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Abstract. We propose a novel numerical method for the semiclassical limit of the Schrödinger
equation. When using deterministic particle methods, point values of the computed solutions
have to be recovered from their singular particle approximations by using some smoothing
procedure. The choice of the smoothing procedure is rather flexible. Moreover, there is always
a parameter associated with the smoothing procedure: if this parameter is too large, the
numerical solution loses its accuracy; if it is too small, oscillation appears. No explicit formula
has been given on how to choose this parameter.

Based on the idea of [30], we develop a particle method in which we use the conservation of
charge for the reconstruction of density. This method avoids the recovery step of the previous
particle methods, thus it is simpler and more accurate. In particular it gives more accurate
field quantities. Consequently, we apply the new method to the Vlasov-Poisson equations,
which yields more accurate density and electric filed in each time step. We carry out numerical
experiments in both one and two dimensions for the Schrödinger equation and Vlasov-Poisson
equations to verify the method. Some comparisons with the other particle methods are also
made.

1. Introduction

In this paper, we propose a novel numerical method for the Liouville equation

ft +Hξ · ∇xf −Hx · ∇ξf = 0 , t > 0, x, ξ ∈ Rd , (1.1)

with initial data
f(0,x, ξ) = ρ0(x)δ(ξ − u0(x)) . (1.2)

The function f(t,x, ξ) is the density distribution of particles depending on position x, time t
and velocity ξ. The solution to this problem is a superposition of delta functions of variable
weight concentrating on the bi-characteristic strips of the equation which is governed by the
Hamiltonian system

∂x

dt
= ∇ξH ,

∂ξ

dt
= −∇xH ,

with the Hamiltonian

H(x, ξ) =
1

2
|ξ|2 + V (x), (1.3)

where V (x) is the potential function.
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We will also consider the Vlasov-Poission equations which are just (1.1) with potential V
given by

∆xV =

∫
Rd

f(x,v, t)dv =: ρ(x, t) . (1.4)

Equation (1.1) provides a phase space description of the semiclassical limit of the Schödinger
equation [9, 19]:

i~∂tψ~ = −~2

2
∆ψ~ + V (x)ψ~, x ∈ Rd, (1.5)

where ψ~ is the complex-valued wave function, ~ the reduced Planck constant. In this setting,
one typically considers the Schrödinger equation (1.5) with the WKB initial data of the form

ψ(x, 0) = A0(x) exp(iS0(x)/~) (1.6)

with smooth S0. In the semiclassical limit ~ → 0, the Wigner transform of ψ is f that satisfies
the Liouville equation (1.1) with the mono-kinetic initial data (1.2):

f(0,x, ξ) = |A0(x)|2δ(ξ −∇xS0(x)) =: ρ0(x)δ(ξ −∇xS0(x)). (1.7)

The Vlasov-Poission equations arise in semoconductor device modeling [23] and plasma
physics [18]. For mathematical analysis of this system see [2, 20, 31, 21, 22], while for nu-
merical methods see [11, 1, 8, 28, 29].
When one closes (1.1) and (1.2) with the moments–which give the density and momentum of

particles–the moment system satiefies the pressureless gas dynamics equations, which develop
delta-shock solutions in finite time, corresponding to caustics in geomertic optics. Beyond the
caustics, only the multi-valued solutions are physically relevant [27, 12]. The computation of
multivalued solutions in geometrical optics and semiclassical limit of the Schrödinger equation,
using the Liouville equation (1.1) in the Eulerian level set framework, has been an active area
of research in recent years, see for examples [24, 3, 17, 14]. Recent overviews of this subject
can be found in [7, 13].
We focus our attention on the Lagrangian particle methods. When using the particle method,

one has to recover the point values of the computational solutions from their singular particle
approximations which are Dirac delta functions. The most common approach is to approximate
the Dirac delta function by its convolution with a smooth kernel, see, e.g., [5, 26, 6]. For a
comparison between the convolution recovery and other redistribution recovery strategies, see
[4]. In this paper, we propose a more accurate recovery strategy. The idea was first introduced
in [30] to deal with the 1D Vlasov-Poisson equations with electron sheet initial data, and it is
based on the following conservative quantity∫

Υ(0)

f(0,x, ξ)dξdx =

∫
Υ(t)

f(t,x, ξ)dξdx, ∀Υ(0) ⊂ R2d, ∀t, (1.8)

where

Υ(t) =

{
(x, ξ)(t,x0, ξ0)

∣∣∣∣dxds = ξ,
dξ

ds
= −∇xV, x(0) = x0, ξ(0) = ξ0, (x0, ξ0) ∈ Υ(0)

}
.

We call this the conservation of charge. This allows one to get a more accurate density ρ, which
is only a postprocessing for (1.1) of course, but for equations with a field, such as the Vlasov-
Poission equations (1.1) and (1.4), it provides a more accurate (time-dependent) potential–and
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consequently the electric field E = −∇xV – at each time step, thus enhances the numerical
accuracy overall in long time.
This paper is organized as follows. In section 2, we derive a formula of weak solutions of

the Liouville equations with singular (measure-valued) initial data. In section 3, we describe
a numerical density reconstruction method based on the conservation of charge (1.8) for one,
two and general space dimensions. In section 4, we extend the method to the Vlasov-Poisson
equations. In section 5, 1D and 2D numerical examples are given for the Liouville equations
and Vlasov-Poisson equations, and comparisons are made with classical particle methods. This
paper is concluded in section 6.

2. Weak solution of the Liouville equation with measure-valued initial data

We construct weak solutions of the one-dimensional Liouville equations with measure-valued
initial data in section 2.1. Then we extend the result to the multi-dimensional case.

2.1. One space dimension.
First, we introduce the following definition which will be used in the weak solution formula.

Definition 2.1. Let C be a curve in the x-ξ space. Let C(α) =
{(
x(α), ξ(α)

)∣∣∣α ∈ Ω
}

be a

parameterized form of C. The function ϑC(x, ξ) is a surface measure supported on the curve
C, defined by∫

R2

ψ(x, ξ)ϑC(x, ξ)dξdx =

∫
Ω

ψ
(
x(α), ξ(α)

)∣∣∣∣dC(α)dα

∣∣∣∣dα, ∀ψ ∈ C∞
0 (R2), (2.1)

where

∣∣∣∣dC(α)dα

∣∣∣∣ = √
x′(α)2 + ξ′(α)2.

Remark 2.1. The definition 2.1 is independent of the choice of the parametrization α. Without

loss of generality, we assume α ∈ Ω = (a, b). Let C(β) =
{(
x̃(β), ξ̃(β)

)∣∣∣β ∈ (r, s)
}

be

another parameterized form of C. Then there exists a unique monotonic function g such that(
x(g(β)), ξ(g(β))

)
=

(
x̃(β), ξ̃(β)

)
. Therefore∫ b

a

ψ
(
x(α), ξ(α)

)√
x′(α)2 + ξ′(α)2dα

=

∫ g−1(b)

g−1(a)

ψ
(
x(g(β)), ξ(g(β))

)√
x′(g(β))2 + ξ′(g(β))2d(g(β))

=

∫ g−1(b)

g−1(a)

ψ
(
x̃(β), ξ̃(β)

)√
(x̃′(β)2 + ξ̃′(β)2)/g′(β)2g′(β)dβ

=

∫ g−1(b)

g−1(a)

sign(g′(β))ψ
(
x̃(β), ξ̃(β)

)√
(x̃′(β)2 + ξ̃′(β)2)dβ

=

∫ s

r

ψ
(
x̃(β), ξ̃(β)

)√
(x̃′(β)2 + ξ̃′(β)2)dβ.
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Remark 2.2. If one considers the mono-kinetic initial data then the following forms are
equivalent in the weak sense:

f(0, x, ξ) = ρ0(x)δ(ξ −∇xS0(x)), (2.2)

f(0, x, ξ) = ρ0(x)
∣∣∣dC(x)
dx

∣∣∣−1

ϑC , (2.3)

where
C(x) =

{(
x, ξ(x)

)
=

(
x,∇xS0(x)

)∣∣∣x ∈ (−∞,∞)
}
. (2.4)

We verify it below: ∀ψ ∈ C∞
0 (R2),∫ ∞

−∞

∫ ∞

−∞
ψ(x, ξ)ρ0(x)δ(ξ −∇xS0(x))dξdx =

∫ ∞

−∞
ψ
(
x,∇xS0(x)

)
ρ0(x)dx, (2.5)∫ ∞

−∞

∫ ∞

−∞
ψ(x, ξ)ρ0(x)

∣∣∣dC(x)
dx

∣∣∣−1

ϑCdξdx =

∫ ∞

−∞
ψ
(
x,∇xS0(x)

)
ρ0(x)

∣∣∣dC(x)
dx

∣∣∣−1∣∣∣dC(x)
dx

∣∣∣dx.(2.6)
Thus (2.5) and (2.6) are identical for all test functions, hence (2.2) and (2.3) are equivalent in
the weak sense.

Remark 2.3. A general measure supported on the curve C(α) has the form h(x, ξ)ϑC , such
that∫

R2

ψ(x, ξ)h(x, ξ)ϑC(x, ξ)dξdx =

∫
Ω

ψ
(
x(α), ξ(α)

)
h
(
x(α), ξ(α)

)∣∣∣∣dC(α)dα

∣∣∣∣dα, ∀ψ ∈ C∞
0 (R2).

(2.7)
Notice that for function h, only the value on the curve C matters, that is, only

h(x(α), ξ(α)) =: h(α) (2.8)

matters. Therefore, we denote the measure as

h(x, ξ)ϑC =: h(α)ϑC(α). (2.9)

We give a formula for weak solutions of the 1D Liouville equations in the following theorem.

Theorem 2.1. Consider (1.1) subject to the delta function initial data, i.e., a measure sup-

ported on a curve C(α, 0) =
{(
x(α, 0), ξ(α, 0)

)∣∣∣α ∈ Ω
}

which has the following form

f(0, x, ξ) = ϱ0(α)
∣∣∣dC(α, 0)

dα

∣∣∣−1

ϑC(α,0). (2.10)

Denote the solution of the initial value problem of the Hamiltonian system

dx

dt
= ξ,

dξ

dt
= −∇xV, x(0) = x(α, 0), ξ(0) = ξ(α, 0), (2.11)

by
(
x(α, t), ξ(α, t)

)
. Then

f(t, x, ξ) = ϱ0(α)
∣∣∣dC(α, t)

dα

∣∣∣−1

ϑC(α,t) (2.12)

is a weak solution to (1.1), which is a delta function supported on the curve

C(α, t) =
{(
x(α, t), ξ(α, t)

)∣∣∣α ∈ Ω
}
.
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Moreover, for every interval (β, γ), let Λ(t) =
{(
x(α, t), ξ(α, t)

) ∣∣∣α ∈ (β, γ)
}
, then∫

R2

f(x, ξ, 0)IΛ(0)dxdξ =

∫
R2

f(x, ξ, t)IΛ(t)dxdξ =

∫ γ

β

ϱ0(α)dα, ∀t. (2.13)

Proof. For all ψ ∈ C∞
0

(
R× R× [0, T ]

)
, since

dx(α, t)

dt
= ξ(α, t),

dξ(α, t)

dt
= −∇xV,

it follows that

dψ(x(α, t), ξ(α, t), t)

dt
=

∂ψ(x(α, t), ξ(α, t), t)

∂t
+ ξ(α, t) · ∇xψ(x(α, t), ξ(α, t), t)

−∇xV · ∇ξψ(x(α, t), ξ(α, t), t).

Therefore ∫ T

0

∫
R2

(ψft + ψξ · ∇xf − ψ∇xV · ∇ξf)dxdξdt

= −
∫ T

0

∫
R2

(ψtf + fξ · ∇xψ − f∇xV · ∇ξψ)dxdξdt

= −
∫ T

0

∫
R

[∂ψ(x(α, t), ξ(α, t), t)
∂t

+ ξ(α, t) · ∇xψ(x(α, t), ξ(α, t), t)

−∇xV · ∇ξψ(x(α, t), ξ(α, t), t)
]
ϱ0(α)

∣∣∣dC(α, t)
dα

∣∣∣−1∣∣∣dC(α, t)
dα

∣∣∣dαdt
= −

∫ T

0

∫
R

dψ(x(α, t), ξ(α, t), t)

dt
ϱ0(α)dαdt = 0.

�
We now explain the relationship between f(t, x, ξ) and the physical observables. First, for

the mono-kinetic initial data

f(0, x, ξ) = ρ0(x)δ(ξ −∇xS0(x)) = ρ0(x)
∣∣∣dC(x)
dx

∣∣∣−1

ϑC ,

ρ0(x) is the local density, that is,

ρ0(x) =

∫ ∞

−∞
f(0, x, ξ)dξ. (2.14)

If we fix x, then f(0, x, ξ) is a Dirac-delta function with respect to ξ supported on the point
∇xS0(x).
Next, we consider the general case, where f(t, x, ξ) is a measure supported on C(α, t), and

C(α, t) is not necessarily a graph in the x-ξ plane. We claim the following theorem

Theorem 2.2. Consider a solution of (1.1) with the following form

f(t, x, ξ) = ϱ0(α)
∣∣∣dC(α, t)

dα

∣∣∣−1

ϑC(α,t). (2.15)
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∀w ∈ R, such that x(α, t) = w has finite many solutions which are denoted by

α1(w), α2(w), . . . , αk(w),

that is

x(α1(w), t) = x(α2(w), t) = · · · = x(αk(w), t) = w, (2.16)

and

∂x

∂α

∣∣∣∣
α=αj(w)

̸= 0, j = 1, . . . , k, (2.17)

there exists κ > 0, such that

f(t, z, ξ) =
k∑

j=1

ϱ0(αj(z))
∣∣∣∂x
∂α

∣∣∣−1

α=αj(z)
δ(ξ − ξ(αj(z))), ∀z ∈ (w − κ,w + κ). (2.18)

Proof. For every fixed w satisfies (2.16) and (2.17), there exists τ > 0, such that x(α, t) is
one-to-one on (αj(w)− τ, αj(w) + τ), j = 1, . . . , k. Denote

gj(α) = x(α, t), α ∈ (αj(w)− τ, αj(w) + τ), j = 1, . . . , k. (2.19)

Consequently, there exists κ > 0, such that ∀z ∈ (w−κ,w+κ), the equation x(α, t) = z yields
exactly k solutions α1(z), . . . , αk(z), such that

αj(z) ∈ (αj(w)− τ, αj(w) + τ), j = 1, . . . , k. (2.20)

See the graph below. Therefore, ∀z ∈ (w − κ,w + κ) and ∀ψ ∈ C∞
0 (R2), we have
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x

ξ

 (x(α
4
(w),t),ξ(α

4
(w),t))

(x(α
3
(w),t),ξ(α

3
(w),t)) 

 (x(α
5
(w),t),ξ(α

5
(w),t))

(x(α
1
(w),t),ξ(α

1
(w),t))

 (x(α
2
(w),t),ξ(α

2
(w),t))

ww−κ  w+κ
Figure 1: A simple illustration of (2.20)∫ ∞

−∞
ψ(z, ξ)f(t, z, ξ)dξ

=
∂

∂z

∫ z

−∞

∫ ∞

−∞
ψ(x, ξ)f(t, x, ξ)dξdx

=
∂

∂z

∫ z

w−κ

∫ ∞

−∞
ψ(x, ξ)f(t, x, ξ)dξdx

=
∂

∂z

∫ z

w−κ

∫ ∞

−∞
ψ(x, ξ)ϱ(α)

∣∣∣dC(α)
dα

∣∣∣−1

ϑCdξdx

=
∂

∂z

( k∑
j=1

sign(g−1
j (z)− g−1

j (w − κ))

∫ αj(z)=g−1
j (z)

g−1
j (w−κ)

ψ
(
x(α), ξ(α)

)
ϱ(α)

∣∣∣dC(α)
dα

∣∣∣−1∣∣∣dC(α)
dα

∣∣∣dα)

=
∂

∂z

( k∑
j=1

sign(g−1
j (z)− g−1

j (w − κ))

∫ αj(z)=g−1
j (z)

g−1
j (w−κ)

ψ
(
x(α), ξ(α)

)
ϱ(α)dα

)

=
k∑

j=1

sign(g−1
j (z)− g−1

j (w − κ))
∂
(
g−1
j (z)

)
∂z

ψ
(
x(αj(z)), ξ(αj(z))

)
ϱ(αj(z))

=
k∑

j=1

∣∣∣∣∂x∂α
∣∣∣∣−1

α=αj(z)

ψ
(
x(αj(z)), ξ(αj(z))

)
ϱ0(αj(z)).

=
k∑

j=1

ψ
(
z, ξ(αj(z))

)∣∣∣∣∂x∂α
∣∣∣∣−1

α=αj(z)

ϱ0(αj(z))

=

∫ ∞

−∞
ψ(z, ξ)

( k∑
j=1

ϱ0(αj(z))
∣∣∣∂x
∂α

∣∣∣−1

α=αj(z)
δ(ξ − ξ(αj(z)))

)
dξ.
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�

Remark 2.4. If there are infinite but countably many solutions of x(α) = z, then there exists
∂x
∂α
|α=αj(z) = 0, and the local density ρ(z, t) = ∞. If the set {α|x(α, t) = z} is not discrete, i.e.,

its measure in R is greater than 0, then the local density ρ(z, t) is a Dirac mass.

We define

ρ̃(α, t) :=

∣∣∣∣∂x(α, t)∂α

∣∣∣∣−1

ϱ0(α). (2.21)

Then

f(t, z, ξ) =
k∑

j=1

ρ̃(αj(z), t)δ
(
ξ − ξ(αj(z), t)

)
. (2.22)

Thus the physical observables at x = z are

ρ(z, t) =

∫ ∞

−∞
f(t, z, ξ)dξ =

k∑
j=1

ρ̃(αj(z), t), (2.23)

ρum(z, t) =

∫ ∞

−∞
ξmf(t, z, ξ)dξ =

k∑
j=1

ρ̃(αj(z), t)ξ(αj(z), t)
m. (2.24)

Suppose x(α, t) is one-to-one on (β, γ). Denote its inverse on (β, γ) by α(z) = x−1(z). Let

Λ =
{(
x(α, t), ξ(α, t)

) ∣∣∣α ∈ (β, γ)
}
, (2.25)

then ∫ ∞

−∞

∫ ∞

−∞
IΛf(t, z, ξ)dξdx

=

∫ γ

β

ϱ0(α)
∣∣∣dC(α, t)

dα

∣∣∣−1∣∣∣dC(α, t)
dα

∣∣∣dα
=

∫ γ

β

ϱ0(α)dα

=

∫ x(γ)

x(β)

ϱ0(x
−1(z))

(
∂x−1

∂z

)
dz α(z) = x−1(z)

= sign(x(γ)− x(β))

∫ x(γ)

x(β)

ρ̃(α(z), t)dz.

(2.26)

Let

M(ϖ) =

∫ ϖ

0

ϱ0(α)dα, (2.27)

then

sign(x(γ)− x(β))

∫ x(γ,t)

x(β,t)

ρ̃(α(z), t)dz =M(γ)−M(β) =

∫ γ

β

ϱ0(α)dα. (2.28)
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We summarize the result here. To calculate the physical observables, one needs the following
information: (i) the curve C(α, t) and (ii) ρ̃(α, t). Then to find the moment ρum(z, t) at z, we
solve x(α, t) = z, suppose there are k solutions α1, . . . , αk, then

ρum(z, t) =
k∑

j=1

ρ̃(αj, t)ξ
m(αj, t). (2.29)

The detailed numerical algorithm is given in Section 3.

2.2. Multi-dimensional case.
Now, we extend Definition 2.1 to surface measure supported on a hyperplane in multi-dimensional
space.

Definition 2.2. Let P be a hyperplane in the x-ξ space, x ∈ Rd, ξ ∈ Rd. Let P (α) ={(
x(α), ξ(α)

)∣∣∣α ∈ Ω
}

be a parameterized form of P . The function ηP (x, ξ) is a surface

measure supported on the hyperplane P , defined by∫
R2d

ψ(x, ξ)ηP (x, ξ)dξdx =

∫
Ω

ψ
(
x(α), ξ(α)

)dA(α)

dα
dα, ∀ψ ∈ C∞

0 (R2d), (2.30)

where
∫
Λ

dA(α)

dα
dα is the area of the hyperplane P (α ∈ Λ), ∀Λ ⊂ Ω.

Remark 2.5. It is easy to verify that definition 2.2 is independent of the choice of the
parametrization α.

In general, the hyperplane has dimension 0 ≤ k ≤ 2d, with Ω ⊂ Rk. The mono-kinetic initial
data (1.7) is a special case of (2.30), where the hyperplane has dimension d. More precisely,
(1.7) is equivalent to a measure supported on a hyperplane P (x,∇xS0(x)) such that the local
density

∫
Rd fdξ = ρ0(x), that is,

f(0,x, ξ) = ρ0(x)
(dA
dx

)−1

ηP (x, ξ).

We verify it below: ∀ψ ∈ C∞
0 (R2d),∫

R2d

ψ(x, ξ)ρ0(x)δ(ξ −∇xS0(x))dξdx =

∫
Rd

ψ
(
x,∇xS0(x)

)
ρ0(x)dx,∫

R2d

ψ(x, ξ)ρ0(x)
(dA
dx

)−1

ηP (x, ξ)dξdx =

∫
Rd

ψ
(
x,∇xS0(x)

)
ρ0(x)

(dA
dx

)−1(dA
dx

)
dx.

Thus ∫
R2d

ψ(x, ξ)ρ0(x)δ(ξ −∇xS0(x))dξdx =

∫
R2d

ψ(x, ξ)ρ0(x)
(dA
dx

)−1

ηP (x, ξ)dξdx.

In general, we do not require P to be a graph in x−ξ space with dimension d. Let g(x, ξ) =
p(x, ξ)ηP be a surface measure supported on P . Then the value of p on P determines the
measure g. More precisely, p(α) := p

(
x(α), ξ(α)

)
,α ∈ Ω, determines g. Therefore, for

P (α) =
{(

x(α), ξ(α)
)∣∣∣α ∈ Ω

}
, we simply denote g as

g(α) = p(α)ηP (α).
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Theorem 2.3. Consider (1.1) with measure initial data, i.e., a measure supported on a hy-
perplane with dimension k which has the form P (α, 0) = (x0(α), ξ0(α)), α ∈ Ω ⊂ Rk, with

weight p(α, 0) = ϱ0(α)
∣∣∣dA(α, 0)

dα

∣∣∣−1

. Denote the solution of the initial value problem to the

Hamiltonian system

dx

dt
= ξ,

dξ

dt
= −∇xV, x(0) = x0(α), ξ(0) = ξ0(α), (2.31)

by
(
x(α, t), ξ(α, t)

)
. Then a measure supported on the hyperplane P (α, t) = (x(α, t), ξ(α, t)),

α ∈ Ω, with the weight given by

p(α, t) = ϱ0(α)
∣∣∣dA(α, t)

dα

∣∣∣−1

,

is a weak solution to (1.1) with the given initial data. Let PΛ(t) = {
(
x(α, t), ξ(α, t)

)
|α ∈ Λ ⊂

Rk}. Then ∫
R2d

f(x, ξ, 0)IPΛ(0)dxdξ =

∫
R2d

f(x, ξ, t)IPΛ(t)dxdξ, ∀Λ ⊂ Ω, ∀t, (2.32)

that is, ∫
Λ

p(α, 0)
dA(α, 0)

dα
dα =

∫
Λ

p(α, t)
dA(α, t)

dα
dα. (2.33)

Proof. ∀ψ ∈ C∞
0

(
Rd × Rd × [0, T ]

)
,∫ T

0

∫
R2d

(ψft + ψξ · ∇xf − ψ∇xV · ∇ξf)dxdξdt

= −
∫ T

0

∫
R2d

(ψtf + fξ · ∇xψ − f∇xV · ∇ξψ)dxdξdt

= −
∫ T

0

∫
Rk

[∂ψ(x(α, t), ξ(α, t), t)
∂t

+ ξ(α, t) · ∇xψ(x(α, t), ξ(α, t), t)

−∇xV · ∇ξψ(x(α, t), ξ(α, t), t)
]
ϱ0(α)

∣∣∣dA(α, t)
dα

∣∣∣−1∣∣∣dA(α, t)
dα

∣∣∣dαdt
= −

∫ T

0

∫
Rk

dψ(x(α, t), ξ(α, t), t)

dt
ϱ0(α)dαdt = 0.

Here we used the fact that

dx(α, t)

dt
= ξ(α, t),

dξ(α, t)

dt
= −∇xV,

therefore

dψ(x(α, t), ξ(α, t), t)

dt
=

∂ψ(x(α, t), ξ(α, t), t)

∂t
+ ξ(α, t) · ∇xψ(x(α, t), ξ(α, t), t)

−∇xV · ∇ξψ(x(α, t), ξ(α, t), t).

�
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Consider the Liouville equation with initial data (1.7), that is Ω ⊂ Rd. Similar to the

one-dimensional case, denote ρ̃(α, t) :=

∣∣∣∣∂x(α, t)∂α

∣∣∣∣−1

ϱ0(α), then f(t,x, ξ) can be rewritten as

f(t, z, ξ) =
k∑

j=1

ρ̃(αj(z), t)δ
(
ξ − ξ(αj(z), t)

)
, (2.34)

where α1(z), . . . ,αk(z) are solutions of x(α, t) = z. Moreover, if x(α, t) is one-to-one on
α ∈ Ω1 ⊂ Ω, then ∫

x(Ω1)

ρ̃(x−1(z), t)dz =

∫
Ω1

ϱ0(α)dα. (2.35)

3. The detailed numerical implementation

3.1. The one-dimensional numerical implementation.
We now describe the numerical details for the one-dimensional Liouville equation. Suppose the
initial data is given by

f(0, x, ξ) = ϱ0(α)
∣∣∣dC(α, 0)

dα

∣∣∣−1

ϑC(α,0). (3.1)

Without loss of generality, we assume α ∈ (0, 1).

Step 1. Let αj =
j

N
, j = 0, . . . , N .

Step 2. Evaluate the initial charge

mj =

∫ αj

αj−1

ϱ0(α)dα j = 1, . . . , N,

numerically by some quadrature rule or analytically if possible.
Step 3. Solve

dxj(t)

dt
= ξj,

dξj(t)

dt
= −Vx, xj(0) = x(αj, 0), ξj(0) = ξ(αj, 0),

numerically to obtain xj(T ), uj(T ), j = 0, . . . , N .

Step 4. Approximate C(α, T ). For example, if a piecewise linear approximation is used, one
gets

x(α, T ) = xj−1(T ) +
α− αj−1

N

(
xj(T )− xj−1(T )

)
, (3.2a)

ξ(α, t) = ξj−1(T ) +
α− αj−1

N

(
ξj(T )− ξj−1(T )

)
, (3.2b)

α ∈ (αj−1, αj), j = 1, . . . , N.

This also gives a multi-valued solution of the velocity ũ, that is,

ũ(x(α, t), t) = ξ(α, t), α ∈ (0, 1). (3.3)

ũ can be multi-valued since it is possible that x(β1, t) = x(β2, t) for β1 ̸= β2.
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Step 5. By (2.28)

sign(x(αj+1, T )− x(αj, T ))

∫ x(αj+1,T )

x(αj ,T )

ρ̃(α(z), t)dz =M(αj+1)−M(αj) = mj. (3.4)

We use a constant to approximate ρ̃(α, T ) on α ∈ (αj, αj+1). That is,

ρ̃(α, T ) ≈ mj

|x(αj+1, T )− x(αj, T )|
, α ∈ (αj, αj+1). (3.5)

Similar to ũ, ρ̃ gives a multi-valued solution of density. The (single valued) position density is
given by

ρ(y, T ) =
N−1∑
j=0

mj

|x(αj+1, T )− x(αj, T )|
I(x(αj ,T ),x(αj+1,T ))(y). (3.6)

Step 6. Compute any desired physical observables by using the results of Step 4 and 5. For
example

ρ(y, T )u(y, T ) =
k∑

p=1

ρ̃(αp(y), T )ξ(αp(y), T ), (3.7)

where αp(y) are solutions of x(α, T ) = y. By (3.2), if y ∈ (x(αj, T ), x(αj+1, T )), then α =
y−xj(T )

xj+1(T )−xj(T )
N + αj is a solution of x(α, T ) = y, and ξ(α, t) = ξj(T ) +

(y−xj(T ))(ξj+1(T )−ξj(T ))

xj+1(T )−xj(T )
.

Therefore

ρ(y, T )u(y, T ) =
N−1∑
j=0

mj

|x(αj+1, T )− x(αj, T )|
I(x(αj ,T ),x(αj+1,T ))(y)

(
ξj(T ) +

(y − xj(T ))(ξj+1(T )− ξj(T ))

xj+1(T )− xj(T )

)
.

(3.8)

3.2. The multi-dimensional numerical implementation.
We briefly describe the multi-dimensional procedure with the use of (2.33)

Step 1. Decompose Ω into N subdomains, Ω1,Ω2, . . .ΩN , each has k + 1 vertices, which are
initial particle positions.

Step 2. Evaluate the initial charge

mj =

∫
Ωj

p(α, 0)
dA(α, 0)

dα
dα j = 1, . . . , N,

numerically by some quadrature rule or analytically if possible.
Step 3. Follow all particles by numerically solving

dx(t)

dt
= ξ,

dξ(t)

dt
= −∇xV, x(0) = x(α, 0), ξ(0) = ξ(α, 0), (3.9)

Step 4. Approximate P (α, T ) by a piecewise linear function. That is, connecting vertices at
time T in the original order to approximate Ωj(T ). Use the linear interpolation to approximate
ξ(α, T ) for α ∈ Ωj(0).
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Step 5. Approximate ρ̃(α, T ) on α ∈ Ωj(0) by a constant, that is, let

ρ̃(α, T ) =
mj

|Ωj(T )|
, α ∈ Ωj(0).

Step 6. Calculate any desired physical observables by taking the moments of f(x, ξ, T ). For
a 2D example of this step, see section 3.3.

Remark 3.1. When using the deterministic particle methods, point values of the computed
solutions have to be recovered from their singular particle approximations by using some s-
moothing procedure (for details, see section 5.1). Our method avoids this recovery step, thus it
is simpler and more accurate. Moreover, our solution will remain a surface measure supported
on a hyperplane with dimension k provided the initial data is such. Therefore, no matter how
singular the initial data is, we keep the detailed structure of the singular solution. The reason
is that our mesh points is on Ω, not the x− ξ space.

3.3. A detailed implementation of the 2D Algorithm.
In this subsection, we give a detailed numerical implementation for the 2D Liouville equation
with initial data (1.7). Numerical methods for the higher dimensional Liouville equation can
be constructed similarly.
Without loss of generality, assume x = (x, y) ∈ [0, 1]× [0, 1], ξ ∈ R2.

Step 1. Given mesh size ∆x = ∆y = 1/N . Denote x(j, l) = (xj, yl).

Step 2. There are N2 cells. Denote the cell (xj, xj+1) × (yl, yl+1) by Ωk(0), where k =
(j+1+ lN). Since the elementary elements in 2D are triangles, we further split Ωk(0) into two
parts Ωk1(0) and Ωk2(0), where Ωk1(0) is the triangle with vertices x(j, l), x(j+1, l), x(j, l+1),
and Ωk2(0) is the triangle with vertices x(j, l+1),x(j+1, l),x(j+1, l+1). Evaluate the initial
charge

mkq =

∫ ∫
Ωkq

ρ0(x, y)dxdy k = 1, . . . , N2, q = 1, 2,

numerically by some quadrature rule or analytically if possible.
Step 3. Solve numerically

dxjl(t)

dt
= ξjl,

dξjl(t)

dt
= −∇xV,

subject to the initial data

xjl(0) = (xj, yl) ξjl(0) = ∇xS0(xjl(0)),

to obtain xjl(T ), ξjl(T ), j = 0, . . . , N , l = 0, . . . , N .

Step 4. Apply the linear interpolation to approximate velocity on Ωkq(T ). More precisely,
denote the vertices of Ωkq by a,b, c, and the velocity at them are ua,ub,uc respectively. Then
for every x ∈ Ωkq, one can decompose x− a uniquely as

x− a = µ(b− a) + ν(c− a),

here (µ, ν) can be solved analytically, and interpolate

ξ(x, t) = ua + µ(ub − ua) + ν(uc − ua).
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This gives a multi-valued solution of velocity ũ at time T . Denote ξ(x, t) on Ωkq by ξkq(x, t).

Step 5. Denote the area of the triangle Ωkq(T ) by Akq(T ). Let ρ̃(α, T ) =
mkq

Akq(T )
on (associated

with) Ωkq(T ). This gives a multi-valued solution of density at time T . The (single valued)
position density then follows

ρ(x, T ) =
2∑

q=1

N2∑
k=1

mkq

Akq(T )
IΩkq(T )(x) (3.10)

Step 6. Compute any desired physical variables by using the result of Steps 4 and 5. For
example

ρ(x, T )u(x, T ) =
2∑

q=1

N2∑
k=1

mkq

Akq(T )
IΩkq(T )(x)ξkq(x, T ). (3.11)

Remark 3.2. One can apply any higher order numerical method in Steps 3, 4 and 5. In
addition to its high efficiency and accuracy, a major advantage of the method is that it gives very
accurate numerical solutions around caustics. The reason is: the particles become automatically
dense when caustic develops, and the total charge inside any cell around the caustic is calculated
at t = 0. For classical particle methods, one has to apply some smoothing procedure to recover
point values of the computed solutions from their singular particle approximations, therefore,
even the particles are dense around the caustics, the smoothing procedure smears the solution.
For details of the smoothing procedures, see Section 5.1. In addition we give the multi-valued
solution rather than the single valued physical observables.

Remark 3.3. For a 2D problem, when using (3.10) to calculate the local density ρ on a
mesh {yij}, one needs to identify whether yij is inside a triangle or not many times. We
apply the following fast test method. Denote the vertices of the triangle Ωkq by a,b, c, where
a = (a1, a2), b = (b1, b2) and c = (c1, c2). Denote xmin = min{a1, b1, c1}, xmax = max{a1, b1, c1},
ymin = min{a2, b2, c2}, ymax = max{a2, b2, c2}. Then for every yij ∈ R2, we first test whether
yij ∈ (xmin, xmax)× (ymin, ymax), if not, yij is outside the triangle Ωkq; otherwise we decompose
yij − a as

yij − a = µ(b− a) + ν(c− a),

then yij is inside the triangle Ωkq if and only if 0 < µ < 1, 0 < ν < 1 and µ + ν < 1. This
procedure greatly enhances the numerical method for the Vlasov-Poisson eqution to be present
in the next section, since there one needs to construct ρ at every time step.

4. The Vlasov-Poisson equations

We can apply the new method to the Vlasov-Poisson equations

ft + v · ∇xf − E(x, t) · ∇vf = 0, (4.1a)

∆xV =

∫
Rd

f(x,v, t)dv =: ρ(x, t), E = −∇xV, (4.1b)

here E(x, t) is the electric field, V the potential.
For example, for the 1D and 2D Vlasov-Poisson equations, in each time step t to t+∆t, we

do the following:
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(i) Choose a uniform mesh {yij} on x-plane. The initial particles are located at the mesh
points: xij(0) = yij.

(ii) solve the characteristic equations numerically

dxij(t)

dt
= ξij,

dξij(t)

dt
= −E,

to get particle positions and velocities xij(t+∆t), ξij(t+∆t);
(iii) use (3.6) and (3.10) to calculate the local density on uniform mesh points {yij} at time

t + ∆t; then use the standard three-point center difference scheme (1D) and five-point
center difference scheme (2D) to solve the Poisson equation (4.1b) to get the potential
V (t+∆t,yij); take finite difference of V (t+∆t,yij) to get E(t+∆t,yij);

(iv) use the linear interpolation to get E on particle positions xij(t+∆t), which will be used
in (ii) in the next time step.

Remark 4.1. Denote the particle number by M . In step (iii), the computational cost for
evaluating the single valued position density ρ on uniform mesh points yij of our method
and all other particle methods are of the same order O(M2). In step (iv), the computational
cost for evaluating E on particle positions of all methods are of order O(M). Although the
computational cost for all methods have the same order, our method is much faster than the
previous particle methods in practice. We show a comparison in a 2D numerical example in
section 5.2.

5. Numerical examples

We carry out one and two dimensional numerical experiments in this section. In these
examples, we compare numerical solutions obtained by our method with solutions obtained
by previous particle methods. The main difference between our proposed method and the
previous particle methods is that the latter have to apply some smoothing procedures to recover
point value of the numerical solution from the singular particle approximation. For reader’s
convenience, in Section 5.1 we briefly describe three smoothing procedures that have been
studied in [4], and refer to [4] and references therein for more details.
In all examples, we solve the ODE (3.9) by the forward Euler method, although one can

use any other higher order methods. The initial charge mj was computed by the Matlab
subroutines QUAD and QUAD2D, which approximate the integral by using recursive adaptive
Simpson quadrature.

5.1. The smoothing procedures of particle methods.
To use the particle method, one first replaces the initial data f(0,x, ξ) = ρ0(x)δ(ξ − u0(x))
with a singular particle approximation. More precisely, one decomposes the computational
domain Ω into M nonintersecting domains Ω = Ω1

∪
· · ·

∪
ΩM . Then particles with masses∫

Ωi
ρ0(x)dx are placed initially at xi(0), where xi(0) are the coordinates of the centers of mass

of Ωi. The initial velocities of the particles are taken to be u0(xi(0)). That is, one replaces
f(0,x, ξ) = ρ0(x)δ(ξ − u0(x)) with

f̃(0,x, ξ) =
M∑
i=1

∫
Ωi

ρ0(x)dxδ(x− xi(0))δ(ξ − u0(xi(0))). (5.1)
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Denote f̃(0,x, ξ) in its equivalent form

wM(x, 0) =
M∑
i=1

ς i(0)δ(x− xi(0)). (5.2)

Here ς i(0) = (ς
(1)
i , . . . , ς

(d)
i , ς

(d+1)
i )(0), and ςki is the xk-moment (k = 1, . . . , d) of the ith particle,

ς
(d+1)
i is the mass of the ith particle. Solving the following ODEs

dxi(t)

dt
= ξi(t),

dξi(t)

dt
= −∇xV, (5.3)

one obtains a singular solution at time t

wM(x, t) =
M∑
i=1

ς i(t)δ(x− xi(t)). (5.4)

Assume one wants to find computational solutions of physical observables in Θ ⊂ Rd, the final
step of the particle method is to recover the point values of the density and momenta from
(5.4). Three recovery methods have been compared in [4]:

• AVE: The simplest way of regularizing (5.4) is to approximate it by a piecewise
constant

w(x, t) =
1

|Cj|

M∑
i=1

ς i(t)χCj
(xi(t)), x ∈ Cj.

Here {Cj}Jj=1 is an auxiliary mesh consisting of non-overlapping cells such that
C1

∪
· · ·

∪
CJ = Θ.

• CONV: This is the most widely used way of regularizing (5.4). Taking a convolution
product with a smooth kernel ζδ(x):

w(x, t) = (wM ∗ ζδ)(x, t) :=
M∑
i=1

ς i(t)ζδ(x− xi(t), (5.5)

where ζδ serves as a smooth approximation of the delta-function with the following
properties:

ζδ =
1

δd
ζ
(x
δ

)
,

∫
Rd

ζ(x)dx = 1,

where δ is a positive parameter measuring the “width” of the kernel. In our experi-
ments, we have used the Gaussian kernel.

• RED: This recovery procedure is based on the particle weights redistribution tech-
nique typically used in the immersed boundary method, [25]. In the numerical
experiments of [4], the point values of w have been computed at the equally spaced
points where the particles were initially placed, namely:

w(x, t) =
1

∆x1∆x2 · · ·∆xd

M∑
i=1

ς i(t)ϕ

(
|x1 − xi1(t)|

∆x1

)
· · ·ϕ

(
|xd − xid(t)|

∆xd

)
,
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Figure 1: Example 5.1, our method with 400 particles, left: velocity ũ, right: density ρ̃, t=1.

where

ϕ(r) =


1

8

(
3− 2r −

√
1 + 4r − 4r2

)
, |r| < 1

1

8

(
5− 2r −

√
−7 + 12r − 4r2

)
, 1 < |r| < 2

0, otherwise.

5.2. Numerical examples.

Example 5.1. A free particle model for a Gaussian pulse: V (x) = 0. The initial data is
taken to be f(0, x, ξ) = ρ0(x)δ(ξ − u0(x)), where ρ0(x) = exp(−(x − 0.5)2), and u0(x) =
− sin(πx)| sin(πx)|. This example is taken from [10]. We plot the solutions at time t = 1,
“OUR” indicates the numerical solution obtained by our method, “AVE/CONV/RED” indi-
cates the numerical solutions obtained by the “AVE/CONV/RED” recovery procedures. In
these four methods, the time step is taken to be ∆t = ∆x/5, where ∆x = 2/N , N is the
number of particles.

We show the multi-valued solutions ũ and ρ̃ at time t = 1 obtained by our method with
N = 400 in Figure 1. One can compare them with Figures 7, 8 and 9 in [10] which are
numerical solutions of this problem obtained by the moment methods, and our method yields
much better numerical solutions.
We also compare our result with solutions obtained by previous particle methods. One can

see in Fig 2, that the solutions obtained by AVE and RED methods are oscillatory. Fig 2
also shows that our solution is much better than the CONV solution, especially around the
caustics. Fig 3 shows the comparison between our solution and exact solution which is obtained
by taking ∆x and ∆t very small. One can see that they match very well.
When using the CONV method, one has to choose the width of the Gaussian kernel. We

show solutions for different choices of the width in Fig 4. One can see that for large width δ,
the solution is severely smeared, while for small δ, the solution becomes oscillatory. The best
choice turns out to be 0.004 for this example. No formula has been given on how to choose δ
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Figure 2: Example 5.1, single-valued density ρ with 1000 particles, t=1. Upper left: AVE,
upper right: RED, lower left: OUR, lower right: CONV.
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Figure 3: Example 5.1, multi-valued density ρ̃ at t=1, left: OUR with 1000 particles, right:
Exact solution, t=1.
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−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

10
1

10
2

10
3

CONV N=1000, δ=0.02

x

ρ

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

10
1

10
2

10
3

x

ρ

CONV N=1000, δ=0.01

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

10
1

10
2

10
3

x

ρ

CONV N=1000, δ=0.005

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

10
1

10
2

10
3

x

ρ

CONV N=1000, δ=0.003

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

10
1

10
2

10
3

x

ρ

CONV N=1000, δ=0.002

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

10
1

10
2

10
3

CONV N=1000, δ=0.001

x

ρ

Figure 4: Example 5.1, density ρ obtained by CONV with 1000 particles at t=1 with different
δ.

for general problems. Our solution outperforms the CONV method even with the best choice
δ = 0.004.

Example 5.2. In this example (taken from [4], example 4.3), the initial data are given by
f(0, x, ξ) = ρ0(x)δ(ξ − u0(x)), where ρ0(x) = 1, u0(x) = 1− 0.5 arctan(20x), and the potential
is V (x) ≡ 0. We compute the solution with N = 400 and output the solution at t = 0.4. In [4]
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Figure 5: Example 5.2, left: multi-valued velocity ũ, right: multi-valured density ρ̃, t=0.4.
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Figure 6: Example 5.2, left: multi-valued density ρ̃ zoomin, right: single-valued density ρ,
t=0.4.

AVE, RED and CONV particle methods had been performed with the same particle number
N = 400 (figures 5 and 6, page 574). The AVE and RED solutions are very oscillatory, while
the CONV method with the best choice of δ = 0.1

√
0.005 yields a better solution but still has

oscillation. If one doubles δ, then it is oscillation-free, but the peaks in the density are much
lower, i.e., peaks equal 5 for bigger δ and 6 for smaller δ. Our method yields much better
results: our solutions are oscillation-free, much more accurate at peaks – the peak value of our
solution is around 70. See Figures 5 and 6.

The following examples are numerical solutions of the Vlasov-Poisson equations. We compare
our method with the CONV particle method. The main difference of the two methods is: in
our method, we use (3.6) and (3.10) to calculate the local density ρ on uniform mesh points in
each time step, then solve the Poisson equation; in CONV, we use (5.5) to calculate the local
density ρ on uniform mesh points in each time step.
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Example 5.3. We solve the 1D Vlasov-Poisson equations with periodic initial data

∂f

∂t
+ v

∂f

∂x
− E(x, t)

∂f

∂v
= 0,

∂2

∂x2
V =

∫ ∞

−∞
f(x, v, t)dv − 1, E = −∂V

∂x
,

f0 = δ(v − sin(2πx)).

We compare density ρ, and electric field E obtained by different methods with different particle
numbers N at t = 0.5. When solving the Poisson equation, we take the boundary condition
ϕ(0) = ϕ(1) = 0. We take ∆t = ∆x = 1/N . The results are shown in Figs 7, 8.

One can see that our method yields much better solutions for the density ρ and electric field
E. Furthermore, when apply the CONV method, for each N , we do serval tests for different
widths of the Gaussian kernel δ, and show the best in our graphs. Hence, our method out
performs the best that a CONV method can do, especially when N is small.

Example 5.4. We solve the 2D Vlasov-Poisson equation

ft + v · ∇xf − E(x, t) · ∇vf = 0,

∆xV =

∫
R2

f(x,v, t)dv, E = −∇xV,

(5.6)

with initial data
f(0,x, ξ) = ρ0(x)δ(ξ − u0(x)),

where

ρ0 = I|x−(1,1)|<0.75, u0 =
2 sin

(
4π

∣∣4
3

(
x− (1, 1)

)∣∣5/6)(x− (1, 1)
)

3
∣∣∣x− (1, 1)

∣∣∣ .

We calculate the solution on spatial domain [0, 2] × [0, 2]. The initial particles are placed on
[−0.75, 0.75] × [−0.75, 0.75], with ∆x = ∆y = 1.5/N . The uniform meshes for the Poisson
equation are on domain [0, 2] × [0, 2] with ∆x = ∆y = 2/N . ∆t is chosen to be 1/2N . When
solving the Poisson equation, we take the following boundary condition

ϕ(0, ·) = ϕ(2, ·) = ϕ(·, 0) = ϕ(·, 2) = 0.

The initial velocity profile is shown in Fig 9. For short times, if one ignores the Poisson
potential, one can still gain some information (such like the basic shape) of the velocity profile.
The velocity at t = 0.2 without involving the Poisson potential is shown in Fig 9, which suggests
that for the Vlasov-Poisson equations of this example four caustics will form at t = 0.2.

We compare the density ρ and potential V obtained by our method and the CONV particle
method with different N at t = 0.2. The results are shown in Figs 10, 11, and 12. The time
cost for each method with different N are listed in Table 1. Roughly speaking, with the same
particle number, the time cost of the new method is approximately 1/10 of the CONV particle
method. The largest local density near the caustics that obtained by the new method and the
CONV particle method are listed in Table 2. Combine these results, we can say that compared
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Figure 7: Example 5.3, left: density ρ, right: electric field E.

with the CONV particle method our new method yields better numerical results with less
computational cost.

6. Concluding remarks

In this paper, we proposed a new numerical method for the semiclassical limit of the Schrödinger
equation (the Liouville equation with measure-valued initial data) and Vlasov-Poisson equation-
s. Our method constructs local density based on a conservative quantity–the charge. Therefore
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Figure 8: Example 5.3, comparison between OUR with N=400 and CONV with N=4000, left:
density ρ, right: electric field E.
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Figure 9: Example 5.4, left: initial velocity, right: velocity at t=0.2 without the Poisson
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N = 50 N = 100 N = 150 N = 200

New method 40 807 17493 (seconds)

CONV method 435 10735 113318 (seconds)

Table 1. Example 5.4, comparison of the time cost of the new method and the
CONV particle method.

it avoids the smoothing procedures of the previous particle methods. Numerical examples verify
that compared with the previous particle methods our method yields better numerical solutions
with less computational cost.
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N = 50 N = 100 N = 150 N = 200

New method: max ρ 12.6083 21.3102 80.3682

CONV method: max ρ 1.9091 2.3927 2.9320

Table 2. Example 5.4, comparison of max ρ of the new method and the CONV
particle method.
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Figure 12: Example 5.4, New method, N=200.
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