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Abstract. The FENE dumbbell model consists of the incompressible Navier-
Stokes equation for the solvent and the Fokker-Planck equation for the polymer
distribution. In such a model, the polymer elongation cannot exceed a limit

√
b

which yields all interesting features of solutions near this limit. This work is con-
cerned with the sharpness of boundary conditions in terms of the elongation pa-
rameter b. Through a careful analysis of the Fokker-Planck operator coupled with
the Navier-Stokes equation, we establish a local well-posedness for the full coupled
FENE dumbbell model under a class of Dirichlet-type boundary conditions dictated
by the parameter b. For each b > 0 we identify a sharp boundary requirement for
the underlying density distribution, while the sharpness follows from the existence
result for each specification of the boundary behavior. It is shown that the probabil-
ity density governed by the Fokker-Planck equation approaches zero near boundary,
necessarily faster than the distance function d for b > 2, faster than d|lnd| for b = 2,
and as fast as db/2 for 0 < b < 2. Moreover, the sharp boundary requirement for
b ≥ 2 is also sufficient for the distribution to be a probability density.

1. Introduction

Let N ≥ 2 be an integer. We consider a dimer – an idealized polymer chain – as
an elastic dumbbell consisting of two beads joined by a spring that can be modeled
by an elongation vector m ∈ RN (see e.g [6]), with the elastic spring potential given
by

(1.1) Ψ(m) = −Hb
2

log

(
1− |m|

2

b

)
, m ∈ B.

Here B := B(0,
√
b) is a ball in RN with radius

√
b denoting the maximum dumbbell

extension. In the limiting case as b → ∞, this reduces to the well-known Hookean
model with Ψ(m) = H|m|2/2. A general bead-spring chain model may contain more
than two beads coupled with elastic springs to represent a polymer chain.

Polymers as such when immersed in an incompressible, viscous, isothermal New-
tonian solvent are modeled by a system coupling the incompressible Navier-Stokes
equation for the macroscopic velocity field v(t, x) with the Fokker-Planck equation
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for the probability distribution function f(t, x,m) :

∂tv + (v · ∇)v +∇p = ∇ · τ + νk∆v,(1.2)

∇ · v = 0,(1.3)

∂tf + (v · ∇)f +∇m · (∇vmf) =
2

ζ
∇m · (∇mΨ(m)f) +

2kBTa
ζ

∆mf,(1.4)

where x ∈ RN is the macroscopic Eulerian coordinate and m ∈ B ⊂ RN is the
microscopic molecular configuration variable. The model describes diluted solutions
of polymeric liquids with noninteracting polymer chains (dimers). Note that the
Fokker-Planck equation can be conveniently augmented to incorporate other effects
such as inertial forces (see [14]).

In Navier-Stokes equation (1.2), p is the hydrostatic pressure, νk is the kinematic
viscosity coefficient, and τ is a tensor representing the polymer contribution to stress,

τ = λp

∫
m⊗∇mΨ(m)fdm,

where λp is the polymer density constant. In the Fokker-Planck equation (1.4), ζ is
the friction coefficient of the dumbbell beads, Ta is the absolute temperature, and kB
is the Boltzmann constant. We refer to [6, 13, 43] for a comprehensive survey of the
physical background, and [42] for the computational aspect.

Notice that the term∇mΨ in (1.4) becomes singular (unbounded) on ∂B = {m, |m| =√
b}. The question arises as to what kind of boundary condition needs to be imposed

on ∂B. When we consider the evolution of∫
RN

∫
B

fdmdx,

we find that the evolution rate d
dt

∫
RN
∫
B
fdmdx depends both values of fv at far

field in x through − limr→∞
∫
|x|=r

∫
B
fv · x

r
dmdSx and the total flux on ∂B. For mass

conservation, we therefore might expect that fv should decay for large |x| and should
have zero flux on ∂B, i.e.,[

2

ζ
(kBTa∇mf +∇mΨf)−∇vmf

]
· m
|m|

∣∣∣
∂B

= 0.

This is indeed the condition which has been frequently adopted in priori works. Notice
that here m is an end-to-end vector, this zero flux condition does not seem to have
a definite physical interpretation. Instead, since the Fokker-Planck equation (1.4) is
singular at ∂B, it is natural to ask what kind of boundary behavior one should impose
or one would expect?

The singularity in the potential requires at least zero Dirichlet boundary condition

f |∂B = 0.

This is consistent with the result in [22], which states that the stochastic solution
trajectory does not reach the boundary almost surely. However, the above condition
is insufficient for well-posedness. In [35], C. Liu and H. Liu examined the ratio of the
distribution f and the equilibrium feq, i.e.,

w = f/feq
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for the microscopic FENE model, by the method of the Fichera function they were
able to show that b = 2 is a threshold in the sense that for b ≥ 2 any preassigned
boundary value of w will become redundant, and for b < 2 that value has to be a
priori given. As a side note we point out that there is a misprint in the statement
of this result, Theorem 1.1 in [35], where the correct assertion should be about the
boundary condition for w rather than for f – the proof is otherwise correct.

Our main quest in this article is what the least boundary requirement for f is
so that both existence and uniqueness of the solution to the FENE model can be
established, also the solution be a probability density. Upon pursuing this, we shall
achieve two main objectives:

(1) to identify sharp boundary conditions for all b > 0.
(2) to prove well-posedness for the coupled Navier-Stokes-Fokker-Planck system

under the identified boundary condition.

In order to describe the behavior of f near ∂B, our idea is to identify a rate function
ν, which approaches zero near boundary at a different rate for different b. We also
use another function q to quantify the relative ratio of f/ν near boundary. More
precisely, we impose the following boundary condition

(1.5) f(t, x,m)ν−1|∂B = q(t, x,m)|∂B.

This boundary condition is a boundary behavior requirement, instead of the Dirichlet
data in the usual sense. Nevertheless, the pair (ν, q), once known, determines the
behavior of f near ∂B.

We shall investigate solvability of the coupled system (1.2)-(1.4) subject to (1.5)
and the initial data

v(0, x) = v0(x),(1.6)

f(0, x,m) = f0(x,m).(1.7)

In fact, for each b, we are able to identify the form of ν

(1.8) ν =


ρb/2, 0 < b < 2,
ρ ln e

ρ
, b = 2,

ρ, b > 2,

where ρ = b − |m|2 plays a role of the distance function d =
√
b − |m|. We should

point out that ν = ρ when b > 2 was identified in [36] where the Fokker-Planck
equation (1.4) alone was studied. In this work, with some regularity requirement
on q as well as on initial data, we prove local well-posedness for the above Cauchy-
Direchlet problem in a weighted Sobolev space for each given q. Our results indicate
that simply requiring f = 0 on boundary does not guarantee uniqueness of solutions.

As is known, the singularity of the Fokker-Planck equation near ∂B makes the
boundary issue rather subtle, and presents various challenges. To address the diffi-
culties caused, several transformations relating to the equilibrium solution have been
introduced in literature ( see, e.g. [16, 24, 35, 36]). For the Dirichlet-type boundary
condition (1.5), our strategy is to study a transformed problem via

w =
f

ν
− q
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with ν defined in (1.8) so that w|∂B = 0. Once w is known, one can extract f from
ν(w + q). Inspired from [38], for the coupled FENE system we use weak norm in m
and strong norm in x, this enables us to prove well-posedness for all cases of b > 0
and any given smooth q.

We identify a sharp boundary requirement for each b > 0 for the underlying density
distribution, while the sharpness is a consequence of the existence result for each q.
For b ≥ 2, we show that f is a density distribution if and only if q|∂B = 0. In
particular, our result asserts that near boundary the probability density governed
by the Fokker-Planck equation approaches zero, necessarily faster than the distance
function d for b > 2, faster than d|lnd| for b = 2, and as fast as db/2 for 0 < b < 2.
Unfortunately, within our current framework we have not been able to identify a non-
trivial q for 0 < b < 2 such that the corresponding solution is a density distribution.

We remark that the sharp boundary condition presented in this work provides
a threshold on the boundary requirement: subject to the sharp requirement or a
stronger condition incorporated through some weighted function spaces [47, 38], the
Fokker-Planck dynamics will select the physically relevant solution, which is a prob-
ability density, any weaker boundary requirement can lead to many solutions, each
depending on the ratio of f/ν near boundary.

This article is organized as follows. In Section 2, we state our main results and
main ideas of the proofs. In Section 3, we study the Fokker-Planck operator and
well-posedness of the initial boundary value problem for the Fokker-Planck equation
alone. This part alone improves upon our previous work [36]. The main result is
summarized in Theorem 13. The Fokker-Planck problem involving spatial variable x
is investigated in Section 4. Well-posedness of the coupled system is proved in Section
5. In Section 6, we sketch the proof of well-posedness for the coupled system with
b ≥ 6 in a different function space than what was used in Section 5. Some concluding
remarks are drawn in Section 7.

We conclude this section by some bibliographical remarks.

Existence results for the FENE model are usually limited to local in time existence
and uniqueness of strong solutions. We refer to [44] for the local existence on some
related coupled systems, [22] for the FENE model (in the setting where the Fokker-
Planck equation is formulated by a stochastic differential equation) with b > 6, [17]
for a polynomial force. More related to this paper are the work by Zhang and Zhang
[47] for the FENE model when b > 76, and Masmoudi [38] for b > 0. Global existence
results are usually limited to solutions near equilibrium, see [28, 33], or to some
2D simplified models [10, 12, 27, 41]. For results concerning the existence of weak
solutions to the coupled FENE system we refer to [2, 3, 4, 5, 34, 39, 45, 48].

Boundary behavior of the polymer distribution governed by the FENE model is
also essential in several other aspects, including the study of large time behavior, see
[1, 20, 23, 45]; and development of numerical methods, see, e.g., [8, 9, 16, 24, 37, 46].
We also refer to [21] for references on numerical aspects of polymeric fluid models.

There are also some interesting works on non-Newtonian fluid models derived
through a closure of the linear Fokker-Planck equation (see, e.g., [15, 16]). We can
refer to the pioneering work [18, 19], and more recently to [11, 29, 30, 31, 32].
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However, none of these works is concerned with the sharpness of boundary condi-
tions in terms of the elongation parameter.

2. Main results

After a suitable scaling and choice of parameters we arrive at the following Cauchy-
Dirichlet problem for the coupled system

∂tv + (v · ∇)v +∇p = ∇ · τ + ∆v, x ∈ RN , t > 0,(2.1a)

∇ · v = 0,(2.1b)

∂tf + (v · ∇)f +∇m · (∇vmf) =
1

2
∇m ·

(
bm

ρ
f

)
+

1

2
∆mf, m ∈ B,(2.1c)

τ =

∫
m⊗ bm

ρ
fdm,(2.1d)

v(0, x) = v0(x),(2.1e)

f(0, x,m) = f0(x,m),(2.1f)

f(t, x,m)ν−1|∂B = q(t, x,m)|∂B.(2.1g)

To present our main results we first fix notations to be used throughout this article.
We fix an exponent s, which is an integer in the range s > N/2 + 1. We use C to
denote various constants depending on s, b and some other quantities which we will
indicate in the sequel. A b-dependent weight function is defined as

µ =


ρb/2, 0 < b < 2,
ρ ln2 e

ρ
, b = 2,

ρ2−b/2, b > 2.

(2.2)

For b ≥ 6, we also use

(2.3) µ0 = ρθ, −1 < θ < 1, b ≥ 6.

Other notations are listed as below as well.

• L2
µ =

{
φ :

∫
B

φ2µdm <∞
}

• H1
µ = {φ : φ, ∂mjφ ∈ L2

µ, j = 1 · · ·N}

•
◦
H1
µ denotes the completion of C∞c with H1

µ norm.
• H∗ is a dual space of H
• Hs

x is the usual Sobolev space with respect to x
•

|v|2s =
∑
|α|≤s

∫
RN
|∂αv|2dx,

|w|20,s =
∑
|α|≤s

∫
RN

∫
B

|∂αw|2µdmdx,

|w|21,s = |w|20,s + |∇mw|20,s,
‖w‖2

1,1,s = sup
t

(|w|21,s + |∂tw|21,s),

‖q‖ = ‖q‖H1
µ

+ ‖∂tq‖H1
µ
.
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• Hs
xL

2
µ = {φ : |φ|0,s <∞}, Hs

xH
1
µ = {φ : |φ|1,s <∞}.

• L2
tH = L2((0, T );H), CtH = C([0, T ];H) for 0 < t < T.

• H = {φ : ‖φ‖L2
tH

1
µ

+ ‖φt‖L2
t (H

1
µ)∗ <∞},

◦
H = {φ(t, ·) ∈

◦
H1
µ : ‖φ‖L2

tH
1
µ

+ ‖φt‖
L2
t (
◦
H1
µ)∗

<∞}.
•

Xµ = [CtH
s
x ∩ L2

tH
s+1
x ]× [CtH

s
xL

2
µ ∩ L2

tH
s
xH

1
µ].

• For a generic constant C, independent of T and a ∈ L2
t , we define

(2.4) F (a) = C

(
T +

∫ T

0

|a(t)|2dt
)
.

Due to such a constant, any two instances of F should be presumed to be with
different constants.

We now state our main theorem as follows:

Theorem 1. Let b > 0 and s be an integer such that s > N/2 + 1. Suppose that
v0 ∈ Hs

x, f0ν
−1 ∈ Hs

xL
2
µ, and q ∈ C1

tH
s+1
x H1

µ. Then, for some T > 0 there exists a
unique solution (v, f) to the coupled problem (2.1) such that

(v, fν−1) ∈ Xµ.

It is known from [25] that
◦
H1
µ = H1

µ for b ≥ 6 with µ defined in (2.2). Thus,
boundary condition (2.1g) is nothing but the zero Dirichlet boundary condition under
the assumption on q in Theorem 1. For non-trivial q when b ≥ 6, we show the well-
posedness in a different weighted Sobolev space. The result is summarized as below.

Theorem 2. Let b ≥ 6 and s be an integer such that s > N/2 + 1. Suppose that
v0 ∈ Hs

x, f0ν
−1 ∈ Hs

xL
2
µ0

, and q ∈ C1
tH

s+1
x H1

µ0
with µ0 defined in (2.3). Then, for

some T > 0 there exists a unique solution (v, f) to the coupled problem (2.1) such
that

(v, fν−1) ∈ Xµ0 .

Theorem 1 and 2 tell us that for each given q, which denotes the rate of f approach-
ing to zero relative to ν near ∂B, there exists a unique solution (v, f). Also, they
indicate that any weaker boundary requirement may lead to more than one solutions
to (2.1). For instance, the boundary condition

fν−1ρε|∂B = 0, ε > 0

gives infinitely many solutions to (2.1). Precisely we state the following non-uniqueness
result.

Theorem 3. Let ν̃ be a smooth function of ρ such that

(2.5) lim
ρ→0

ν

ν̃
= 0.

Then, the coupled problem (2.1) with (2.1g) replaced by

(2.6) f(t, x,m)ν̃−1|∂B = 0

has infinitely many solutions in Xµ and Xµ0 for 0 < b < 6 and b ≥ 6 respectively.



THE FENE DUMBBELL MODEL OF POLYMERIC FLUIDS 7

A natural question is for what q the obtained distribution f is a probability distri-
bution. The answer when b ≥ 2 is given in the following theorem.

Theorem 4. Suppose that b ≥ 2 and q|∂B ≥ 0. Under the assumption of Theorem
1 or 2, the unique solution f to the Cauchy-Dirichlet problem (2.1) is a probability
distribution if and only if q|∂B = 0. That is, f ≥ 0 if f0 ≥ 0, and for any t > 0,
x ∈ RN ,

(2.7)

∫
B

f(t, x,m)dm =

∫
B

f0(x,m)dm.

Theorem 1 is proven by a fixed point argument, which is now outlined. Given
(u, g), we first solve the Navier-Stokes equation (NSE):

∂tv + (u · ∇)v +∇p = ∇ · τ + ∆v,(2.8a)

∇ · v = 0,(2.8b)

v(0, x) = v0(x),(2.8c)

τ =

∫
m⊗ bm

ρ
gdm.(2.8d)

With the obtained v we solve the Fokker-Planck equation (FPE):

∂tf + (v · ∇)f +∇m · (∇vmf) =
1

2
∇m ·

(
bm

ρ
f

)
+

1

2
∆mf,(2.9a)

f(0, x,m) = f0(x,m),(2.9b)

f(t, x,m)ν−1|∂B = q(t, x,m)|∂B.(2.9c)

The above two systems define a mapping (u, g) → (v, f), the existence of problem
(2.1) is equivalent to the existence of a fixed point of this mapping.

The main difficulty lies in monitoring the boundary behavior of f . Our strategy is
to apply the transformation

(2.10) f = ν(w + q),

to (2.9) to obtain a w-problem

µ(∂t + v · ∇)w + L[w] = µh,(2.11a)

w(0, x,m) = w0(x,m),(2.11b)

w(t, x,m)|∂B = 0.(2.11c)

Here the operator L is induced from the Fokker-Planck operator, ν and µ are weights
depending on the distance functions defined in (1.8) and (2.2), respectively. The
source term is obtained from q

(2.12) h = −∂tq − (v · ∇)q − µ−1L[q],

and the initial data is given by

(2.13) w0(x,m) := f0(x,m)ν−1 − q(0, x,m).

For given (u,$) with g = ν($ + q), we arrive at a map F .

F : M →M

(u,$) 7→ (v, w)
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Here M is a subset of

CtH
s
x × [CtH

s
xL

2
µ ∩ L2

tH
s
x

◦
H1
µ]

such that

M =

{
(v, w) : sup

0≤t≤T
|v|2s ≤ A1, sup

0≤t≤T
|w|20,s +

1

2

∫ T

0

|∇mw|20,sdt ≤ A2

}
.

The strategy for the fixed point proof, which we implement in sections to follow, is
to first prove that F is well defined for some T,A1 and A2, then to show that F is
actually a contraction map in a weak norm. Moreover, we will show that

(2.14) F(M) ⊂ Xµ.

These prove Theorem 1 for

q ∈ C1
tH

s+1
x H1

µ ⊂ [CtH
s
xL

2
µ ∩ L2

tH
s
xH

1
µ].

Theorem 2 is proved in the same manner. A sketch of the proof is presented in
Section 6.

In order to prove Theorem 3, we pick q(t, x, ·) ∈ C∞(B)∩C(B) and q|∂B 6= 0 such
that

q ∈
{
C1
tH

s+1
x H1

µ, 0 < b < 6,
C1
tH

s+1
x H1

µ0
, b ≥ 6.

Note that the existence of such a q follows from the density of the weighted Sobolev
space (see [25] for details). Then for each q we have a unique solution (v, f) to the
coupled problem (2.1) from Theorem 1 and Theorem 2. Finally, we turn to examine
the boundary condition (2.6),

fν̃−1|∂B = fν−1ν

ν̃
|∂B = q

ν

ν̃
|∂B,

which vanishes since q|∂B is bounded and condition (2.5) holds. This proves Theorem
3.

Theorem 4 follows from Proposition 16 and 17 via a flow map to be described in
Section 4. The case for b ≥ 6 can be proved by a simple modification, which is also
sketched in Section 6.

3. The Fokker-Planck operator

We start with (2.9) when x is not involved. In such a case it reduces to the following
problem:

∂tf + L[f ] = 0, m ∈ B, t > 0,(3.1a)

f(0,m) = f0(m),(3.1b)

f(t,m)ν−1|∂B = q(t,m)|∂B.(3.1c)

Here

(3.2) L[f ] := ∇ · (κmf)− 1

2
∇ ·
(
bm

ρ
f

)
− 1

2
∆f,

κ = κ(t) is a square integrable matrix function such that Tr(κ) = 0. We omit m from
∇m in (3.2) for notational convenience.

The goal of this section is two folds:
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(1) to provide tools for subsequent sections.
(2) to elaborate on this model alone as an extension of our previous work [36].

3.1. Transformed operator. The transformation (2.10) leads to

∂twµ+ L[w] = µh, m ∈ B, t > 0,(3.3a)

w(0,m) = w0,(3.3b)

w(t,m)|∂B = 0,(3.3c)

with the transformed operator L determined by

(3.4) L[w] = µν−1L[νw].

The source term is given as h = −∂tq − µ−1L[q] and initial data for w is w0 =
f0ν

−1 − q(0,m).
From a direct calculation with the choice of µ in (2.2), and ν in (1.8), (3.4) can be

expressed as

(3.5) L[w] = −1

2
∇ · (∇wµ) +∇ · (κmwµ)−Kw,

where

(3.6) K =


0, 0 < b < 2,

(N + 2κm ·m) ln
e

ρ
, b = 2,

(N + 2κm ·m)(b/2− 1)ρ1−b/2, b > 2.

Associated with the operator L, we define its time-dependent bilinear form

(3.7) B[w, φ; t] :=

∫ (
1

2
∇w · ∇φµ− wµκm · ∇φ−Kwφ

)
dm

for φ,w ∈
◦
H1
µ and fixed t > 0.

We now describe the weak solution which we are looking for.

Definition 5. A function w ∈
◦
H is a weak solution of w-problem (3.3), provided

(1) for each φ ∈
◦
H1
µ and almost every 0 ≤ t ≤ T ,

(3.8) (∂tw, φ) ◦
H1
µ

+ B[w, φ; t] = (h, φ) ◦
H1
µ

.

(2) w(0,m) = w0(m) in L2
µ sense, i.e.,∫

B

|w(0,m)− w0(m)|2µdm = 0.

Remark 6. In (3.8), (ψ, φ) ◦
H1
µ

is a dual pair for ψ ∈ (
◦
H1
µ)∗ and φ ∈

◦
H1
µ, and can

be regarded as L2
µ inner product. Indeed, from the Riesz representaiton theorem, for

each ψ ∈ (
◦
H1
µ)∗ there exists a unique u ∈

◦
H1
µ such that

(ψ, φ) ◦
H1
µ

=

∫
B

(∇u · ∇φ+ uφ)µdm.
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Formally, the right hand side will be∫
B

(∇ · (∇uµ)µ−1 + u)φµdm.

We identify ψ as ∇ · (∇uµ)µ−1 + u and the dual pair will be the L2
µ inner product.

Remark 7. With the weight function µ so chosen as (2.2), we observe that if φ ∈ H1
µ,

then φ ∈ W 1,1 since∫
B

(|φ|+ |∇φ|)dm ≤ C

(∫
B

(|φ|2 + |∇φ|2)µdm

)1/2(∫
B

µ−1dm

)1/2

<∞.

From the standard trace theorem, the map

T : H1
µ(B) → L1(∂B)

φ 7→ φ|∂Ω

is well defined. Thus, the element in
◦
H1
µ is characterized by the zero trace, and the

Dirichlet data (3.3c) makes sense.

The well-posedness of problem (3.3) is stated in the following.

Theorem 8. Suppose that w0 ∈ L2
µ, h ∈ L2

t (
◦
H1
µ)∗ and κ ∈ L2

t with Tr(κ) = 0. Then

the w-problem (3.3) has a unique weak solution in
◦
H such that

(3.9) ‖w‖2
H ≤ eF (|κ|)

(
‖w0‖2

L2
µ

+ ‖h‖2

L2
t (
◦
H1
µ)∗

)
with F defined in (2.4).

This result when b > 2 and q = 0 was proved in [36]. For general case we proceed
in several steps.

An embedding theorem. We define

(3.10) µ∗ =

 ρb/2−2, 0 < b < 2,
ρ−1, b = 2,
ρ−b/2, b > 2.

We call µ∗ as the conjugate of µ due to the Sobolev inequalities in the following
lemma.

Lemma 9. If φ ∈
◦
H1
µ, then

(3.11)

∫
|φ|2µ∗dm ≤ C

∫
(|φ|2 + |∇φ|2)µdm.

Also, if φ ∈ H1
ρθ

for θ ≤ 1, then for any δ > 0

(3.12)

∫
|φ|2ρ−1+δdm ≤ C

∫
(|φ|2 + |∇φ|2)ρθdm.
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Proof. We refer to [25] for a proof of (3.11) when b 6= 2, as well as (3.12). Here, we
prove only the case b = 2.

First for C = max1≤ρ≤2[ρµ]−1 we have∫
B

|φ|2/ρdm ≤ C

∫
1≤ρ≤2

|φ|2µdm+

∫
0≤ρ≤1

|φ|2/ρdm

≤ C

∫
B

|φ|2µdm+

∫ 1

0

G2

ρ
dρ,

where we have used the spherical coordinate representation with ρ = 2− r2 and

(3.13) G2(ρ) = −
∫
|ξ|=1

|φ(rξ)|2rN−1dSξ ·
(
dρ

dr

)−1

=
1

2

∫
|ξ|=1

|φ(rξ)|2rN−2dSξ.

Note that from φ ∈
◦
H1
µ one can verify that G(0) = 0. It is known (see [26])) that∫ 1

0

(∫ x

0

g(t)dt

)2
1

x
dx ≤ C

∫ 1

0

g2(x)x| lnx|2dx.

Thus,

(3.14)

∫ 1

0

G2

ρ
dρ ≤ C

∫ 1

0

(Gρ)
2ρ| ln ρ|2dρ ≤ C

∫ 1

0

G2
r

r2
µdρ ≤ C

∫ 1

0

(Gr)
2µdρ,

where we have used the fact that ρ| ln ρ|2 ≤ µ = ρ ln2 (e/ρ). Differentiation of (3.13)
in term of r leads to

2GGr =

∫
|ξ|=1

φ∇φ · ξrN−2dSξ +
N − 2

2

∫
|ξ|=1

|φ(rξ)|2rN−3dSξ.

Squaring both sides and using the Cauchy-Schwartz inequality we obtain

4G2(Gr)
2 ≤ 2

∫
|ξ|=1

φ2rN−2dSξ

∫
|ξ|=1

|∇φ|2rN−2dSξ +
(N − 2)2

2

(∫
|ξ|=1

φ2rN−2dSξ

)2

,

where we have used the fact r ≥ 1. Hence

(Gr)
2 ≤

∫
|ξ|=1

|∇φ(rξ)|2rN−2dSξ +
(N − 2)2

2
G2,

which inserted into (3.14) ensures that the term
∫ 1

0
G2

ρ
dρ is also bounded by C‖φ‖2

H1
µ
.

The proof is now complete. �

Energy estimates. We return now to the bilinear operator B.

Lemma 10 (Energy estimates). For any t > 0, there exists a constant C which is
dependent on N, b such that

(1) for w(t, ·) ∈
◦
H1
µ

(3.15)
1

4

∫
|∇w|2µdm ≤ B[w,w; t] + C(1 + |κ|2)

∫
w2µdm;

(2) for ψ(t, ·) ∈ H1
µ and φ ∈

◦
H1
µ,

(3.16) |B[ψ, φ; t]| ≤ C(1 + |κ|)‖ψ‖H1
µ
‖φ‖H1

µ
.
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Proof. From (3.7) it follows

1

2

∫
∇w · ∇φµdm = B[w, φ; t] +

∫
κm · ∇φwµdm+

∫
Kwφdm,(3.17)

where K is given in (3.6).
Case 1. If 0 < b < 2, then K = 0; hence

1

2

∫
|∇w|2µdm = B[w,w; t] +

∫
κm · ∇wwµdm(3.18)

≤ B[w,w; t] +
1

4

∫
|∇w|2µdm+ b|κ|2

∫
w2µdm

and

|B[ψ, φ; t]| ≤ 1

2

∫
|∇ψ||∇φ|µdm+

√
b|κ|

∫
|ψ||∇φ|µdm

≤ C(1 + |κ|)‖ψ‖H1
µ
‖∇φ‖L2

µ
.

Case 2. For b ≥ 2, it suffices to estimate the K-related term. If b = 2, we have

K = (N + 2κm ·m) ln
e

ρ
≤ (N + 2b|κ|)

√
µµ∗.

If b > 2, we have

K =

(
b

2
− 1

)
ρ1−b/2(N + 2κm ·m)

≤
(
b

2
− 1

)
(N + 2b|κ|)

√
µµ∗.

Hence for b ≥ 2 we have∫
Kw2dm ≤ C(1 + |κ|)

∫
w2
√
µµ∗dm

≤ ε

∫
w2µ∗dm+ Cε(1 + |κ|2)

∫
w2µdm.

This when added upon right side of (3.18) using (3.11) with some small ε leads to
(3.15). Using (3.11) again we have∣∣∣∣∫ Kψφdm

∣∣∣∣ ≤ C(1 + |κ|)
∫
|ψ||φ|

√
µµ∗dm ≤ C(1 + |κ|)‖ψ‖H1

µ
‖φ‖H1

µ
,

which when combined with the above estimate for b < 2 gives (3.16). �

A priori estimate.

Lemma 11 (A priori estimates). Let w be a weak solution to (3.3). Then

(3.19) sup
t
‖w(t, ·)‖2

L2
µ

+
1

2
‖w‖2

L2
tH

1
µ
≤ eF (|κ|)

(
‖w0‖2

L2
µ

+ ‖h‖2

L2
t (
◦
H1
µ)∗

)
with F defined in (2.4), and furthermore

(3.20) ‖w‖2
H ≤ eF (|κ|)

(
‖w0‖2

L2
µ

+ ‖h‖2

L2
t ((
◦
H1
µ)∗)

)
.
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Proof. From the weak solution definition in (3.8) we have for any φ ∈
◦
H1
µ

(3.21) (∂tw, φ) ◦
H1
µ

+ B[w, φ; t] = (h, φ) ◦
H1
µ

.

By (3.16), (∂tw, φ) ◦
H1
µ

is bounded by

‖h‖
(
◦
H1
µ)∗
‖φ‖H1

µ
+ C(1 + |κ|)‖w‖H1

µ
‖φ‖H1

µ
.

Hence

(3.22) ‖∂tw‖
(
◦
H1
µ)∗
≤ ‖h‖

(
◦
H1
µ)∗

+ C(1 + |κ|)‖w‖H1
µ
.

Next we set φ = w in (3.21) and use (3.15) to have

1

2

d

dt
‖w‖2

L2
µ

+
1

4

∫
|∇w|2µdm ≤ ‖h‖

(
◦
H1
µ)∗
‖w‖H1

µ
+ C(1 + |κ|2)‖w‖2

L2
µ

≤ 2‖h‖2

(
◦
H1
µ)∗

+
1

8
‖w‖2

H1
µ

+ C(1 + |κ|2)‖w‖2
L2
µ
.

Hence

(3.23)
d

dt
‖w‖2

L2
µ

+
1

4
‖w‖2

H1
µ
≤ C(1 + |κ|2)‖w‖2

L2
µ

+ 4‖h‖2

(
◦
H1
µ)∗
,

and therefore by Gronwall’s inequality,

sup
t
‖w(t, ·)‖2

L2
µ

+
1

2
‖w‖2

L2
tH

1
µ
≤ eC(T+

∫ T
0 |κ|

2dt)

(
‖w0‖2

L2
µ

+ ‖h‖2

L2
t (
◦
H1
µ)∗

)
,

which together with (3.22) yields (3.20). �

Proof of Theorem 8. We construct a weak solution to (3.3) using the Galerkin ap-

proximation. Let {φi} be a basis of
◦
H1
µ and L2

µ. Then an approximate solution wl

in a finite dimensional space is defined as wl =
l∑

i=1

dli(t)φi. Here dli(t) is a unique

solution to a system of linear differential equations,

(∂twl, φj) ◦
H1
µ

+ B[wl, φj; t] = (h, φj) ◦
H1
µ

,

dli(0) = ((φi, φj)
−1
L2
µ
(w0, ~φ)L2

µ
)i,

where ~φ = (φ1, · · · , φl)>. Using the same argument as that in the proof of Lemma
11, we obtain

‖wl‖2
L2
tH

1
µ

+ ‖∂twl‖2

L2
t (
◦
H1
µ)∗
≤ eF (|κ|)

(
‖w0‖2

L2
µ

+ ‖h‖2

L2
t (
◦
H1
µ)∗

)
.

Extracting a subsequence and passing to the limit give a weak solution w in
◦
H. The

uniqueness follows from the a priori estimate (3.20). �

To return to the Fokker-Planck problem (3.1) we will also need the following
Lemma.
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Lemma 12. Let h = −∂tq − µ−1L[q]. If q ∈ C1
tH

1
µ and κ ∈ L2

t with Tr(κ) = 0, then

(3.24) ‖h‖2

L2
t (
◦
H1
µ)∗
≤ C

∫ T

0

(1 + |κ|2)‖q(t)‖2dτ.

Proof. For q ∈ C1
tH

1
µ, it is obvious that ∂tq ∈ L2

t (
◦
H1
µ)∗ since H1

µ ⊂ (H1
µ)∗ ⊂ (

◦
H1
µ)∗.

In order to show µ−1L[q] ∈ L2
t (
◦
H1
µ)∗, we use integration by parts and (3.16) to get∣∣∣∣∫ µ−1L[q]φµdm

∣∣∣∣ = |B[q, φ; t]| ≤ C(1 + |κ|)‖q(t, ·)‖H1
µ
‖φ‖H1

µ
, ∀φ ∈ C∞c .

Since C∞c is a dense subset of
◦
H1
µ, for any φ ∈

◦
H1
µ with ‖φ‖H1

µ
= 1, we have

(3.25) |(µ−1L[q], φ) ◦
H1
µ

| ≤ C(1 + |κ|)‖q(t, ·)‖H1
µ
.

Taking the L2 norm in t leads to the desired estimate. �

Theorem 8 and Lemma 12 lead to the following result for problem (3.1) with a
general Dirichlet boundary condition.

Theorem 13. Suppose that f0ν
−1 ∈ L2

µ, q ∈ C1
tH

1
µ and κ ∈ L2

t with Tr(κ) = 0. Then
for any T > 0 the Fokker-Planck problem (3.1) has a unique solution f such that

(3.26) f = ν(w + q) with w ∈ H for 0 < t ≤ T.

Moreover, for F defined in (2.4),

(3.27) sup
t
‖w(t, ·)‖2

L2
µ

+
1

2
‖w‖2

L2
tH

1
µ
≤ eF (|κ|)

(
‖w0‖2

L2
µ

+

∫ T

0

(1 + |κ(t)|2)‖q(t)‖2dt

)
.

Proof. The estimate (3.27) follows from (3.19) and the estimate in Lemma 12, with
FeF replaced by eF .

We now prove the uniqueness of f in terms of q|∂B. Let fi(i = 1, 2) be two solutions
with qi such that q1|∂B = q2|∂B and initial data f0. Set w = (f2 − f1)ν−1, then w
solves w-problem (3.3) with w0 ≡ h ≡ 0. Hence w ≡ 0, leading to f1 = f2. �

Remark 14. As mentioned in Section 2 that
◦
H1
µ = H1

µ if b ≥ 6,i.e., the trace

of q ∈ H1
µ vanishes if b ≥ 6. Thus, boundary condition (3.1c) is nothing but a zero

Dirichlet boundary condition. In Section 6, we show the well-posedness with a nonzero
Dirichlet boundary condition for b ≥ 6 using yet a different transformation.

Remark 15. The condition Tr(κ) = 0 comes from the divergence free velocity field
of the Navier-Stokes equations. Many of the above arguments, however, do not use
this condition explicitly.

3.2. Probability density function. So far we have discussed well-posedness of the
initial-boundary value problem (3.1) for b > 0 and any given q. We now turn to the
question of which q corresponds to the probability density, i.e., non-negative solution
with constant mass for all time.

Proposition 16. Let f(t,m) be the solution to problem (3.1) obtained in Theorem
13. If f0 ≥ 0 and q(t,m)|∂B ≥ 0 almost everywhere, then f remains nonnegative for
t > 0.
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Proof. We adapt an idea from [7]. Let f± be the positive and negative parts of the
solution f such that f = f+− f−. Obviously, w± := f±ν−1 ∈ H1

µ and q|∂B ≥ 0. This
implies that the trace of w− at the boundary vanishes, so

w− ∈
◦
H1
µ.

From the equation

∂twµ+ L[w] = 0,

which is transformed from (3.1a) it follows that

(∂tw,w
−) ◦

H1
µ

+B[w,w−; t] = 0.

Since (∂tw
+, w−) ◦

H1
µ

and
∫
L[w+]w−dm vanish, hence

1

2

d

dt

(∫
|w−|2µdm

)
+ B[w−, w−; t] = 0.

The coercivity of B, (3.15), gives

1

2

d

dt

(∫
|w−|2µdm

)
+

1

4

∫
|∇w−|2µdm ≤ C(1 + |κ|2)

∫
|w−|2µdm.

Hence

sup
t
‖w−(t, ·)‖2

L2
µ
≤ ‖w−0 ‖2

L2
µ
eF (|κ|)

for T > 0. Since w−0 = 0, ‖w−(t, ·)‖2
L2
µ

= 0 for all 0 ≤ t ≤ T . �

Proposition 17. Let f be a solution to the Fokker-Planck problem (3.1) obtained in
Theorem 13. Suppose b ≥ 2 and q(t,m)|∂B ≥ 0. If q|∂B = 0 for all t ∈ [0, T ], then∫

f(t, ·)dm =

∫
f0dm, t ∈ [0, T ],

and vice versa.

Proof. It suffices to prove the claim for smooth enough f since the general case can
be treated by an approximation as in [36]. We rewrite (3.1a) as

∂tf = −∇ · (κmf) +∇ ·
(
ρb/2∇ f

ρb/2

)
.

First, we take a test function φε(m) = φε(|m|) ∈ C∞c (RN) converging to χB as ε→ 0
such that

φε(|m|) =

{
1, |m| ≤

√
b− ε

0, |m| ≥
√
b− ε/2 , |∇φε| ≤ C

1

ε

and for any smooth g

(3.28)

∫ √b−ε/2
√
b−ε

g(r)φ′ε(r)dr → −g(
√
b) as ε→ 0,

where φ′ε(r) = ∇φε ·
m

|m|
.
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One can construct such a φε by mollifiers, for example

φε(m) =

∫
B√b−3ε/4

ηε/4(m−m′)dm′

where

ηε(m) =
1

εN
η(m/ε), η(m) =

{
Ce
− 1

1−|m|2 , |m| < 1
0, |m| ≥ 1

,

and C is a normalizing constant.
Since ∇φε is supported in Bε := B√b−ε/2 \B√b−ε, hence

(3.29)
d

dt

∫
B

fφεdm =

∫
Bε
fκm · ∇φεdm−

∫
Bε
ρb/2∇

(
f

ρb/2

)
· ∇φεdm.

By w = fν−1, the right hand side reduces to

(3.30)

∫
Bε

(wκm−∇w) · ∇φενdm−
∫
Bε
wρb/2∇φε · ∇(νρ−b/2)dm.

The first term converges to 0. Indeed,∣∣∣∣∫
Bε

(wκm−∇w) · ∇φενdm
∣∣∣∣ ≤ (∫

Bε
|wκm−∇w|2µdm

)1/2(∫
Bε
|∇φε|2

ν2

µ
dm

)1/2

.

Since ν2/µ = ρb/2 for b ≥ 2, by mean value theorem there exists r ∈ (
√
b−ε,

√
b−ε/2)

such that ∫
Bε
|∇φε|2

ν2

µ
dm =

ε

2

∫
∂Br

|∇φε|2ρb/2dS ≤ Cεb/2−1,

which is uniformly bounded for b ≥ 2. Using w ∈ H1
µ, we obtain

∫
Bε
|wκm −

∇w|2µdm→ 0 as ε→ 0. Hence the first term in (3.30) converges to 0.

On the other hand, for C0 =

{
−2, b = 2
2− b, b > 2

−
∫
Bε
wρb/2∇φε · ∇(νρ−b/2)dm = C0

∫
Bε
w∇φε ·mdm

= C0

∫ √b−ε/2
√
b−ε

∫
∂Br

wrφ′ε(r)dSdr

= C0

∫ √b−ε/2
√
b−ε

(
r

∫
∂Br

wdS

)
φ′ε(r)dr.

Due to (3.28) this converges to

−C0

√
b

∫
∂B

wdS = −C0

√
b

∫
∂B

qdS.

Since C0 6= 0, this shows that
d

dt

∫
B

fdm = 0 if and only if

∫
∂B

qdS = 0, or q|∂B =

0. �
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Remark 18. In Proposition 17, the assumption b ≥ 2 is sharp. In the case b < 2,
we need to consider nontrivial q 6= 0 since the equilibrium profile feq = ρb/2 satisfies

q
∣∣
∂B

= ρb/2ν−1|∂B = 1.

This requirement is also consistent with [35], in which it was shown that when b < 2,
fν−1|∂B = q|∂B is necessarily prescribed and each solution depends on the choice of q.
It would be interesting to figure out a particular q for which the corresponding solution
when b < 2 is a probability density.

4. The Fokker-Planck equation

In this section, we show the well-posedness of the FPE (2.9) including x variable.
The result is stated as follows.

Theorem 19. Suppose that for b > 0 and any integer s > N/2 + 1, ∇ · v = 0 and

(4.1) v ∈ CtHs
x ∩ L2

tH
s+1
x , f0ν

−1 ∈ Hs
xL

2
µ, q ∈ C1

tH
s+1
x H1

µ, 0 < t < T

for any T > 0. Then (2.9) has a unique solution f = ν(w + q) satisfying

sup
t
|w|20,s +

1

2

∫ T

0

|∇mw|20,sdt ≤ eF (|v|s+1)
(
|w0|20,s + ‖q‖2

1,1,s+1

)
,(4.2)

where F was defined in (2.4).

The proof of Theorem 19 consists of two parts: first we show the existence of the
solution f to problem (2.9) by using the flow map, followed by proving regularity in
x inductively such that w ∈ CtHs

xL
2
µ∩L2

tH
s
xH

1
µ with v, f0 and q given in (4.1). In the

second step, we derive estimate (4.2) directly from (2.9) to control f in terms of the
given data. The uniqueness can be obtained from the estimation (4.2) as performed
in the proof of Theorem 13.

First, we state a technical lemma.

Lemma 20. Suppose that ψ ∈ H1
µ and φ ∈

◦
H1
µ. Then for the trace map T :

W 1,1(B)→ L1(∂B)

(4.3) T (ψφµ) = 0.

Proof. Since C∞c is a dense subset of
◦
H1
µ, it suffices to show that for a fixed ψ ∈ H1

µ

and any φ ∈ C∞c
(4.4) ‖ψφµ‖W 1,1 ≤ C‖φ‖H1

µ
.

Then, the standard trace theorem asserts that T (ψφµ) is well-defined in L1(∂B) and
it vanishes, also T is a continuous map with respect to φ, we can thus conclude (4.3)

for any φ ∈
◦
H1
µ by passing to the limit of sequence φn ∈ C∞c such that φn → φ.

(4.4) is indeed the case. It is obvious that ψφµ,∇mψφµ and ψ∇mφµ are integrable.
For b 6= 2, |∇mµ| ≤ C

√
µµ∗ and (3.11) yield∫

|ψφ∇mµdm| ≤ C‖ψ‖L2
µ
‖φ‖H1

µ
.
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For b = 2,

|∇mµ| ≤ C(ln2 e

ρ
+ ln

e

ρ
) ≤ C(ln2 e

ρ
+
√
µµ∗).

Using (3.12) and ψ ∈ H1
µ, we obtain ψ ∈ L2

−1+δ for any δ > 0. Hence∣∣∣∣∫ ψφ ln2 e

ρ
dm

∣∣∣∣ ≤ C

(√∫
ψ2ρ−1+δdm

√∫
φ2ρ1−δ ln4(

e

ρ
)dm

)
.

It follows that for any b > 0∫
|ψφµ|+ |∇m(ψφµ)|dm < C‖ψ‖H1

µ
‖φ‖H1

µ

as we desired. �

The main ingredient for the proof of Theorem 19 is to use the calculus inequalities
in the Sobolev spaces, see Appendix 3.5 of [40]: for any positive integer r > 0 and
u, v ∈ L∞x ∩Hr

x,∑
|γ|≤r

‖∂γ(uv)− u∂γv‖L2 ≤ C (‖∇u‖L∞‖v‖Hr−1 + ‖u‖Hr‖v‖L∞) ,(4.5)

‖uv‖Hr ≤ C(‖u‖L∞‖v‖Hr + ‖u‖Hr‖v‖L∞).(4.6)

Note that (4.5) remains valid when ∂γ on the left hand is replaced by the correspond-
ing difference operator.

Proof of Theorem 19.
Step1 (well-posedness) Let a particle path be defined by

∂tx(t, y) = v(t, x(t, y)), x(0, y) = y,

along which the distribution function f̃(t, y,m) := f(t, x(t, y),m) solves

∂tf̃ + L[f̃ ] = 0,(4.7a)

f̃(0, y,m) = f0(y,m),(4.7b)

f̃(t, y,m)ν−1|∂B = q̃(t, y,m)|∂B.(4.7c)

Here L is defined in (3.2) with κ replaced by κ̃(t, y) = ∇v(t, x(t, y)), and q̃(t, y,m) :=
q(t, x(t, y),m).

In order to show existence of a solution to (2.9) under the conditions v ∈ CtHs
x ∩

L2
tH

s+1
x and ∇ · v = 0, it suffices to show that (4.7) has a solution f̃ = ν(w̃+ q̃) such

that

w̃ := w(t, x(t, y),m) ∈ CtHs
yL

2
µ ∩ L2

tH
s
yH

1
µ,

assuming that

(4.8) κ̃ ∈ L2
tH

s
y , w0 ∈ Hs

yL
2
µ, q̃ ∈ C1

tH
s
yH

1
µ.

These follow from (4.1) since |κ̃(t)|s ≤ C|v(t)|s+1 for t > 0, w0(x,m) = f0ν
−1− q̃(t =

0) = w0(y,m), and ‖q̃‖1,1,s ≤ C‖q‖1,1,s+1, for which we have used ∂tq̃ = ∂tq + v · ∇q.
Using Theorem 13 for each y, there exists a unique solution f̃ such that

f̃ = ν(w̃ + q̃)
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with w̃ satisfying (3.27), i.e.,

sup
t
‖w̃(t, y, ·)‖2

L2
µ

+
1

2
‖w̃(·, y, ·)‖2

L2
tH

1
µ
≤ eF (|κ̃(·,y)|)

(
‖w0(y, ·)‖2

L2
µ

+

∫ T

0

(1 + |κ̃(·, y)|2)‖q̃(t, y, ·)‖2dt

)
.(4.9)

Integration of (4.9) with respect to y, upon exchanging the order of integration in y
and m and using the Sobolev inequality, supy |κ̃| ≤ C|κ̃|s−1, gives

sup
t
|w̃|20,0 +

1

2

∫ T

0

|w̃|21,0dt ≤ eF (|κ̃|s−1)
(
|w0|20,0 + ‖q̃‖2

1,1,0

)
.(4.10)

Hence w̃ ∈ CtL
2
yL

2
µ ∩ L2

tL
2
yH

1
µ. On the other hand, the right hand side of (4.9) is

uniformly bounded in y, taking supy of (4.9) gives

(4.11) sup
t,y
‖w̃(t, y, ·)‖2

L2
µ
≤ eF (|κ̃|s−1)(|w0|20,s−1 + ‖q̃‖2

1,1,s−1).

We now use an induction argument to prove that w̃ ∈ CtHr
yL

2
µ∩L2

tH
r
yH

1
µ for 0 ≤ r ≤ s,

and

(4.12) sup
t
|w̃|20,r +

1

2

∫ T

0

|w̃|21,rdt ≤ eF (|κ̃|s)(|w0|20,s + ‖q̃‖2
1,1,s).

The case r = 0 has been proved as shown in (4.10). Suppose (4.12) holds for r = k,
we only need to show (4.12) for r = k + 1 ≤ s.

To prove regularity of f̃ in the y variable, we use difference quotients. Define the
difference operator in the y variable as

δγ := δγ11 · · · δ
γN
N , δiu(y) :=

1

η
[u(y + ηei)− u(y)].

Apply δγ to (4.7) with |γ| ≤ s, then

∂tδ
γ f̃ + L[δγ f̃ ] = ∇m · J,(4.13a)

δγ f̃(0, y,m) = δγf0(y,m),(4.13b)

δγ f̃(t, y,m)ν−1|∂B = δγ q̃(t, y,m)|∂B,(4.13c)

where

(4.14) J = κ̃mδγ f̃ − δγ(κ̃mf̃).

This when transformed into the w-problem of form (3.3) involves the following non-
homogeneous term

(4.15) h = −∂tδγ q̃ − µ−1L[δγ q̃] +∇m · Jν−1.

Using Theorem 13 again for each y, δγ f̃ is the unique solution to (4.13) as long as

h ∈ L2
t (
◦
H1
µ)∗. Moreover,

δγ f̃ = ν(δγw̃ + δγ q̃),

where δγw̃, using (3.19), satisfies

sup
t
‖δγw̃(t, y, ·)‖2

L2
µ

+
1

2
‖δγw̃(·, y, ·)‖2

L2
tH

1
µ
≤ eF (|κ̃(·,y)|)

(
‖δγw0‖2

L2
µ

+ ‖h‖2

L2
t (
◦
H1
µ)∗

)
.
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Integration in y gives

sup
t
|δγw̃|20,0 +

1

2

∫ T

0

|δγw̃|21,0dt ≤ eF (supy |κ̃(·,y)|)
(
|δγw0|20,0 + ‖h‖2

L2
tL

2
y(
◦
H1
µ)∗

)
≤ eF (|κ̃|s−1)

(
|w0|20,s + ‖h‖2

L2
tL

2
y(
◦
H1
µ)∗

)
.(4.16)

We now turn to bound the last term in the above inequality. For any φ ∈
◦
H1
µ and J

defined in (4.14), Lemma 20 allows the use of integration by parts. Hence,∣∣∣∣∫ ∇m · Jν−1φµdm

∣∣∣∣ ≤ (∫ |Jν−1||ν∇m
µ

ν
||φ|dm+

∫
|Jν−1||∇mφ|µdm

)
≤ C‖Jν−1‖L2

µ
(‖φ‖L2

µ∗
+ ‖∇mφ‖L2

µ
)

≤ C‖Jν−1‖L2
µ
‖φ‖H1

µ
.

Here we have used |ν∇m
µ

ν
| ≤ C

√
µ∗µ and the embedding theorem (3.11). This

together with Lemma 12 and (4.15) yields
(4.17)

‖h‖2

L2
tL

2
y(
◦
H1
µ)∗
≤ C

∫ T

0

(1 + sup
y
|κ̃(t, y)|2)

∫
‖δγ q̃(t, y, ·)‖2dydt+ C

∫ T

0

|Jν−1|20,0dt.

For |γ| ≤ s, the first term on the right side is bounded by

(4.18) F (|κ̃|s−1)‖δγ q̃‖2
1,1,0 ≤ F (|κ̃|s−1)‖q̃‖2

1,1,s.

To obtain (4.12) for r = k+ 1 ≤ s, it remains to estimate the last term in (4.17) with
|γ| = k + 1. In fact,

|Jν−1|20,0 = |(δγ(κ̃mf̃)− κ̃mδγ f̃)ν−1|20,0
≤ C(sup

y
|∇yκ̃|2|f̃ν−1|20,k + |κ̃|2k+1 sup

y
‖f̃ν−1‖2

L2
µ
)

≤ C|κ̃|2s(|w̃|20,k + sup
y
‖w̃‖2

L2
µ

+ ‖q̃‖2
1,1,s),

where we have used (4.5) with ∂γ replaced by δγ.
Using (4.12) for r = k and (4.11) we have∫ T

0

|Jν−1|20,0dt ≤ eF (|κ̃|s)(|w0|20,s + ‖q̃‖2
1,1,s).

This and (4.18) when inserted into (4.17) give a bound for ‖h‖2

L2
tL

2
y(
◦
H1
µ)∗

. That bound

combined with (4.16) yields

sup
t
|δγw̃|20,0 +

1

2

∫ T

0

|δγw̃|21,0dt ≤ eF (|κ̃|s)
(
|w0|20,s + ‖q̃‖2

1,1,s

)
<∞, |γ| = k + 1.

Sending η → 0 we obtain (4.12) with r = k + 1. Hence, (4.12) holds for any r ≤ s,
and thus the solution f to (2.9) exists, and

sup
t
|w|20,s +

1

2

∫ T

0

|w|21,sdt <∞.
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One may obtain an upper bound from (4.12) with r = s using the inverse map of
x = x(t, y). Nevertheless, the next step gives the claimed bound in (4.2).
Step2 (a priori estimate) For a priori estimate, we consider the w-problem (2.11)

µ(∂t + v · ∇)w + L[w] = −µ(∂t + v · ∇)q − L[q].(4.19)

Recall that

L[w] = −1

2
∇m · (∇mwµ) +∇m · (κmwµ)−Kw.

Take γ derivative in x-variable. Then, the left and right hand side of (4.19) will be

I = µ(∂t + v · ∇)∂γw − 1

2
∇m · (∇m∂

γwµ)(4.20)

+ µ[∂γ((v · ∇)w)− (v · ∇)∂γw](4.21)

+ ∇m · (∂γ(κmwµ))(4.22)

− ∂γ(Kw),(4.23)

II = −µ∂t∂γq +
1

2
∇m · (∇m∂

γqµ)(4.24)

− µ∂γ((v · ∇)q)(4.25)

− ∇m · (∂γ(κmqµ))(4.26)

+ ∂γ(Kq).(4.27)

We now estimate term by term of

(4.28)
∑
|γ|≤s

∫ ∫
I∂γwdmdx =

∑
|γ|≤s

∫ ∫
II∂γwdmdx.

Since v is divergence free, the first two terms on the left hand side will be

1

2

d

dt
|w|20,s +

1

2
|∇mw|20,s.

Indeed, the Cauchy inequality shows that the term related to (4.21) is bounded by

ε|w|20,s + Cε
∑
|γ|≤s

∫ ∫
|∂γ((v · ∇)w)− (v · ∇)∂γw|2µdmdx.

Now, we exchange the order of integration in x and m, and apply (4.5) to obtain

ε|w|20,s + Cε

∫ (
‖∇v‖2

L∞x
‖∇w(·,m)‖2

Hs−1
x

+ ‖v‖2
Hs
x
‖∇w(·,m)‖2

L∞x

)
µdm

≤ ε|w|20,s + Cε|v|2s|w|20,s,

where the Sobolev inequality, |u|0 ≤ C|u|s−1 for any u ∈ Hs−1
x , is invoked in the last

inequality. Similarly, the term with (4.22) will be estimated as follows due to (4.6);

ε|∇mw|20,s + Cε
∑
|γ|≤s

∫ ∫
|∂γ(κmw)|2µdmdx

≤ ε|∇mw|20,s + Cε

∫ (
|κ|2L∞x |w(·,m)|2s + |κ|2s|w(·,m)|2L∞x

)
µdm

≤ ε|∇mw|20,s + Cε|v|2s+1|w|20,s.
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Recall that

K =


0, 0 < b < 2,

(N + 2κm ·m) ln
e

ρ
, b = 2,

(N + 2κm ·m)(b/2− 1)ρ1−b/2, b > 2.

Thus, we can express K as

(4.29) K = c1

√
µµ∗ + c2κm ·m

√
µµ∗

for some positive constat ci depending on N and b. We now estimate the last term
on the left hand side, by using

∂γ(Kw)∂γw = c1|∂γw|2
√
µµ∗ + c2∂

γ(κm ·mw)∂γw
√
µµ∗.

The Cauchy inequality and the embedding theorem (3.11) give

c1

∑
|γ|≤s

∫ ∫
|∂γw|2

√
µµ∗dmdx = c1

∫
|w(t, ·,m)|2s

√
µµ∗dm

≤ ε

∫
|w(t, ·,m)|2sµ∗dm+ Cε

∫
|w(t, ·,m)|2sµdm

≤ ε|∇mw|20,s + Cε|w|20,s.

Similarly,

c2

∑
|γ|≤s

∫ ∫
|∂γ(κm ·mw)∂γw|

√
µµ∗dmdx ≤ ε|∇mw|20,s + Cε

∫ ∫
|∂γ(κm ·mw)|2µdmdx.

The last term, using (4.6) and the Sobolev inequality for κ = ∇v, is then bounded
by

Cε|v|2s+1|w|20,s.

Hence, ∣∣∣∣∣∣
∑
|γ|≤s

∫ ∫
∂γ(Kw)∂γwdmdx

∣∣∣∣∣∣ ≤ ε|∇mw|20,s + Cε(|v|2s+1 + 1)|w|20,s.

Now we turn to the right hand side, related to (4.24)-(4.27). The estimation is
similar to that for the left hand side. Except that here we have to assume higher

regularity of q in x than that of w since

∫
v ·
∫
∇∂γq∂γwµdmdx does not vanish as∫

v ·
∫
∇∂γw∂γwµdmdx. Indeed, the first two terms, related to (4.24) are bounded

by

ε|w|20,s + Cε|∂tq|20,s + ε|∇mw|20,s + Cε|∇mq|20,s,
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and the other terms are estimated as follows;∑
|γ|≤s

∣∣∣∣∫ ∫ ∂γ(v · ∇q)∂γwµdmdx
∣∣∣∣ ≤ ε|w|20,s + Cε|v|2s|q|20,s+1,

∑
|γ|≤s

∣∣∣∣∫ ∫ ∂γ(κmq)∇m∂
γwµdmdx

∣∣∣∣ ≤ ε|∇mw|20,s + Cε|v|2s+1|q|20,s,

∑
|γ|≤s

∣∣∣∣∫ ∫ ∂γ(Kq)∂γwdmdx

∣∣∣∣ ≤ ε|∇mw|20,s + Cε|q|20,s + Cε|v|2s+1|q|20,s.

We combine all estimates for sufficiently small ε to obtain

(4.30) ∂t|w|20,s +
1

2
|∇mw|20,s ≤ C(|v|2s+1 + 1)

(
|w|20,s + (|q|21,s+1 + |∂tq|21,s+1)

)
.

We deduce that

|w|20,s +
1

2

∫ t

0

|∇mw|20,sdt ≤ eF (|v|s+1)
(
|w0|20,s + F (|v|s+1)‖q‖2

1,1,s+1

)
.

Replacing FeF by eF leads to (4.2). �

5. Coupled system

In this section, we prove Theorem 1 by the fixed point argument as described in
Section 2.

We begin with a key lemma, which will be used to estimate the stress τ .

Lemma 21. Suppose that φ ∈
◦
H1
µ. For any ε > 0 there exists Cε such that

(5.1)

∣∣∣∣∫ φνρ−1dm

∣∣∣∣2 ≤ Cε

∫
|φ|2µdm+ ε

∫
|∇mφ|2µdm.

Proof. For b > 2, the Cauchy-Schwartz inequality yields∣∣∣∣∫ φdm

∣∣∣∣2 ≤ ∫ |φ|2µdm∫ µ−1dm.

For any ε > 0, taking Cε =

∫
µ−1dm <∞, we obtain (5.1) for b > 2.

For b ≤ 2, we define for fixed M ,

G = {φ ∈
◦
H1
µ :

∫
φνρ−1dm = 1, ‖φ‖H1

µ
≤M}.

It suffices to prove

l := inf
φ∈G

∫
|φ|2µdm > 0.

Let {φn} ⊂ G be a sequence such that

lim
n→∞

∫
|φn|2µdm = inf

φ∈G

∫
|φ|2µdm.
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Since {φn} is bounded inH1
µ, by embedding theorem (3.11), there exists a subsequence

{φnk} such that

φnk ⇀ φ∗ in H1
µ,

φnk ⇀ φ∗ in L2
µ,

φnk ⇀ φ∗ in L2
µ∗ .

Furthermore, since

√
µ

µ∗
∈ L2

µ∗ for b ≤ 2∫
φ∗νρ−1dm =

∫
φ∗
√

µ

µ∗
µ∗dm

= lim
nk→∞

∫
φnk

√
µ

µ∗
µ∗dm = 1.

This shows that φ∗ ∈ G. On the other hand,∫
|φ∗|2µdm ≤ lim

nk→∞

∫
|φnk |2µdm = l.

If l = 0, then φ∗ = 0 which is a contradiction to φ∗ ∈ G. �

The zero trace of φ is essential for the estimate (5.1). For the general case, i.e., for
φ ∈ H1

µ, one can only have a weaker estimate.

Lemma 22. If φ ∈ H1
µ, then there exists C such that

(5.2)

∣∣∣∣∫ φνρ−1dm

∣∣∣∣2 ≤ C‖φ‖2
H1
µ
.

Proof. For b > 2, we have∣∣∣∣∫ φνρ−1dm

∣∣∣∣2 ≤ C

∫
|φ|2µdm, C :=

∫
µ−1dm <∞.

For b ≤ 2,∣∣∣∣∫ φνρ−1dm

∣∣∣∣2 ≤ Cδ

∫
|φ|2ρ−1+δdm, Cδ :=

(∫
ν2ρ−1−δdm

)
.

We choose δ > 0 small enough so that Cδ is bounded. On the other hand, by (3.12)
in Lemma 9 we have∫
|φ|2ρ−1+δdm ≤ C

∫
(|φ|2 + |∇mφ|2)ρb/2dm = C

∫
(|φ|2 + |∇mφ|2)µdm, b < 2∫

|φ|2ρ−1+δdm ≤ C

∫
(|φ|2 + |∇mφ|2)ρdm ≤ C

∫
(|φ|2 + |∇mφ|2)µdm, b = 2.

This completes the proof. �

We now turn to the map

F : M →M

(u,$) 7→ (v, w),
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and

M =

{
(v, w) : sup

0≤t≤T
|v|2s ≤ A1, sup

0≤t≤T
|w|20,s +

1

2

∫ T

0

|∇mw|20,sdt ≤ A2

}
.

We first prove that, given v0 ∈ Hs
x, f0ν

−1 ∈ Hs
xL

2
µ and q ∈ C1

tH
s+1
x H1

µ, the map F is
well defined, i.e., F(M) ⊂M for some A1, A2, T .

Let (u,$) ∈M. It is now well known that (2.8) has a unique solution v such that

(5.3) sup
t
|v|2s +

∫ T

0

|v|2s+1dt ≤ |v0|2s + C

∫ T

0

|u|s|v|2sdt+

∫ T

0

|τ |2sdt, s > N/2 + 1.

By Gronwall’s inequality and sup
0≤t≤T

|u|2s ≤ A1, we have

(5.4) sup
t
|v|2s +

∫ T

0

|v|2s+1dt ≤
(
|v0|2s +

∫ T

0

|τ |2sdt
)
eC
√
A1T .

We proceed to estimate the stress term∫ T

0

|τ |2sdt =

∫ T

0

∑
|γ|≤s

∫
|∂γτ |2dxdt,

where using Lemma 21,

|∂γτ |2 = b2

∣∣∣∣∫
B

m⊗m∂γ($ + q)νρ−1dm

∣∣∣∣2
≤ Cε

∫
|∂γ$|2µdm+

ε

2

∫
|∂γ∇m$|2µdm+ 2b4

∣∣∣∣∫ ∂γqνρ−1dm

∣∣∣∣2 .
Using (5.2) the last term is uniformly bounded by

C‖∂γq(t, x, ·)‖2
H1
µ
≤ C‖q‖2

1,1,s+1.

Hence for (u,$) ∈M we obtain∫ T

0

|τ |2sdt ≤ CεTA2 + εA2 + CT |q|21,1,s+1 ≤ CT (A2 + ‖q‖2
1,1,s+1) + εA2,(5.5)

where we have used the assumption q ∈ C1
tH

s+1
x H1

µ.
We choose A1 as

(5.6) A1 = 2|v0|2se,
A2 as

(5.7) A2 = (|w0|20,s + ‖q‖2
1,1,s+1)eC(T+A1)

for T ≤ 1/(C
√
A1).

Hence, if T and ε are chosen small enough so that

CT (A2 + ‖q‖2
1,1,s+1) + εA2 ≤

1

2e
A1,

we get

(5.8) eC
√
A1T

(
|v0|2s + CT (A2 + |q|21,1,s+1) + εA2

)
≤ e(|v0|2s +

1

2e
A1) ≤ A1.
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This together with (5.4), (5.5) gives

(5.9) sup
t
|v|2s +

∫ T1

0

|v|2s+1dt ≤ A1.

Estimate (4.2) in Theorem 19, (5.7) and (5.9) yield

(5.10) sup
t
|w|20,s +

1

2

∫ T

0

|∇mw|20,sdt ≤ A2.

So the map F is well defined in M.
Next, we show that F is a contraction mapping for small enough T using a weak

norm on M, i.e.

(5.11) ‖(v, w)‖2
M := sup

t
|v|20 + sup

t
|w|20,0 +

1

2

∫ T

0

|∇mw|20,0dt.

Suppose that vi(i = 1, 2) are solutions of the NSE (2.8) with ui(i = 1, 2) and τi(i =
1, 2) computed from $i(i = 1, 2) respectively. Then we obtain

(5.12) ∂tv + (u2 · ∇)v + (u · ∇)v1 +∇p = ∇ · τ + ∆v, v(0, ·) = 0,

where v = v2−v1, u = u2−u1, p = p2−p1, τ = τ2−τ1 and $ = $2−$1. Multiplication
by v to (5.12) and integration with respect to x yield

1

2

d

dt
|v|20 +

∫
(u · ∇v1)vdx = −

∫
τ∇vdx−

∫
|∇v|2dx.

Hence

d

dt
|v|20 + |∇v|20 ≤ |u|20 + |τ |20 + sup

x
|∇v1|2|v|20

≤ |u|20 + |τ |20 + A1|v|20.(5.13)

Let fi be the solutions to (2.9) associated with vi(i = 1, 2). Then

w = (f2 − f1)ν−1 =: w2 − w1

solves

∂twµ+ v2 · ∇wµ+ L2[w] = −v · ∇w1µ−∇m · (∇vmw̃1ν)
µ

ν
,(5.14a)

w(0, x,m) = 0,(5.14b)

w(t, x,m)|∂B = 0,(5.14c)

where L2[w] = L[w] defined in (3.5) with κ = ∇v2. Note that wi|∂B = q|∂B, i.e.

wi(t, x, ·) ∈ H1
µ, so w(t, x, ·) ∈

◦
H1
µ.

We deduce from (5.14a) that

1

2

d

dt
|w|20,0 +

1

2
|∇mw|20,0 ≤

∫ ∫
|∇v2m · ∇mwνw|dmdx+

∫ ∫
|Kw2|dmdx

+

∫
|v ·
∫
∇w1wµdm|dx+

∫ ∣∣∣∣∫ ∇m · (∇vmw1ν)
µ

ν
wdm

∣∣∣∣ dx.
Similar to that led to (4.2), first two terms on the right hand side are bounded by

Cε(|v2|2s + 1)|w|20,0 + ε|∇mw|20,0,
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and the third term∫
|v ·
∫
∇w1wµdm|dx ≤ C

∫
|v|2

∫
|∇w1|2µdmdx+

∫ ∫
|w|2µdmdx

≤ C|v|20|w1|20,s + |w|20,0.
The last term, using integration by parts with vanished boundary term due to Lemma
20, is bounded by∫ ∣∣∣∣∫ ∇m · (∇vmw1ν)

µ

ν
wdm

∣∣∣∣ dx =

∫ ∣∣∣∣∫ ∇vmw1ν · ∇m

(µ
ν
w
)
dm

∣∣∣∣ dx
≤ Cε|∇v|20|w1|20,s + ε|∇mw|20,0.

Putting all together we have

d

dt
|w|20,0 +

1

2
|∇mw|20,0 ≤ C(|v2|2s + 1)|w|20,0 + C|w1|20,s(|v|20 + |∇v|20)

≤ C(A1 + 1)|w|20,0 + CA2(|v|20 + |∇v|20).

Substitution of the estimates of |∇v|20 and d
dt
|v|20 in (5.13) gives

d

dt
(|v|20 + |w|20,0) +

1

2
|∇mw|20,0 ≤ D(|v|20 + |w|20,0) +D|u|20 +D|τ |20,(5.15)

where D is a large constant depending on C,A1, A2, for example we may choose

D = C(A1 + 1)(A2 + 1).

The Gronwall inequality gives

sup
t

(|v|20 + |w|20,0) +
1

2

∫ T ∗

0

|∇mw|20,0dt ≤ DeDT
∫ T ∗

0

|u|20 + |τ |20dt

for any 0 < T ∗ ≤ T . Due to the similar estimate for τ as (5.5), the right hand side is
bounded by

DeDT
(
T ∗ sup

t
|u|20 + CεT

∗ sup
t
|$|20,0 + ε

∫ T ∗

0

|∇m$|20,0dt
)
.

We choose ε =
1

4DeDT
, T ∗ =

1

2
min

{
T,

1

(Cε + 1)DeDT

}
and redefine T = T ∗ to

obtain

(5.16) ‖(v2, w2)− (v1, w1)‖2
M = ‖(v, w)‖2

M ≤
1

2
‖(u2, $2)− (u1, $1)‖2

M.

This shows that F has a fixed point (v, w) in M, which is a solution to the coupled
problem (2.1). Since F(v, w) = (v, w), (5.3) and Theorem 13 imply that (v, w) ∈ Xµ.

The uniqueness follows from the same computation of estimates for the contraction
mapping. Let (vi, fiν

−1)(i = 1, 2) be solutions of the coupled problem (2.1). Then
v = v2 − v1 solves (5.12) with ui = vi, u = v, and τ = τ2 − τ1 computed from fi.
w = (f2 − f1)ν−1 also solves (5.14) with w1 = f1ν

−1. Similar to (5.15), we obtain

d

dt
(|v|20 + |w|20,0) +

1

2
|∇mw|20,0 ≤ D(|v|20 + |w|20,0 + |τ |20).

It follows from the estimate for τ and Gronwall inequality that (v, w) ≡ (0, 0), which
gives the uniqueness of problem (2.1).
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6. A further look at b ≥ 6

In this section, we sketch proofs of Theorem 2 and Theorem 4 for the case of µ = µ0.
Consider (2.9) when x is not involved, i.e., (3.1). The corresponding w-problem for

w = fν−1 − q with µ = µ0 solves (3.3) with the operator L replaced by

(6.1) L0[w] = −1

2
∇ · (∇wµ0) +

(
2− 1

2
b− θ

)
m · ∇wρθ−1 +∇ · (κmwµ0)−K0w,

where

(6.2) K0 = [N(b/2− 1) + 2κm ·m(1− θ)] ρθ−1.

Define the conjugate of µ0 as (3.10), µ∗0 = ρθ−2, then K0 can be rewritten as

(6.3) K0 = [N(b/2− 1) + 2κm ·m(1− θ)]
√
µ0µ∗0.

To ensure well-posedness of (3.3), we need to check the coercivity of B0[w,w; t],
which is defined as

1

2

∫
|∇w|2µ0dm = B0[w,w; t]−

(
2− 1

2
b− θ

)∫
m · ∇wwρθ−1dm

−
∫
∇ · (κmwµ0)wdm+

∫
K0w

2dm.

From the proof of Lemma 10, the last two terms are bounded by

Cε

∫
w2µ0dm+ ε

∫
|∇w|2µ0dm,

where the embedding theorem (3.11) has been used. For small enough ε, this estimate
yields

1

4

∫
|∇w|2µ0dm ≤ B0[w,w; t] + C

∫
w2µ0dm,

as long as ∫ (
2− 1

2
b− θ

)
m · ∇wwρθ−1dm ≥ 0,

for w ∈
◦
H1
µ0

. This is indeed the case, as shown below.

Lemma 23. Let w ∈
◦
H1
µ0

. Then

(6.4)

∫
(2− 1

2
b− θ)m · ∇wwρθ−1dm ≥ 0.

Proof. From −1 < θ < 1 and b ≥ 6, we see that (2− b/2− θ) < 0. It suffices to show∫
m · ∇wwρθ−1dm =

1

2

∫
m · ∇w2ρθ−1dm ≤ 0.

Integration by parts gives∫
m · ∇w2ρθ−1dm = −

∫
w2(Nρθ−1 + 2(1− θ)|m|2ρθ−2)dm+

∫
∂B

w2ρθ−1m · m
|m|

dS

≤
√
b

∫
∂B

w2ρθ−1dS = 0.
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Here we use the fact that w2ρθ−1 ∈ W 1,1 and w2ρθ−1|∂B = 0. To see this, for any

w ∈
◦
H1
µ0

, we estimate∫
w2ρθ−1 + |∇(w2ρθ−1)|dm ≤

∫
w2ρθ−1 + 2|w∇w|ρθ−1 + 2(1− θ)|mw2|ρθ−2dm

≤ C

∫
w2
√
µ0µ∗0 + |w||∇w|

√
µ0µ∗0 + w2µ∗0dm

≤ C‖w‖2
H1
µ0
,

due to the embedding theorem (3.11). Thus w2ρθ−1|∂B ∈ L1(∂B) from the trace

theorem and it is zero from the fact that C∞c is a dense subset of
◦
H1
µ0

. Thus (6.4)
follows. �

We now turn to the FPE problem including x-variable. The first step in the proof
of Theorem 19 remains valid for µ = µ0. To check the second part of the proof, we
need only look at two extra terms beyond those in (4.28).

−
(

2− 1

2
b− θ

)∫
m·∇m∂

γwρθ−1∂γwdm, −
(

2− 1

2
b− θ

)∫
m·∇m∂

γqρθ−1∂γwdm.

The first term is non-positive from Lemma 23, and the second term is bounded by

C

∣∣∣∣∫ ∫ m · ∇m∂
γqρθ−1∂γwdm

∣∣∣∣ ≤ Cε

∫
|∇m∂

γq|2µ0dm+ ε

∫
|∂γw|2µ∗0dm.

These ensure the same estimate (4.30) and thus (4.2).
For the well-posedness for the coupled problem, we utilize θ < 1 and Lemma 23.

For example, for the proof of Lemma 21 with µ0

|
∫
φνρ−1dm|2 = |

∫
φdm|2 ≤

∫
φ2µ0dm

∫
µ−1

0 dm.

Since θ < 1 we have
∫
µ−1

0 dm <∞, hence (5.1). Verification of other terms is omitted.
The remaining is to show Theorem 4, the solution f is a probability distribution if

and only if q|∂B = 0 for µ = µ0, Positivity of f follows as in Proposition 16. For the
conservation of mass, as in Proposition 17, we only have to check (3.30),∫

Bε
(wκm−∇w · ∇φεν)dm−

∫
Bε
wρb/2∇φε · ∇(νρ−b/2)dm.

Since ν2/µ0 = ρ2−θ and 2− θ > 1

ε

2

∫
∂Br

|∇φε|2ρ2−θdS

converges to 0 as ε → 0. Thus the first term converges to 0 as well. On the other

hand, the same argument shows that the second term converges to C

∫
∂B

qdS for

some nonzero constant C. Hence, we conclude Theorem 4 under the assumption of
Theorem 2.
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7. Conclusion

In this paper, we have analyzed the FENE dumbbell model which is of bead-
spring type Navier-Stokes-Fokker-Planck models for dilute polymeric fluids, with our
focus on developing a local well-posedness theory subject to a class of Dirichlet-type
boundary conditions

fν−1 = q on ∂B

for the polymer distribution f , where ν depends on b > 0 through the distance
function, and q is a given smooth function measuring the relative ratio of f/ν near
boundary. We have thus identified a sharp Dirichlet-type boundary requirement for
each b > 0, while the sharpness of the boundary requirement is a consequence of the
existence result for each specification of the boundary behavior. It has been shown
that the probability density governed by the Fokker-Planck equation approaches zero
near boundary, necessarily faster than the distance function d for b > 2, faster than
d|lnd| for b = 2, and as fast as db/2 for 0 < b < 2. Moreover, the sharp boundary
requirement for b ≥ 2 is also sufficient for the distribution to remain a probability
density.
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