

where £ is the Fourier dual variable to x. We note that the general solution of this model

takes the form
s R
(gl>zzes@(gi>, (2.17)

+
with
A _ i§
Si—im, (218)

and n, uy are given functions of £, fixed by the initial conditions of the problem. In par-

ticular, since s* are pure imaginary numbers, the L? norm of the solution is preserved with

time.
Now, we investigate the quasi-neutral limit A — 0 in the next section.

2.3 The Quasineutral Limit: the ICE Model

Formally passing to the limit A — 0 in the EPB model in scaled form and supposing that

n* — n® u* — u®, ¢* — ¢°, we are led to the following model:

3,n° + 9, n°u® =0,
3 (n°u®) + 3, (n°u’u®) = n°d,¢°,
0=n"— e“”o.

As a consequence of the last relation (which imposes to the ions to satisfy the Boltzmann
relation of the electrons), we can write (see also (1.4)):

n09,0° = e 0,0 = —3, (e ") — 0,1°, (2.19)
and, inserting this relation into the momentum equation leads to:
0; (nouo) + 0, (nououo) +9,n°=0.

Therefore, the quasineutral limit A — O consists of the Isothermal Compressible Euler sys-
tem (ICE) complemented by the Boltzmann relation for the potential:

9,1’ +0,(n’u’ =0,
3, (n°u®) + 3, (n°u’u®) + 8,n° =0,

— 0
n0=e¢.
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Similarly to the EPB model, the ICE model can be linearized about the state defined by
n®=1,u" =0, ¢° = 0. We find (with the same notations as for the EPB model), in Fourier
space:

9,7 +ien® =0,
9,0° +ign® = 0.

The general solution of this model takes the same form (2.17) as for the linearized EPB
model with si replaced by si = %i&. We note that (see (2.18))

0 S
sy = limsy.
* r—0 *

Therefore, the wave speeds of the linearized EPB model converge to those of the linearized
ICE model (which are nothing but the acoustic wave speeds).

There is no singularity of the limit A — 0 as regards the wave-speeds. In this respect
the quasineutral limit A — O is not a singular limit. This fact contrasts with the situation
of the quasineutral limit of the 2-fluid Euler system, where the electron plasma oscillation
frequency converges to infinity. Therefore, we expect that the numerical treatment of the
quasineutral limit in the Euler-Poisson-Boltzmann case will be easier.

2.4 Reformulation of the EPB Model
To better capture the transition from the EPB model to the ICE model, it is useful to refor-
mulate the EPB model in such a way that it explicitly appears as a perturbation of the ICE
model. Using (2.10), in the spirit of (2.19), we can write:
n*a.¢" = (e +120%.¢") 0. 9"
)\,2
= b, (—e““ - —(axas*)z)
2
)LZ
=9 (Azafxzp* —n*+ ?(axqﬂ)z).

Inserting this expression in the momentum equation leads to the reformulated EPB systems
(REPB):

ont +0,(n*u*) =0, (2.20)

1
3, u”) + 8, Wt utut) + 9.0 = A%9, (afxw + §(3x¢))‘)2>, 2.21)
nt— e =)202¢". (2.22)

We note that some simplification arises in the 1-dimensional case, compared to the multi-
dimensional case of (1.7).

In this formulation, the ICE model explicitly appears at the left-hand side of (2.20)—
(2.22). Additionally, the remaining terms, at the right-hand side of the equations are formally
of order A%. Therefore, the EPB model explicitly appears as an order O (A?) perturbation of
the ICE model.
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We stress the fact that the REPB model is equivalent to the original EPB model. How-
ever, at the discrete level, schemes based on the REPB model may differ from those based
on the EPB model. The goal of the present article is to compare the properties of schemes
based on these two formulations, in relation to their Asymptotic-Preserving (AP) properties
when A — 0.

Remark 2.1 A formal expansion (using a Chapman-Enskog methodology) up to the first
order in A2 of the EPB model leads to the following model:

3n’ + 3, (n*u*) =0,

1
3 (n*u*) + 8, (n*utut) + den* = —ﬂn*ax(—kaf (logn)‘)) +00N.
n

We see that the EPB is a perturbation of the ICE model by a dispersive term with a third
order derivative in n*. But this dispersive term disappears in the limit A — 0. For this reason,
in the sequel, the A = O (1) regime will be referred to as the dispersive regime, while the
A < 1 will be referred to as the hydrodynamic regime. In the limit A — 0, the schemes
that we consider converge to a viscosity solution of the ICE model, and not to multi-valued
solutions. However, when A is finite and small without being very small, the solutions exhibit
structures such as density singularities and large amplitude variations of the velocity, which
are due to the closeness to the multi-valued solution of the dispersive limit. The captured
viscosity solutions of the ICE model consist of some kind of regularization or averages of
these multi-valued solutions, as we will see in Sect. 5 and are those which are captured in
the A — 0O limit by the considered schemes.

3 Time Semi-Discretization, AP Property and Linearized Stability
3.1 Time-Semi-Discretization and AP Property

We denote by § the time step. For any function g(x, t), we denote by g" (x) an approxima-
tion of g(x, ™) with " = m§. We present two time-semi-discretizations of the problem. The
first one is based on the EPB formulation, and the second one, on the REPB formulation.

3.1.1 Time-Semi-Discretization Based on the EPB Formulation

Classically, when dealing with Euler-Poisson problems, the force term in the momentum
equation is taken implicitly. In the case of the two-fluid model (when the electrons are mod-
eled by the compressible Euler equations instead of being described by the Boltzmann re-
lation), S. Fabre has shown that this implicitness is needed for the stability of the scheme
(an explicit treatment of the force term leads to an unconditionally unstable scheme [20]).
Additionally, this implicitness still gives rise to an explicit resolution, since the mass con-
servation can be used to update the density, then the Poisson equation is used to update the
potential, and finally the resulting potential is inserted in the momentum equation to update
the velocity.

We will reproduce this strategy here and consider the following time-semi-discretization
based on the EPB formulation:

571(11“"“ _ nl,m) + 3x(nl,muk,m) — 0’
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8_1 (nk,ln+1uk.in+l _ nA,lnuA,n1) + 8x (nk,nluk.mu)\,M) — n}»,m—}—l ax(pk,m-%—l ,

_pAm+1
k28§¢k,m+l — n)\.,"l+l —e 1) .

This scheme is Asymptotic-Preserving. Indeed, letting A — 0 in this scheme with a fixed
4 leads to

S—I(nO,m+l _ nOA,m) + ax (nO,mMO.m) — O,
Bfl(nO,meluO.erl _ nO,mMO,m) + ax (nO,mMO,mMO,m) — nO,m+lax¢0,m+l’ (31)

0 _ nO,m—H _ e_d)().m+l

By using (3.2) and the same algebra as for (2.19), we find that this scheme is equivalent to

871 (nO,m+| _ nOA,m) 4 ax (nO,mMO,m) — 0’
871 (no,m+]u0,m+] _ nO,muo,m) + 8x (n(),muo,muo,m) + 8x (n(),m+1) — 0’

0 _ noan_l . e_¢().m+l

’

which provides a semi-implicit discretization of the ICE model, with an implicit treatment
of the pressure term in the momentum conservation equation.

However, when the scheme is discretized in space, the algebra leading to (2.19) is no
longer exact. Let us denote by D¢%™"*! the discretization of the space derivative operator
8,¢%"+1. Then, the limit A — O of the fully discrete scheme gives rise to the approxima-
tion 2% D(Inn®"+1) of the space derivative 3, (n®"*!) instead of the natural derivative
Dn%m+1 In particular, this expression is not in conservative form. Therefore, the use of this
scheme may lead to a wrong shock speed if shock waves are present in the solution.

Another drawback of this scheme is the lack of pressure term in the momentum equa-
tion. As a consequence, the hydrodynamic part of the model is a pressureless gas dynamics
model, which is a weakly ill-posed model (with, e.g. the possibility of forming delta con-
centrations [2, 3, 5, 7, 8]). The weak instability may lead to spurious oscillations in the
solution.

For these reasons, another scheme, based on the REPB formulation, is proposed in the
next section.

3.1.2 Time-Semi-Discretization Based on the REPB Formulation

We reproduce the same strategy (i.e. an implicit evaluation of the force term in the momen-
tum conservation equation) starting from the REPB formulation. This leads to the following
scheme:

87| (nk,nl+] _ n)h,m) + ax (n)h,mu)n,m) — 0’ (32)
871 ((nk,m+luk,m+l) _ (nl,nzuk,m)) + 8){ (n)hmu)‘,muk,m) + axnk,m
1
=320 (85&”"*‘ + E(axw"“)z) : (3.3)
_pAim+1
A28§¢x,m+| — phmtl _ =0 ) (3.4
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Formally passing to the limit A — O with fixed § in this scheme leads to the following
scheme:

8—1 (n().m-H _ nO,m) + ax (nO,mMO,rn) — O, (35)
871 ((n0,1n+1u0.1n+1) _ (n(),mu(l,m)) + ax(no.mu(),muo,m) + axno,m — 0, (36)

0 _ n0.m+1 _ e_¢(),nl+l )
3.7

Equations (3.5), (3.6) are the standard time-semi-discretization of the ICE model. We now
note that the pressure term 9,n%"™ is explicit (it was implicit in the scheme based on the EPB
formulation). Additionally, if a space discretization is used, the discretization of this term
will stay in conservative form, by contrast to the EPB-based scheme. Finally, the hydrody-
namic part of the scheme (3.2)—(3.4) is based on the ICE model, not on the pressureless
gas dynamics model. Therefore, its discretization will avoid the possible spurious oscilla-
tions that might appear in the EPB-based scheme in the presence of discontinuities or sharp
gradients.

3.2 Linearized Stability Analysis of the Time-Semi-Discretization

The goal of this section is to analyze the linearized stability properties of both schemes.
More precisely, we want to show that both schemes are stable under the CFL condition
of the ICE model, irrespective of the value of A when A — 0. This property is known
as ‘Asymptotic-Stability’ and is a component of the Asymptotic-Preserving property (see
Sect. 1). Indeed, letting > — 0 in the scheme with fixed § is possible only if the stability
condition of the scheme is independent of X in this limit. We will prove L2-stability uni-
formly with respect to A for the linearization of the problem (2.14)—(2.16).

In general, time semi-discretizations of hyperbolic problems are unconditionally unsta-
ble. This is easily verified on the discretization (3.5)—(3.7) of the ICE model. This is be-
cause the skew adjoint operator 9, has the same effect as a centered space-differencing. For
fully discrete schemes, stability is obtained at the price of adding numerical viscosity. To
mimic the effect of this viscosity, in the present section, we will consider the linearized Vis-
cous Euler-Poisson-Boltzmann (VEPB) model, which consists of the linearized EPB model
(2.11)—(2.13) with additional viscosity terms (in this section, we drop the tildes for nota-
tional convenience):

dn* + du* — patn* =0,
du’ — Bt = a,¢",
A23§¢A — n}» +¢l,

where B is a numerical viscosity coefficient. We keep in mind that, in the spatially dis-
cretized case, B proportional to the mesh size A:

B =ch, (3.8)

with the constant c¢ to be specified later on. Similarly, the linearized Reformulated Viscous
Euler-Poisson-Boltzmann (RVEPB) model is written as:

dn* + d,u* — patn* =0,
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du* + d.n* — BTt = 12329,
)\.28)(24))» :n)\ +¢X

The time discretization of these two formulations (which are also linearizations of the
EPB or REPB-based schemes with added viscosity terms) are given by

8—l(n)»,m+l _ n)\.m) + axuk,m _ ﬁafnk,m — O, (39)
8—l(ul.m+l _ u)»,m) _ ﬂa?uk,m — 8x¢)»,m+17 (3.10)
A28§¢)\,m+1 — nk,m-%—l +¢A,m+1’ (311)

for the EPB-based scheme and by

871(nk,m+l _ nA,m) + axuk,)n _ ﬂafn)»,m — 0, (312)
Sfl(u)»,m+l _ ul,m) + axn)n,m _ ﬁa}%u}»,m — A.283¢A'm+l, (3.13)
)\‘285¢A,m+l — n)»,m-#l + ¢)\,m+1, (314)

for the REPB-based one.
Passing to Fourier space with £ being the dual variable to x, and eliminating ¢*""+!, we
find the following recursion relations:

571(’%)»,m+l _ ﬁx,n1) + l-%.ﬁ)»,m +ﬂg__2ﬁx,m — 07
i§

—1/Ar,m+1 AN m
L e ey

ﬁk,erl + ,35212)""1 — 07

for the EPB-based scheme and

S—I(ﬁk,m-%—l _ﬁ)»,m> +i§ﬁx,nz +ﬂ$2ﬁx,nz — O,
ik253

8—1 AAm+1 _ Akm + s AAmo
(it u™"y+ién To082 e

ﬁ)»,m-%—l +ﬂé—2l”2k,m — O,

for the REPB-based one.
The characteristic equations for these two recursion formulas are

5282
2 2 2o\2
q —2q<1—ﬁs 8——2(1H2$2)>+(1—ﬁs 8)* =0, (3.15)
and
g% — Zq(l — BE2S + ﬂ) + (1 — BE2S)? +£282=0 (3.16)
2(1 + A%82) ' '

respectively, where ¢ is the characteristic root. Each of these quadratic equations has two
roots ¢} (£§) which provide the two independent solutions of the corresponding recursion
formulas. Their most general solution is of the form

AR E) N w (A5
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where n*i(é) and u;(g ) depend on the initial condition only. A necessary and sufficient
condition for L? stability is that lg% ()] < 1. However, requesting this condition for all
& € R is too restrictive. To account for the effect of a spatial discretization in this analysis,
we must restrict the range of admissible Fourier wave-vectors £ to the interval [—7, %].
Indeed, a space discretization of step /& cannot represent wave-vectors of magnitude larger
than 7. This motivates the following definition of stability:

Definition 1 The scheme is stable if and only if

lg"(€)| <1, V& suchthat |£] < % (3.17)

Now, our goal is to find sufficient conditions on & such that either schemes are stable.
More precisely, we prove:

Proposition 2 For both the EPB-based scheme (3.9)—(3.11) or the REPB-based scheme
(3.12)—(3.14), there exists a constant C > 0 independent of A when A — 0 such that if
8 < Ch, the scheme is stable.

This condition states that the schemes are stable irrespective of how small X is. We say
that the schemes are ‘Asymptotically-Stable’ in the limit A — 0. We note that this stability
condition is similar to the CFL condition of the ICE model, which is the limit model when
A— 0.

Proof We first define conditions such that the constant term of the quadratic equations (3.15)
or (3.16) is less than 1. For the EPB-based scheme (see (3.15)), this condition is § < 1/8£2,
for all & such that |£| </ h. For reasons which will become clear below, we rather impose:

1 b4
§ < e V& such that [£] < 7 (3.18)
which, with (3.8), is equivalent to:
. 1
8§ <Cih, with C;= . (3.19)
2cm?
For the REPB-based scheme (see 3.16), this condition is
2
5<—2P Ve suchthat|g| <X,
B2 +1 h
or, with (3.8):
§<Ch, withC 2 (3.20)
,  wi =—. .
<C i

Now, under these conditions, we are guaranteed that the two roots satisfy (3.17) if and
only if the discriminant of the quadratic equation is non-positive. Indeed, in this condition,
the two roots are conjugate complex numbers and their product, i.e. the square of their
module, which is equal to the constant term of the quadratic equation, is less than one.
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It is a matter of computation to check that the discriminant has the same sign as the
expression F(§) given by:

1 + )“252

F(8) =8 +4B(1+1%%5—4 2

(3.21)

in the case of the EPB-based scheme and by

1+ 22%g? 1+ 22%g2

F(8) =68 —4p TR vr

in the case of the REPB-based scheme.
In the case of the EPB-based scheme, we use (3.18) to estimate the second term of F(§)
in (3.21):

142282

g
and a sufficient condition for F () to be non-positive is that § < +/2(1 + 12£2)'/2|&|~!. This
relation is true for all £ such that |§| <m/h if § < \/Eﬂ’l(hz + 2272172 and a sufficient
condition is that § < Cyh, with C, = +/27 1. Now, taking C = min{C,, C,} with C; given

by (3.19) leads to the result. In fact, the optimal numerical viscosity is such that C; = Cj,
i.e. ¢ = (24/27)"!. In the case of the REPB scheme, we estimate F(8) by

F(§) <8>=2

FO) 84—,
and a sufficient condition for F(8) to be non-positive is that § < 48(1 4+ A2£2)(A%£2)~!. In
view of (3.8), this relation is true for all £ such that |&| < 7/ h if § < 4c(\*m®)~"h(h® +
A2w2)Y/2 and a sufficient condition is that § < Cph, with C, = 4c. Now, taking C =
min{C,, C,} = C; with C; given by (3.20) leads to the result. The optimal numerical vis-
cosity can be chosen to minimize C, which leads to ¢ = 7 ~!. This ends the proof of state-
ment 2. O

As a conclusion, we can see that both the EPB-based and REPB-based schemes have
similar Asymptotic-Stability properties as A — 0. Therefore, they must be selected on the
basis of other criteria. The fact that the REPB-based scheme has a well-posed hydrodynamic
part and leads to a discretization of the ICE model in conservative form in the limit A — 0
are indications that this scheme should be preferred to the EPB-based scheme. In the next
section, we will present numerical results that support this statement.

4 Spatial Discretization

We introduce (C;) j=1 @ uniform subdivision of the computational domain €2 € R such that

Q= U;v:l C;. The interface between C; and C ., is the point x;.1,>. We denote by U7 the
approximate vector of the density and momentum at time " on the cell C},

m __ n”
=y )

We use a time-splitting method to compute the density and momentum at time ¢"*!. There
are three steps to pass from U™ to U™*+! which are described below.
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4.1 Hydrodynamic Part

The first step of the splitting is the finite-volume computation of the state U* such that

U#—U;” ;'}H/z_F}il/z_o

8 h ’

where Fj |/, is the numerical flux computed at the interface x;>.

We have used a Local Lax-Friedrichs [26] (or Rusanov [33] or degree 0 polynomial
[15]) solver. This solver is an improved version of the Lax-Friedrich solver which has been
successfully used in conjunction with AP-schemes for the two-fluid Euler-Poisson problem
(see [13]) or for small Mach-number flows [14]. This solver depends on a local estimate of
the maximal characteristic speed. This estimate proceeds as follows. We introduce

(cﬁ)';’Jrl/2 :max(u’;ﬂrl/z +Lul, + l) and (@)}, :min(u;f’ —Lul - 1),

m

"+1)/2. Then, the local maximal characteristic velocity is estimated

where u’, |, = (7} +u
by

- - +
airp =max(|(@) s nl 1@}y 0)-
and the numerical flux at x;/, is given by:

1
Fipip= 5(F(U;.“) + F(U}) + aygl/z(U}" — U;?;l)). 4.1)

The time step § must satisfy the CFL condition 2 < max aj to ensure stability. In
practice, the time step is chosen at each iteration to enforce this stability condition. As
for boundary conditions, we impose fictitious states U; and U, across the left and right
boundaries respectively and compute the corresponding fluxes across the boundaries using

the same formula (4.1).
4.2 Potential Update
The second step of the time-splitting is the computation of the potential. We use n* to com-

pute ¢"*! with the discretized Poisson equation given by a finite difference approximation
of the Poisson equation.

R =290 g e =t

J+1
The boundary conditions are given by ¢ = —logn! on the left hand side of the domain
and ¢, = —logn® on the right hand side of the domain. The non-linear system is solved

with newton method. This iterative algorithm needs a good initial guess of the solution to be
efficient. The initial guess is the potential at previous time ¢™. For the first step, we choose
the quasi-neutral potential (¢?) = (—logn9) as an initial guess.

4.3 Source Term

In the REPB form, the source term Q at the right-hand side of (3.3) can be written according
to:

0 =22(0:(32,0) + 3,9929).
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This expression is discretized thanks to a finite difference approximation. For a cell C; in
the domain, the source term Q; is given by centered finite difference approximation:

)LZ
=

On the first cell C; the source term is computed using a decentered finite difference approx-
imation:

Q; (@2 =201 +2¢;-1 — Pj—2) + (Bjr1 —2¢; + d;—1) (@11 — Dj—1))-

2

A 1
Q1= 7 ((¢3 —3¢2+3¢1 — 1) + 5(4’2 —2¢1+ ¢1) (2 — 4)1))7

and similarly in the last cell.

5 Numerical Results

We present three classes of numerical results: the first test case is a solitary wave travelling in
a plasma. This test case shows the ability of the numerical schemes to handle the dispersive
regime (i.e. of finite A). The second test case is related to the quasi-neutral limit A — 0 of the
Euler-Poisson-Boltzmann model: it is a Riemann problem to check the ability of the scheme
to handle hydrodynamic phenomena like shocks. The last test case has been previously
investigated by Liu and Wang in [29, 30] and corresponds to the occurrence of multi-valued
solutions in the semi-classical setting. This test case concerns the dispersive regime (i.e. of
finite ).

5.1 Soliton Test Case
5.1.1 Description

The dispersive nature of the Euler-Poisson system is shown in [28]. Therefore, the EPB sys-
tem, like other nonlinear dispersive models such as the KdV equation, exhibits solitary wave
solutions. These special solutions are particularly convenient to test the ability of the EPB
and REPB schemes to capture the dispersive regime. Solitary waves also provide interest-
ing quantitative checks. Indeed, while travelling through the plasma, the soliton maintains
its shape and velocity. Therefore, one can check the accuracy of the numerical schemes by
observing how well they preserve the soliton shape and velocity over time.

We now summarize the establishment of this special solution. We refer to [6] for a de-
tailed description and physical considerations. For this derivation, we use non-dimensional
units and we now precise the corresponding scaling units. The space scale related to these
solitons is the Debye length A . For this reason, we take A = 1 in all this section. The size
of the computational domain is equal to several Debye lengths (about 50X, are used in the
subsequent simulations). The density of the undisturbed plasma (away from the support of
the solitary wave) is chosen as the characteristic density and in dimensionless units, is equal
to 1, so that the electron density is equal to e~ where ¢ is the electrostatic potential energy.

In the frame moving with the wave, we denote by ny, uy, ¢, the density, velocity and
potential of the plasma. These quantities are constant in time, and satisfy the following
relations:

ax (nsus) =0,

Ox (nsugus) = n;0,¢;,

2 —
0 s =ns—e s
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The momentum being uniform in x, we write g = nyu; = nouy where ng = n;(0) and uy =
1, (0). The momentum conservation law can be written as 3,g2/n, = n;0,¢;. Consequently,
we have 0J, (qz/nf) =20,¢,. For all x € [0, xnax], we get:

1 2 1 2
—<i>uy—iclym=¢mm—@wy .1)

2 2
2\ n? ng

The potential being defined up to an additive constant, we choose this constant such that
¢5(0) = 0. The ion density is then given by

—1/2
ns(x) = (iz + 2 ) : (5.2)

2.2
o MoUo

In the present analysis, we assume that ny = 1, i.e. ng is equal to the density of the undis-
turbed plasma. Inserting this relation in the Poisson equation yields the following equation
for the potential:

20, —1/2
ﬁ@=(r%ﬁ> —et, (53)
; p
with the condition
¢, (0) =0. (5.4)

One needs another condition at x = 0 to set up a Cauchy problem for (5.3). Note that ¢; =0
is an obvious solution of (5.3) and satisfies the homogeneous condition d,¢,(0) = 0. It
corresponds to the state of the undisturbed plasma. To capture a non-trivial solution, we
must alter this condition by a small disturbance, setting it to

with 7 ‘small’.

The behavior of these solutions can be clarified thanks to the theory of the Sagdeev
potential (which is a primitive with respect to ¢, of the right-hand side of (5.3)). Details on
this study can be found in [6]. Here we just recall that shock waves in a cold-ion plasma
can exist only for 1 < uy < 1.6 (Bohm criterion). The sign of n determines the type of
solution which can be found: a positive 1 leads to potential barrier that forms a sheath,
whereas a negative value gives rise to a monotonic transition to a negative ¢ which forms a
solitary wave corresponding to a potential and density disturbance propagating to the right
(for instance) with velocity u(. There is no analytic solution to (5.3). Resorting to numerical
simulation is the only way to determine these solutions. Details about this numerical method
are given below. Once the soliton potential is known, the density is computed thanks to
(5.2). Since the present analysis has been performed in a co-moving frame with the soliton,
moving with velocity u, the velocity in the laboratory frame is u; + uo with u; = q/n;. In
the subsequent numerical simulations n;, ug + u;, ¢ are taken as an initial condition for the
scheme.

5.1.2 Numerical Results for the Soliton Test Case

In this test case, where the Debye length and the size of the computational domain are of the
same order, both the EPB and REPB schemes are expected to be correct. However, this test
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Density in a soliton Momentum in a soliton

Momentum
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0 L/5 2L/5 3L/5 4L/5 L 0 L/5 2L/5 3L/5 4L/5 L
Position Position

Fig. 1 Density (left) and momentum (right) as a function of space, for a soliton moving to the right, at time
0, t7./5, 2t /5 and t7, computed with the REPB scheme. At time #; the wave has travelled through the
whole computational domain. The damping of the density and velocity peaks are clearly visible due to the
large space step, Ax =h/4

case provides a way to achieve quantitative comparisons of the numerical solutions to an
analytical reference solution. These comparisons permit to quantify the order of accuracy
and amount of numerical diffusion of the two schemes. The analytical solution is easily
obtained at time ¢ by a spatial translation of the solution at time O of a distance uf.

This test case is implemented as follows. The boundary conditions are periodic, which
ensures that the soliton can be tracked on long simulation times without the need for a large
computational domain. The length L of the computational domain is defined in relation to
the choice of the initial condition as explained below. We denote by ¢, = L/uy the travel
time of the soliton in the domain [0, L] . First a numerical solution of (5.3) with initial
conditions (5.4), (5.5) is computed with an explicit finite difference scheme on a mesh of
step Ax™! and provides the reference solution. Ax™ is chosen small enough to provide an
almost ‘exact’ reference solution.

For suitable n and u( given by the study of the Sagdeev potential [6], the potential os-
cillates in space for positive x. One wants a single potential well to initialize the scheme.
To this aim the number of nodes N™f is taken such that the initial condition shows a single
peak. Moreover, it is such that ¢)§§fo is close enough to O to ensure that periodic boundary
conditions will be accurate enough. This reference solution is interpolated to provide an
initial condition for the EPB and REPB schemes, and to compute numerical errors on the
density, momentum and potential.

The results of this comparisons are now commented. Figures 1 and 2 show the density
and velocity in a soliton at times 0, f; /5, 2¢; /5 and t;, computed with the reformulated
scheme. The shape of the initial condition is conserved with time, but the peak is damped and
does not return to its original location after 7, . This effect is due to the numerical diffusion,
which is inherent to the numerical method, and can be observed with the classical scheme
as well. In order to accurately compare the reformulated and classical schemes, one needs
to perform a more precise study of this damping. The forthcoming convergence study uses
six grids, with a range of space steps from & to i /64, where h corresponds to 250 cells. It
confirms that both schemes are first order in space, and even if the REPB scheme suffers
from a larger numerical diffusion than the classical one, both provide satisfactory results for
this test case.
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Density in a soliton Momentum in a soliton
2 T T T T 1.2 T T T T

o
®
T

Momentum
o o
S (2]

: T

. . . . . 02 . . . .
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Fig. 2 Density (left) and momentum (right) as a function of space, for a soliton moving to the right, at time
0,17,/5, 2ty /5 and t,, computed with the REPB scheme. At time #7, the wave has travelled through the whole
computational domain. The solution at time #;, can be superimposed to the solution at time 0, since the grid
is fine enough (Ax = h/64) and the numerical diffusion is very small

Table 1 Comparison of the error in L°° norm for the density, momentum and potential with various space
grid sizes using the EPB and REPB schemes. The computation of the error is made with the analytical solution
for the soliton test case

N egpp(n) eRePB (1) egpp(nu) eREPB(nut) eEPB(®) €REPB(9)
h 0.053 0.102 0.111 0.215 0.066 0.116
h/2 0.028 0.060 0.060 0.131 0.028 0.066
h/4 0.014 0.035 0.032 0.073 0.014 0.035

h/8  7.6x1073 185x 1073 1.64x1072  387x1072  7.12x1073 184 x 1073
h/16  3.86x 1073  957x1073  840x 1073 200x 1072 350x 1073  9.42x 1073
h/32 176 x 1073 4.67x1073 383 x1073  1.00x 1072 231x1073 471 x 1073
h/64  8.89x107% 237x1073  1.97x1073  509x 1073 1.07x1073  241x1073

The numerical convergence of the schemes in space is investigated by comparison with
the reference solution; at time #/5 the L* relative error with the reference solution is com-
puted. For instance the density error is

e (I’l) _ max ”nnum - nref”oo
EPB =
172 el oo '

where n,s is the density of the reference solution, i.e. the initial density translated by L/5,
and ny,, is the density computed with the classical scheme. Such errors are defined for the
reformulated scheme and for the momentum and potential. The schemes are tested on six
grids, made of 250, 500, 1000, 2000, 4000, 8000 and 16000 cells. Table 1 and Fig. 3 confirm
that both numerical schemes are first order in space. The REPB scheme suffers from a larger
numerical dissipation than the EPB scheme.

The numerical dissipation of the schemes can be measured in another way. Indeed, the
amplitude of the numerical soliton is damped with time. The following study quantifies
the damping rates of both the EPB and REPB schemes. This study is performed on a long
time simulation: its final time is 2¢;. This study compares the damping rate of the density
amplitude over one time increment At (not related with the numerical time step), at different
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Fig. 3 Comparison of the error in L° norm for the density, momentum and potential with various spacial
mesh sizes Ax for the EPB and REPB schemes. Both schemes are first order in space

times of the simulation. The time increment At is ¢, /5. The density amplitude 7. ((k +
1)At) is compared to the density amplitude at the previous time increment 7,,x (kAt) for
0 <k <9. We measure the decrement of the amplitude A; between kAt and (k + 1)At as
(nmax((k + 1) A1)
In| ——

follows:

The damping rate of the wave amplitude appears on Fig. 4 for both the EPB and REPB
schemes. Two spatial grids are used for this comparison: a coarse grid with 1000 cells and
a fine grid with 16000 cells. The REPB scheme shows a larger dissipation than the classical
one. The evolution of the damping rates with simulation time is similar for the two schemes:
on a coarse grid the peak is damped faster at the beginning of the simulation.

1
At

Ay (5.6)

5.2 Riemann Problem

The previous test case, in which the domain size and Debye length are of the same order
of magnitude, was designed for the dispersive regime A = O(1). The present test case aims
at investigating how the schemes perform in the hydrodynamic (or quasi-neutral) regime
A < 1. Therefore, in this test case, values of A ranging from small to very small are used.
When A is small, the REPB model explicitly appears as a perturbation of the ICE model,
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Fig. 4 Comparison of the Damping on soliton (density amplitude )
damping rates for the density 0.005 ' ' ' ' ' ' ' '
amplitude of the soliton for the
EPB and REPB schemes on two

different spatial mesh sizes: a _0.005
coarser grid with 1000 cells and a
finer grid with 16000 cells are -0.01
used for both schemes N .
< -0.015[ 4
-0.02 * g
-0.0251 B
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-0.03 - -- EPB fine
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_0.035 . . . . : . :
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which is a strongly hyperbolic and conservative model. Therefore the REPB-based scheme
should be accurate in the hydrodynamic regime, in particular for the computation of solu-
tions involving discontinuities. By contrast, the hydrodynamic part of the EPB model is a
pressureless gas dynamics model, which is not strictly hyperbolic, and is thus weakly un-
stable. For this reason, the EPB-based scheme is expected to be less accurate in the small
Debye length limit. The present test problem aims at testing the validity of these predictions.

The test case is a shock tube problem involving two outgoing shock waves. The initial
density is a constant, while the initial velocity has a jump at x = 0 between the constants
u;, =+1 and ug = —1. The density in the intermediate state of the Riemann problem is
larger and the velocity is zero. Two outgoing shock waves appear on each side of this inter-
mediate state. The computational domain is [—0.2; 0.2]. The dimensionless Debye length A
varies from 1072 to 1074,

The value A = 1072 is large enough for singularities near the shock waves to appear, due
to the dispersive nature of the Euler-Poisson-Boltzmann model. In the semi-classical set-
ting, the framework of multi-valued solutions [29, 30] can be used to explain the qualitative
features of the classical solutions. Indeed, classical solutions keep a signature of these un-
derlying multi-valued solutions, in the form of singularities (when the number of branches
changes) and oscillations (when several branches co-exist and the solution ‘oscillates’ be-
tween these branches). In the A — 0 limit, the entropic solutions of the ICE model capture
the average value of these oscillations, but not the details of them. As we will see, the EPB-
based scheme keeps better track of these oscillations but when the mesh size does not resolve
the Debye length, the oscillations become mesh-dependent. On the other hand, the REPB-
based scheme directly provides the entropic solution of the limiting ICE model and is better
suited to capture the average value of these oscillations (i.e. the weak limit of the solutions
of the EPB model when A — 0).

Figure 5 confirms that the numerical solution provided by the EPB-based scheme in
under-resolved situation is mesh-dependent. It displays the density computed by the EPB-
based schemes for two different mesh sizes. The density peaks computed on the finer mesh
are much finer and higher than those computed on the coarse mesh. By contrast, the veloc-
ity and potential remain finite regardless of the mesh size (not displayed). Figure 6 shows
the velocity and potential computed with the EPB-based scheme compared to the REPB-
based scheme. Like in the soliton test case, the REPB-based scheme shows a slightly larger
numerical dissipation.
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Riemann Shock Waves, t=0.2, A = 1072 Riemann Shock Waves, t = 0.2, A = 1072
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Fig. 5 Density as a function of space for the Riemann shock-wave problem at time ¢ = 0.2 with dimension-
less Debye length A = 1072, Left: classical scheme with a coarse grid (N = 2000). Right: classical scheme
with a fine grid (N = 32000). Density peaks are sharpened when the mesh size decreases
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Fig. 6 Velocity (left) and potential (right) as a function of space for the Riemann shock-wave problem at

time t = 0.2 with dimensionless Debye length A = 10~2. EPB-based (dashed line) and REPB-based (solid
line) schemes on a fine grid (N = 32000)

The value A = 10~* is small enough to observe the hydrodynamic regime. Both schemes
show an accurate determination of the shock speed but the EPB scheme leads to spurious
oscillations in the neighborhood of the shock. These oscillations are shown on Fig. 7. They
are mesh dependent and occur even with smaller dimensionless Debye length A. Whatever
the mesh size is the solution computed with the reformulated REPB scheme does not present
such oscillations.

This test case shows that the EPB and REPB-based schemes have a very different behav-
ior when A < 1. In such under-resolved situations, while the EPB scheme presents mesh-
dependent oscillations of finite amplitude, the REPB-based scheme provides an accurate
approximation of the entropic solution of the limiting ICE model. As a conclusion, the
REPB-based scheme should be preferred for the A < 1 regime.
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Fig. 7 Density as a function of space for the Riemann shock-wave problem at time r = 0.1 and r = 0.2 with
dimensionless Debye length A = 1074, Left: EPB and REPB-based schemes on a coarse grid (N = 2000).
Right: same schemes on a fine grid (N = 32000)

5.3 Dispersive Solutions Test-Cases
5.3.1 Description

In this section, we present test-cases which are inspired from [30]. In [30], the goal was
to explore the computation of multi-valued solutions in the semi-classical setting by means
of the level-set method. Here we consider only classical solutions. The first test case is re-
ferred to as a five branch test case (because it corresponds to the occurrence of a five branch
multi-valued solutions in the semi-classical setting). The second test is a seven branch test
case (for the same reason). The initial densities of both test-cases are bumps with a gaussian
shape. This shape leads to a potential well which generates an induced electric field. This
electric field in turn contracts the density bump leading to a positive feedback amplifica-
tion. This effect can be further amplified by setting up appropriate initial velocities. In the
dispersive regime the amplification of the density peak can lead to singularities, whereas in
the hydrodynamic regime the density spreads out in the entire computational domain and its
profile remains smooth.

The emergence of singularities has been investigated by Liu and Wang [29, 30]. The
authors compute multi-valued solutions for similar test cases but with the standard Poisson
equation (without the exponential term coming from the Boltzmann relation) that allows
the computation of analytical solutions. Here, no analytical solution is available but the
two schemes (EPB and REPB) are tested one against each other and against a numerically
computed reference solution on a very fine mesh. Due to the singularities appearing when
A =1 the numerical error is computed with the potential, which remains finite in every
situation. The tests are run with A = 1 and A = 1072 in order to explore both the dispersive
and hydrodynamic regimes. The results would be similar if A was further reduced.

5.3.2 Five-Branch Solution

The initial condition for this first test-case is given by

1

(x—m)2
L,
T

ng =

uo = sin’ x.
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Fig. 8 Density (left) and velocity (right) as a function of space for the five-branch test case. The dimension-
less Debye length A is 1. Numerical solutions at time ¢ = 1 are computed with the EPB and REPB-based
schemes on a grid with 2000 cells
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Fig. 9 Density (left) and velocity (right) as a function of space for the five-branch test case. The dimension-
less Debye length A is 10~2. Numerical solutions at time ¢ = 1 are computed with the EPB and REPB-based
schemes on a grid with 2000 cells

Table 2 Five-branch test case: comparison of the error in L norm on the potential for various grid sizes
and dimensionless Debye length A using the EPB and REPB-based schemes

N eepp(¢). A= 1 erEPB($), A =1 eepp(¢), A =10"2 erEPB($), A =1072
8000 5x 1073 1.4 x 10~ 40x 1074 7.6 x 1074
4000 1.5x 1074 2.8 x 1074 1.0 x 1073 1.8 x 1073
2000 3.4 x 1074 5.4 x 1073 23 x1073 3.7 %1073

The computational domain is [0, 27]. The initial density and velocity appear on Figs. 8 and
9, together with the numerical solutions computed at time # = 1 by means of the EPB and
REPB-based schemes. Table 2 shows the numerical error on the potential by comparison
against a solution computed with the classical scheme on a fine grid.
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Fig. 10 Density (left) and velocity (right) as a function of space for the seven-branch test case. The dimen-
sionless Debye length A is 1. Numerical solutions at time ¢t = 1 are computed with EPB and REPB-based
schemes on a grid with 2000 cells
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Fig. 11 Density (left) and velocity (right) as a function of space for the seven-branch test case. The dimen-
sionless Debye length A is 10~2. Numerical solutions at time 7 = 1 are computed with EPB and REPB-based
schemes on a grid with 2000 cells

5.3.3 Seven-Branch Solution

The initial condition for this second test-case is given by

1 2
_e,(x,ﬂ)

T

ng =

uop = sin(2x) cosx.
The initial density and velocity appear on Figs. 10 and 11, together with the numerical
solutions computed at time ¢ = 1 using the EPB and REPB-based schemes. Table 3 shows

the numerical error on the potential by comparison against a solution computed with the
classical scheme on a fine grid.
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Table 3 Seven-branch test case: comparison of the error in L norm on the potential for various grid sizes
and dimensionless Debye length A using the classical and reformulated Euler-Poisson-Boltzmann schemes

N cEpB(@), A =1 eREPB(9), A =1 eEpB(¢), A = 1072 erePB(P), A = 1072
8000 4.6 x 1073 45x 107 23x107% 7.6 x 1074
4000 1.4 x107% 7.4 x 1074 6.7 x 107% 1.6 x 1073
2000 32x107% 1.2 x 1073 1.29x 1073 3.5% 1073

5.3.4 Analysis of the Results for the Five and Seven Branch Test Cases

In both the dispersive (A = 1) and hydrodynamic (A = 1072) regimes, the two schemes give
similar results. On Figs. 8, 9, 10 and 11, overlapping lines for the solution at time # = 1
computed with the EPB and REPB-based schemes confirm this similar behavior. One can
exhibit some differences thanks to the numerical convergence study. Tables 2 and 3 show the
same differences between the two schemes as in the previously discussed soliton test case.
The error of the reformulated scheme is slightly larger than that of the classical scheme, and
this difference is more obvious when A = 1.

6 Conclusion

In this paper, we have analyzed two schemes for the Euler-Poisson-Boltzmann (EPB) model
of plasma physics, and compared them in different regimes characterized by different values
of the dimensionless Debye length A. The dispersive regime corresponds to A = O (1) while
the hydrodynamic regime is characterized by A < 1. When A — 0, the EPB model formally
converges to the Isothermal Compressible Euler (ICE) model. The first scheme we have
considered is based on the original EPB formulation of the model. The second one uses a
reformulation (referred to as the REPB model) in which the model more explicitly appears
as a singular perturbation of the ICE Model.

We have provided a stability analysis of the two schemes, showing that both schemes
are stable in both the dispersive and hydrodynamic regimes, with stability constraints on the
time and mesh steps which are independent of A when A — 0. Finally, we have tested them
on three different one-dimensional test problems. The first test problem, the soliton test, pro-
vides an analytical solution in the dispersive regime. The second test problem, the Riemann
problem with two expanding shock waves, is suitable to explore the hydrodynamic regime.
Finally, the third test problem involves singularity formation in the dispersive regime.

We have concluded that both scheme have similar behavior in the dispersive regime (with
a slightly increased, but perfectly acceptable numerical diffusion in the case of the REPB-
based schemes). By contrast, in the hydrodynamic regime, the EPB-based schemes develop
oscillations and singularities, which, in under-resolved situations (i.e. when the time and
space steps are too large to resolve the spatio-temporal variations of the solution) prevent
any grid convergence of the solution. By contrast, the REPB-based scheme well captures
the entropic solution of the ICE model, which provides a good approximation of the weak
limit of the dispersive (oscillatory) solutions of the EPB model in the small A regime.

Future works concern the extension of this analysis to the two- or multi-dimensional
case, the passage to second order schemes and the pursuit of the analytical investigations of
the accuracy and stability of the schemes in both regimes.
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