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Abstract. We present convergence and error estimates of the time-discrete consensus-based opti-
mization(CBO) algorithms proposed in [4] for general nonconvex functions. In authors’ recent work
[14], rigorous error analysis of the first-order consensus-based optimization algorithm proposed in
[4] was studied at the particle level without resorting to the kinetic equation via a mean-field limit.
However, the error analysis for the corresponding time- discrete algorithm was not done mainly
due to lack of discrete analogue of Itô’s stochastic calculus. In this paper, we provide a simple and
elementary convergence and error analysis for a general time-discrete consensus-based optimization
algorithm, which includes the three discrete algorithms in [4]. Our analysis provides numerical sta-
bility and convergence conditions for the three algorithms, as well as error estimates to the global
minimum.

1. Introduction

The purpose of this work is to complete the convergence and error analysis for discrete consensus-
based optimization algorithms introduced in [4, 14]. For modern machine learning methods, one
needs to solve non-convex optimiation problems in high dimensions. It is well-known that non-
convex optimiation problem is NP-hard. Usually a deterministic algorithm, such as the gradient
descent method, will get stuck to local minima. In order to escape from local minima, or saddle
points, one needs to introduce some numerical noises which allow the algorithms to escape from
the local minima or saddle points. For this reason, stochastic optimizations–such as the stochastic
gradient descent method, have been widely used in machine learning [3]. On the other hand,
gradient-free algorithms, which do not need the gradient of objective functions, are attractive for
problems with non-smooth objective functions or data-based optimization problems. Meta-heuristic
stochastic optimization algorithms belong to the latter category, for example swarm intelligence
methods [19, 32] such as particle swarm optimization (in short PSO) [10], simulated annealing
method [20, 24], ant-colony algorithm [31], genetic algorithm [17] etc. A basic idea of these meta-
heuristic algorithms is to use collective behaviors of underlying individual agents (or particles)
coupled with suitable stochastic components in the choice of system parameters. Although each
individual moves in some random fashion, one designs suitable communication functions between
the particles such that colelctively they exhibit some intelligent behavior, such as moving toward the
global minimum. Although these algorithms are usually simple to implement and yields reasonably
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good results with suitable choices of parameters, their rigorous convergence analysis were mostly
open as far as the authors know.

Our main interest in this paper lies on the first-order consensus based optimization algorithm,
first introduced in [27] and studied in [5], and then modified in [4] (see also [29] for comparisons
between CBO algorithm and other heuristic algorithms based on collective dynamics). These are
swarming intellience models that can be proved to exhibit concensus approximating the global
minimum of general nonconvex functions under suitable conditions on the parameters and initial
data. We also refer to recent works on the consensus-based optimization algorithm on the sphere
[12, 13].

We begin with the continuous optimization algorithm. Let Xk
t = (xk,1t , · · · , xk,dt ) ∈ Rd be the

coordinate of the k-th particle at time t, and L = L(X), X ∈ Rd be a non-convex objective function
to be minimized. Then, the main goal of optimization algorithms is to look for a global minimizer
X∗ of L in the search space (in our setting, the whole space) if it exists:

X∗ ∈ argminX∈RdL(X).

In a recent work [4], the authors proposed the following variant of the CBO algorithm introduced
in [5, 27]:

(1.1)


dXi

t = −λ(Xi
t − X̄∗t )dt+ σ

d∑
l=1

(xi,lt − x̄
∗,l
t )dW l

t el, t > 0, i = 1, · · · , N,

X̄∗t = (x∗,1t , · · · , x∗,dt ) :=

∑N
j=1X

j
t e
−βL(Xj

t )∑N
j=1 e

−βL(Xj
t )

,

where λ and σ denote the drift rate and noise intensity, respectively, and β > 0 is a positive
constant corresponding to the reciprocal of temperature in statistical physics. Here {el} is the
standard orthonormal basis in Rd. The one-dimensional Brownian motions W l

t are assumed to be
i.i.d. and satisfy the mean zero and covariance relations:

E[W l
t ] = 0 for l = 1, · · · , d and E[W l1

t W
l2
t ] = δl1l2t, 1 ≤ l1, l2 ≤ d.

This model is an example of agent-based swarming models which have been studied intensively
in recent years, see for example several survey articles [1, 2, 6, 28, 30] and related literature
[8, 11, 15, 16, 21, 22, 23, 25, 26].

Next, we consider time-discrete analogue of (1.1). For this, we set

h := ∆t, Xn := X(nh), n = 0, 1, · · · , · · · .

Then the discrete scheme reads as follows:

(1.2)


Xi
n+1 = Xi

n − γ(Xi
n − X̄∗n)−

d∑
l=1

(xi,ln − x̄∗,ln )ηlnel, n ≥ 0, i = 1, · · · , N,

X̄∗n = (x∗,1n , · · · , x∗,dn ) :=

∑N
j=1X

j
ne−βL(Xj

n)∑N
j=1 e

−βL(Xj
n)

,

where the random variables {ηln}n,l are i.i.d. with

(1.3) E[ηln] = 0, E[|ηln|2] = ζ2, n = 1, · · · , l = 1, · · · , d.
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Note that the discrete process {ηln}n,l certainly includes the Gaussian noise process. In this sense,
the discrete model (1.2) clearly generalizes the discrete model studied in [14].

In this paper, we are interested in the following issues for the discrete algorithm (1.2):

• (Question A): Does the N -state ensemble {Xi
n} exhibit a global consensus? i.e., does

Xi
n −Xj

n → 0 as n→∞, i, j = 1, · · · , N in suitable sense?

• (Question B): If the answer to the first problem is positive, then under what conditions on
system parameters and initial data, does there exist a global consensus state X∞ such that

Xi
n → X∞ for all i, as n→∞, such that L(X∞) ∼ min

X
L(X).

In [14], the above two questions were answered positively for the continuous algorithm (1.1), whereas
for the discrete algorithm (1.2), only the first question was discussed in the same paper. For a rig-
orous error analysis to the continuous algorithm, Itô’s calculus was essentially used. The main
reason that we did not cover the second question for the discrete algorithm is mainly due to the
lack of the discrete analogue of Itô’s stochastic calculus.

In this paper, we revisit the second question on the convergence of the discrete algorithm (1.2)
and provide positive answer for the generalized discrete algorithm (1.2) which can cover several dis-
crete algorithms proposed in [4] (see Section 2.1 for details). Our analysis also provides numerical
stability conditions and error estimates or these algorithms

Next, we summarize our main results as follows. First, we provide several stochastic global
consensus results in suitable sense. More precisely, if system parameters γ and ζ in (1.2) and (1.3)
satisfy

(1.4) |1− γ| < 1, 0 ≤ ζ ≤ ∞,

then the expectation of Xi
n −X

j
n tends to zero asymptotically:

lim
n→∞

E[Xi
n −Xj

n] = 0, ∀ i, j = 1, · · · , N.

On the other hand, if system parameters satisfy a more restricted condition compared to (1.4):

(1.5) (1− γ)2 + ζ2 < 1,

then L2-global consensus and almost-sure global consensus occur asymptotically:

lim
n→∞

E|Xi
n −Xj

n|2 = 0 and P
{

lim
n→∞

|Xi
n −Xj

n| = 0
}

= 1, ∀ i, j = 1, · · · , N,

where | · | stands for the L2-norm of a vector.
Moreover, the above L2-global consensus also implies the L1-global consensus. We refer to

Definition 2.1 and Theorem 2.1 for the definition of convergences and details.
Note that the above global consensus does not imply the existence of asymptotic consensus state

X∞ independent of i such that

(1.6) Xi
n → X∞ in suitable sense,

i.e., the process can fluctuate, but the relative distances tends to zero asymptotically, for exam-
ple, the sample paths may tend to periodic orbit or limit cycle. Our second result provides the
condition under which the process tends to a common fixed random variable X∞ (see (1.6)). In
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fact, under the same assumption (1.5), one can show that there exists a common constant state
X∞ = (x1

∞, · · · , xd∞) such that

lim
n→∞

Xi
n = X∞ a.s., 1 ≤ i ≤ N.

(see Theorem 3.1 for details).
Finally, our last result establishes the condition under which the asymptotic state X∞ lies in

a small neighborhood of a unique global minimum Xm for a large β. More precisely, under the
assumption (1.5) and for a well-prepared initial random variable Xin such that Xi

n ∼ Xin, we derive
a key estimate (see Proposition 3.1):

essinf
ω∈Ω

L(X∞) ≤ − 1

β
logEe−βL(Xin) − 1

β
log ε.

Then, by Laplace’s method ([18]), one can derive

essinf
ω∈Ω

L(X∞) ≤ L(X∗) +
d

2

log β

β
+ E(β),

for some function E(β) = O
(

1
β

)
, β � 1. We refer to Remark A.1 for the intriguing relation

between β and admissible reference random variable Xin.

The rest of this paper is organized as follows. In Section 2, we provide reductions of previously
studied discrete algorithms to (1.2) - (1.3), and then study our first set of main results on the global
consensus. In Section 3, we study the emergence of a global consensus state and provide error es-
timates toward the global minimum for (1.2). Finally, Section 4 is devoted to a brief summary of
our main results and some remaining issues to be explored in a future work.

Notation. For a random variable Z ∈ R on the probability space (Ω,F ,P), we denote its mean
by EZ or E[Z] interchangeably.

2. Emergence of global consensus

In this section, we first show that several discrete algorithms introduced in [4, 14] can be reduced
to our generalized discrete algorithm (1.2) and then we provide a sufficient framework leading to
the global consensus for the discrete optimization algorithm in terms of system parameters and
initial data.

2.1. Discrete algorithms. In this subsection, we show how the previous discrete algorithms stud-
ied can be reduced as special cases for our general discrete model.

Let Xk
n = (xk,1n , · · · , xk,dn ) ∈ Rd be the position of the k-th particle at time n (1 ≤ k ≤ N).

Suppose that the function L : Rd → R has exactly one global minimum, and we consider the
general discrete consensus-based optimization algorithm:

(2.1)


Xi
n+1 = Xi

n − γ(Xi
n − X̄∗n)−

d∑
l=1

(xi,ln − x̄∗,ln )ηlnel, n ≥ 0, i = 1, · · · , N,

X̄∗n = (x∗,1n , · · · , x∗,dn ) :=

∑N
j=1X

j
ne−βL(Xj

n)∑N
j=1 e

−βL(Xj
n)

,
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where {el} is the standard orthonormal basis in Rd and random variables {ηln}n,l are i.i.d with

(2.2) E[ηln] = 0 and E|ηln|2 = ζ2.

In the sequel, we consider the following three discrete algorithms.

• Model A: Consider the first-order Euler type discrete model in [14]:

Xi
n+1 = Xi

n − λh(Xi
n − X̄∗n)−

d∑
l=1

(xi,ln − x̄∗,ln )σ
√
hZ lnel, n ≥ 0, i = 1, · · · , N,

where the random variables {Z ln}n,l are i.i.d standard normal distributions, i.e. Z ln ∼ N (0, 12). If
we set

(2.3) γ := λh and ηln := σ
√
hZ ln.

Then, the above setting clearly satisfies the relations (2.2) with ζ = σ
√
h.

• Model B: Consider a predictor-corrector type discrete model in [4].

(2.4)


X̂i
n = X̄∗n + e−λh(Xi

n − X̄∗n),

Xi
n+1 = X̂i

n −
d∑
l=1

(x̂i,ln − x̄∗,ln )σ
√
hZ lnel, n ≥ 0, i = 1, · · · , N.

We substitute (2.4)1 into (2.4)2 and use an addition-subtraction trick to see that

Xi
n+1 = Xi

n − (1− e−λh)(Xi
n − X̄∗n)−

d∑
l=1

(xi,ln − x̄∗,ln )e−λhσ
√
hZ lnel, n ≥ 0, i = 1, · · · , N.

If we set

(2.5) γ := 1− e−λh and ηln := e−λhσ
√
hZ ln,

then (2.4) reduces to the special case of (2.1) - (2.2) with ζ = e−λhσ
√
h.

• Model C: Consider one of discrete optimization model proposed in [4]:

(2.6) Xi
n+1 = X̄∗n +

d∑
l=1

(xi,ln − x̄∗,ln )

[
exp

(
−
(
λ+

1

2
σ2

)
h+ σ

√
hZ ln

)]
el, n ≥ 0, i = 1, · · · , N,

Again, the R.H.S. of (2.6) can be rewritten as

Xi
n+1 = Xi

n − (1− e−λh)(Xi
n − X̄∗n)−

d∑
l=1

(xi,ln − x̄∗,ln )e−λh
[
exp

(
−1

2
σ2h+ σ

√
hZ ln

)
− 1

]
el.

We set

(2.7) γ := 1− e−λh and ηln := e−λh
[
exp

(
−1

2
σ2h+ σ

√
hZ ln

)
− 1

]
.

Then, we use the elementary facts [7]:

X ∼ Lognormal(α, β2) ⇒ EX = eα+β2

2 and EX2 = e2α+2β2

to see that (2.7) satisfies moment relations (2.2) with ζ = e−λh
√
eσ2h − 1.
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2.2. Global consensus. In this subsection, we show that the global consensus for (2.1) occurs
asymptotically for all initial data under suitable conditions on γ and ζ. First, we recall the concepts
of Lp and almost sure global consensus in the following definition.

Definition 2.1. Let X = {Xn := (x1
n, · · · , xdn)} be a stochastic process, and let (Ω,F ,P) be the

underlying probability space.

(1) The configuration process X exhibits a global consensus in Lp with p ≥ 1, if the following
zero Lp-convergence holds:

lim
n→+∞

E|Xi
n −Xj

n|p = 0, ∀ i, j = 1, · · · , N.

(2) The configuration process X exhibits a global consensus almost surely if for almost sure

ω ∈ Ω and i, j = 1, · · · , N , the sample path Xi
n(ω)−Xj

n(ω) tends to zero asymptotically.

P
{

lim
n→∞

|Xi
n −Xj

n| = 0
}

= 1, ∀ i, j = 1, · · · , N.

Remark 2.1. Recall that L2-convergence implies L1 convergence on a probability space.

Now, we consider the relation for the process Xi
n − Xj

n. For this, we consider the discrete
algorithms: for i, j = 1, · · · , N ,

(2.8)


Xi
n+1 = Xi

n − γ(Xi
n − X̄∗n)−

d∑
l=1

(xi,ln − x̄∗,ln )ηlnel,

Xj
n+1 = Xj

n − γ(Xj
n − X̄∗n)−

d∑
l=1

(xj,ln − x̄∗,ln )ηlnel,

Then, it follows from (2.8) that xin+1 − x
j
n+1 satisfies

(2.9) xi,ln+1 − x
j,l
n+1 = (1− γ − ηln)(xi,ln − xj,ln ).

In the following lemma, we provide several estimates for xi,ln − xj,ln .

Lemma 2.1. Let {Xn} be a solution process to (2.1). Then the following estimates hold.

(i) E[Xi
n −Xj

n] = (1− γ)nE[Xi
0 −X

j
0 ].

(ii) E|Xi
n −Xj

n|2 =
(
(1− γ)2 + ζ2

)nE|Xi
0 −X

j
0 |

2.

(iii) |xi,ln − xj,ln |2 ≤ |x
i,l
0 − x

j,l
0 |

2e−nY
l
n(ω), a.s. ω ∈ Ω,

where Y l
n is a random variable satisfying

lim
n→∞

Y l
n(ω) = 2γ − γ2 − ζ2, a.s. ω ∈ Ω, l = 1, · · · , d.

Proof. The estimates below for a special case (Model A) can be found in Theorem 3.4 in [14] and
proofs are almost similar. However, for self-containedness of this paper, we present their proofs.

(i) It follows from the recursive relation (2.9) that

(2.10) xi,ln − xj,ln = (xi,l0 − x
j,l
0 )

n−1∏
m=0

(1− γ − ηlm), l = 1, · · · , d.

Now we take expectation on both sides of (2.10) using the independence of ηlm and xi,l0 −x
j,l
0 to get

E[xi,ln − xj,ln ] = (1− γ)nE[xi,l0 − x
j,l
0 ], i.e., E[Xi

n −Xj
n] = (1− γ)nE[Xi

0 −X
j
0 ].
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(ii) We take the square of (2.10) to see

(2.11) |xi,ln − xj,ln |2 = |xi,l0 − x
j,l
0 |

2
n−1∏
m=0

|1− γ − ηlm|2, l = 1, · · · , d.

Then, (1.3), (2.11), independence of ηlm and xi,l0 − x
j,l
0 yield

E|xi,ln − xj,ln |2 =
(
(1− γ)2 + ζ2

)nE|xi,l0 − x
j,l
0 |

2,

i.e.,

E|Xi
n −Xj

n|2 =
(
(1− γ)2 + ζ2

)nE|Xi
0 −X

j
0 |

2.

(iii) It follows from the inequality ex ≥ 1 + x, x ∈ R that

(2.12) (1− γ − ηlm)2 ≤ e(1−γ−ηlm)2−1 = e−(γ+ηlm)(2−γ−ηlm).

Then, we use (2.11) and (2.12) to obtain

|xi,ln − xj,ln |2 ≤ |x
i,l
0 − x

j,l
0 |

2
n−1∏
m=0

e−(γ+ηlm)(2−γ−ηlm)

= |xi,l0 − x
j,l
0 |

2 exp
[
− n× 1

n

n−1∑
m=0

(γ + ηlm)(2− γ − ηlm)
]
.

We set

Yn :=
1

n

n−1∑
m=0

(γ + ηlm)(2− γ − ηlm).

Then, we use the strong law of large numbers to see

Yn −→ E
[
(γ + ηlm)(2− γ − ηlm)

]
= 2γ − γ2 − ζ2 a.s. as n→∞.

�

As a direct application of Lemma 2.1, we have the following global consensus estimates.

Theorem 2.1. Let {Xn} be a solution process to (2.1). Then, the following three global consensus
results hold.

(1) Suppose that system parameters satisfy

|γ − 1| < 1 and 0 ≤ ζ ≤ ∞.

Then, E[Xi
n −X

j
n] tends to zero asymptotically:

lim
n→∞

E[Xi
n −Xj

n] = 0, ∀ i, j = 1, · · · , N.

(2) Suppose that system parameters γ and ζ satisfy

(γ − 1)2 + ζ2 < 1

then, L2 and almost-sure global consensus emerge asymptotically: for a.s. ω ∈ Ω,

lim
n→∞

E|Xi
n −Xj

n|2 = 0, |xi,ln − xj,ln |2 ≤ |x
i,l
0 − x

j,l
0 |

2e−nY
l
n(ω), i, j = 1, · · · , N, l = 1, · · · , d,

where Y l
n is a random variable satisfying

lim
n→∞

Y l
n(ω) = 1− (γ − 1)2 − ζ2 > 0, a.s. ω ∈ Ω, l = 1, · · · , d.
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Proof. Since the proofs follow from Lemma 2.1 directly, we omit them here. �

As a corollary of Theorem 2.1, one has the following global consensus for Model A - Model C
discussed in previous subsection.

Corollary 2.1. The following assertions hold.

(1) Suppose that system parameters satisfy

λ >
σ2

2
, 0 < h <

2λ− σ2

λ2
,

then, Model A admits L2 and almost sure global consensus.

(2) Suppose that system parameters satisfy

(1 + σ2h)e−2λh < 1,

then, Model B admits L2 and almost sure global consensus. .

(3) Suppose that system parameters satisfy

(2.13) λ >
σ2

2
,

then, Model C admits L2 and almost sure global consensus, for any h > 0.

Proof. (i) For Model A, we use relations γ = λh, ζ = σ
√
h in (2.3) to see

2γ − γ2 − ζ2 = 2λh− (λh)2 − σ2h > 0, for 0 < h <
2λ− σ2

λ2
.

Then, we use (3) in Theorem 2.1 to derive the desired estimate.

(2) For Model B, we use relations γ = 1− e−λh, ζ = ζ = e−λhσ
√
h in (2.5) to see

2γ − γ2 − ζ2 = 2(1− e−λh)− (1− e−λh)2 − σ2he−2λh = 1− (1 + σ2h)e−2λh > 0.

(3) For Model C, we use γ = 1− e−λh, ζ = e−λh
√
eσ2h − 1 in (2.7) to get

2γ−γ2−ζ2 = 2(1−e−λh)−(1−e−λh)2−(eσ
2h−1)e−2λh = 1−e(σ2−2λ)h > 0 ⇔ (2λ−σ2)h > 0.

�

Remark 2.2. The above corollary provides the stability conditions for three algorithms. For Model
C, the algorithm is unconditionally stable provided (2.13) holds, namely one can choose arbitrary

h > 0. Model B is also unconditionally stable provided λ ≥ σ2

2 is satisfied, because

e2λh > 1 + 2λh ≥ 1 + σ2h, for h > 0.

Model A is conditionally stable.

3. Convergence analysis and error estimates

In this section, we provide a convergence analysis with error estimates for the discrete CBO
algorithm. In previous section, we studied sufficient conditions leading to the global consensus
which does not mean Xi

n tends to a common fixed state X∞. Thus, two main issues to be covered
in this section are two-fold.

• (Q1): What is a sufficient framework leading to the common asymptotic state:

Xi
n(β)→ X∞(β), as n→∞ for all i = 1, · · · , N?
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• (Q2): If the above question is resolved, then how close is the asymptotic state X∞ to the
global minimum Xm of L if the latter exists?

3.1. Emergence of common consensus state. For the emergence of common consensus state,
we first introduce an ensemble average:

X̄n :=
1

N

N∑
i=1

Xi
n = (x̄1

n, · · · , x̄dn).

Before we present our second main result, we present two elementary lemmas to be crucially used
in the proof of convergence analysis.

Lemma 3.1. Let {Xi
n}1≤i≤N be a solution to (2.1). Then, the following estimates hold almost

surely.

(i) |Xi
n − X̄n|2 =

d∑
l=1

(xi,l0 − x̄
l
0)2

n−1∏
m=0

(
1− γ − ηlm

)2
.

(ii) |X̄n − X̄∗n|2 ≤ max
1≤i≤N

|Xi
n − X̄n|2.

(iii)
1

N

d∑
i=1

|Xi
n − X̄∗n|2 ≤ 2

d∑
l=1

(
max

1≤i≤N
(xi,l0 − x̄

l
0)2

) n−1∏
m=0

(
1− γ − ηlm

)2
.

Proof. (i) It follows from (2.1) that

(3.1) X̄n+1 − X̄n = −γ(X̄n − X̄∗n)−
d∑
l=1

(x̄ln − x̄∗,ln )ηlnel.

We subtract (3.1) from (2.1) to obtain

(3.2) (Xi
n+1 − X̄n+1)− (Xi

n − X̄n) = −γ(Xi
n − X̄n)−

d∑
l=1

(xi,ln − x̄ln)ηlnel.

The l-th component of (3.2) implies

xi,ln − x̄ln = (xi,l0 − x̄
l
0)

n−1∏
m=0

(
1− γ − ηlm

)
.

This yields

|Xi
n − X̄n|2 =

d∑
l=1

(xi,l0 − x̄
l
0)2

n−1∏
m=0

(
1− γ − ηlm

)2
.

(ii) We apply the triangle inequality and the Cauchy-Schwarz inequality:

|X̄n − X̄∗n|2 =

∣∣∣∣∣
∑N

k=1 e
−βL(Xk

n)(X̄n −Xk
n)∑N

k=1 e
−βL(Xk

n)

∣∣∣∣∣
2

≤

[∑N
k=1 e

−βL(Xk
n)|X̄n −Xk

n|∑N
k=1 e

−βL(Xk
n)

]2

≤
∑N

k=1 e
−βL(Xk

n)|X̄n −Xk
n|2∑N

k=1 e
−βL(Xk

n)
≤ max

1≤k≤N
|X̄n −Xk

n|2.
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(iii) Note that

1

N

d∑
i=1

|Xi
n − X̄∗n|2 =

1

N

d∑
i=1

(
|Xi

n − X̄n|2 + 2(Xi
n − X̄n) · (X̄n − X̄∗n) + |X̄n − X̄∗n|2

)
=

1

N

d∑
i=1

(
|Xi

n − X̄n|2 + |X̄n − X̄∗n|2
)
≤ 2 max

1≤i≤N
|Xi

n − X̄n|2

= 2 max
1≤i≤N

(
d∑
l=1

(xi,l0 − x̄
l
0)2

n−1∏
m=0

(
1− γ − ηlm

)2
)

≤ 2

d∑
l=1

(
max

1≤i≤N
(xi,l0 − x̄

l
0)2

) n−1∏
m=0

(
1− γ − ηlm

)2
,

where we used the results from (i) and (ii). �

Lemma 3.2. Let {Xi
n}1≤i≤N be a solution to (2.1). Then, one has

E|Xi
n − X̄∗n|2 ≤ 2((1− γ)2 + ζ2)n

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
.

Proof. We take expectation on both sides of the inequality in Lemma 3.1 (iii) to get

E|Xi
n − X̄∗n|2 ≤ 2

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

) n−1∏
m=0

E
(

1− γ − ηlm
)2

≤ 2
(

(1− γ)2 + ζ2
)n d∑

l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
.

�

Next, we provide our second main result.

Theorem 3.1. Suppose that system parameters satisfy

(1− γ)2 + ζ2 < 1,

and let {Xi
n}1≤i≤N be a solution to (2.1). Then, there exists a common constant state X∞ =

(x1
∞, · · · , xd∞) such that

lim
n→∞

Xi
n = X∞ a.s., 1 ≤ i ≤ N.

Proof. Note that summing the equation (2.1) over n yields the following relation: for i = 1, · · · , N
and l = 1, · · · , d,

xi,ln = xi,l0 − γ
n−1∑
m=0

(xi,lm − x̄∗,lm )−
n−1∑
m=0

(xi,lm − x̄∗,lm )ηlm =: xi,l0 − I31 − I32.

Next, we show the a.s. convergence of I31 and I32 separately.
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• (Estimate of I31): By Lemma 3.1 (iii), we have

|xi,lm − x̄∗,lm | ≤
d∑
i=1

|Xi
m − X̄∗m|

≤

√√√√2N
d∑
l=1

(
max

1≤i≤N
(xi,l0 − x̄l0)2

)m−1∏
p=0

(
1− γ − ηlp

)2
≤

√√√√2N

d∑
l=1

(
max

1≤i≤N
(xi,l0 − x̄l0)2

)m−1∏
p=0

exp
(
(1− γ − ηlp)2 − 1

)

=

√√√√√2N

d∑
l=1

(
max

1≤i≤N
(xi,l0 − x̄l0)2

)
exp

m−1∑
p=0

(−2γ + γ2 − 2(1− γ)ηlp + (ηlp)
2)

.
On the other hand, by the strong law of large numbers, one has

lim
m→∞

1

m

m−1∑
p=0

(
− 2γ + γ2 − 2(1− γ)ηlp + (ηlp)

2
)

= E
[
− 2γ + γ2 − 2(1− γ)ηlp + (ηlp)

2
]

= −(2γ − γ2 − ζ2), a.s.

This yields that there exist positive random functions Ci = Ci(ω), i = 1, 2 such that

|xi,lm − x̄∗,lm | ≤ C1e
−C2m, a.s. ω ∈ Ω,

where C1 and C2 are positive constants. We set

J31 := I31 − γ
n−1∑
m=0

C1e
−C2m = γ

n−1∑
m=0

(xi,lm − x̄∗,lm − C1e
−C2m︸ ︷︷ ︸

≤0

).

Since the summand is nonpositive a.s., J31 is non-increasing in n a.s.

On the other hand, note that

J31 = I31 + γ
n−1∑
m=0

C1e
−C2m − 2γ

n−1∑
m=0

C1e
−C2m

= γ
n−1∑
m=0

(xi,lm − x̄∗,lm + C1e
−C2m︸ ︷︷ ︸

≥0

)− 2γC1
1− e−C2n

1− e−C2
≥ − 2γC1

1− e−C2
.

Since J31 is monotone decreasing and bounded below along sample paths, one has

∃ α = lim
n→∞

J31(n) = lim
n→∞

(
I31 − γ

n−1∑
m=0

C1e
−C2m

)
, a.s.

This implies

lim
n→∞

I31 = α+
C1γ

1− e−C2
, a.s.
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• (Estimate of I32): Note that I32 is martingale and its L2(Ω)-norm is uniformly bounded in n:

E

[
n−1∑
m=0

(xi,lm − x̄∗,lm )ηlm

]2

= ζ2
n−1∑
m=0

E(xi,lm − x̄∗,lm )2

≤ 2Nζ2

(
n−1∑
m=0

((1− γ)2 + ζ2)m

)
d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)

≤ 2Nζ2

2γ − γ2 − ζ2

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
.

In the first inequality we used (iii). Hence lim
n→∞

I32 exists a.s. Now we have shown that for each

i = 1, · · · , N , there exists some random variable Xi
∞ such that

lim
n→∞

Xi
n = Xi

∞ a.s.

Recall that by Theorem 2.1, for any 1 ≤ i, j ≤ N ,

lim
n→∞

|Xi
n −Xj

n| = 0, a.s.

Hence, there exists X∞ such that

Xi
∞ = Xj

∞ =: X∞ a.s.

�

3.2. Error estimate. In this subsection, we study an error analysis of (2.1) toward the global
minumum. Below, we present a sufficient framework (A1)− (A3) for error analysis in terms of the
objective function L, global minimum point X∗ and reference random variable Xin as follows:

• (A1): Let L = L(x) be a C2-objective function satisfying the following relations:

Lm := min
x∈Rd

L(x) > 0 and CL := sup
x∈Rd

‖∇2L(x)‖2 <∞,

where ‖ · ‖2 denotes the spectral norm.

• (A2): Let X∗ be the unique global minimum point of L in Rd satisfying the local convexity
relation:

det
(
∇2L(X∗)

)
> 0.

• (A3): Let Xin be a reference random variable with a law which is absolutely continuous
with respect to the Lebesgue measure, and let f be the probability density function of Xin

satisfying the following conditions:

f is compactly supported, continuous at X∗, and f(X∗) > 0.

In the next theorem, we study how close is the common consensus state X∞ to the global minimum
X∗ in suitable sense. Now, we are ready to provide an error analysis of the discrete CBO algorithm,
which is analogous to Theorem 4.1 in [14] for the continuous case.
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Theorem 3.2. Suppose that the framework (A1)− (A3) holds, and system parameters β, γ, ζ and
the initial data {Xi

0} satisfy

β > 0, (γ − 1)2 + ζ2 < 1, Xi
0 : i, i.d, Xi

0 ∼ Xin,

(1− ε)E
[
e−βL(Xin)

]
≥

2CL

√(
1 + (1− γ)2 + ζ2

)(
γ2 + ζ2

)
βe−βLm

1− e−[1−(γ−1)2−ζ2]

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
,

(3.3)

for some 0 < ε < 1. Then for a solution {Xi
n}1≤i≤N to (1.1), one has the following error estimate:

(3.4)
∣∣∣ essinf
ω∈Ω

L(X∞)− L(X∗)
∣∣∣ ≤ d

2

log β

β
+ E(β),

for some function E(β) = O
(

1
β

)
.

Remark 3.1. 1. Note that the third condition (3.3)2:
(3.5)

(1− ε)E
[
e−βL(Xin)

]
≥

2CL

√(
1 + (1− γ)2 + ζ2

)(
γ2 + ζ2

)
βe−βLm

1− e−[1−(γ−1)2−ζ2]

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
,

does hold only for some intermediate β for given initial data satisfying

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
> 0.

This can be checked as follows. We multiply eβLm on the both sides of (3.5) to get

(1− ε)E
[
eβ(Lm−L(Xin))

]
≥

2CL

√(
1 + (1− γ)2 + ζ2

)(
γ2 + ζ2

)
β

1− e−(2γ−γ2−ζ2)

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
.

By letting β → ∞ in the above relation, we can see that L.H.S. is less than or equal to 1 − ε,
but R.H.S. goes to +∞. Hence, the estimate (3.4) is only an error estimate for the discrete CBO
algorithm for fixed β (indeed numerically one chooses a fixed β for computation), not viewed as a
convergence for β →∞ (which would impose restrictive constratin on the initial data from (3.3)2.
In Appendix A, we provide an alternative error analysis for (1.1) without employing Laplace’s prin-
ciple.

2. In the sequel, we check how the conditions in (3.3) can be reinterpreted for Model A - Model C
in Section 2.1:
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� Model A: We use (λ, ζ) = (λh, σ
√
h) to rewrite (3.3) as

β > 0, λ >
σ2

2
, 0 < h <

2λ− σ2

λ2
,

(1− ε)E
[
e−βL(Xin)

]
≥

2CL
√
h(σ2 + λ2h)[2 + h(σ2 + λ2h− 2λ)]βe−βLm

1− e−λ(2h−λh2−σ2)

×
d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
.

� Model B: We use (λ, ζ) = (1− e−λh, e−λhσ
√
h) to rewrite (3.3) as

β > 0, h > 0, (1 + σ2h)e−2λh < 1,

(1− ε)E
[
e−βL(Xin)

]
≥ 2CL

√
[1 + e−λh(−2 + e−λh(1 + σ2h))][1 + e−2λh(1 + σ2h)]βe−βLm

1− e−[1−(1+σ2h)e−2λh]

×
d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
.

� Model C: We use (λ, ζ) = (1− e−λh, e−λh
√
eσ2h − 1) to rewrite (3.3) as

β > 0, h > 0, λ >
σ2

2
,

(1− ε)E
[
e−βL(Xin)

]
≥ 2CL

√
(1 + eh(σ2−2h))(1 + e−λh(e−λh + eσ2h − 3))βe−βLm

1− e−(1−e(σ2−2λ)h)

×
d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
.

Before we present a proof of Theorem 3.2, we first briefly review Laplace’s principle with a con-
vergence rate.

• (Laplace’s principle with a rate for β � 1): Note that under some suitable conditions on L
and the law of Xin, we can apply Varadhan’s lemma (cf. [9]) to get

(3.6) lim
β→∞

(
− 1

β
logEe−βL(Xin)

)
= essinf

ω∈Ω
L(Xin).

However, as far as the authors know, standard proofs for Varadhan’s lemma do not yield a conver-
gence rate. Hence, we try a different approach for a possible convergence rate in (3.6).

Recall that the set D ∈ Rd is called a d-dimensional closed domain if it is a bounded finitely
connected open set (in Rd) plus its boundary, where the boundary is a Euclidean (d − 1)-surface.
One simple example of such D is a closed ball in Rd. In the sequel, let D be a d-dimensional closed
domain.

Lemma 3.3. [18] Suppose that two functions φ : D → R and h : D → R satisfy the following
conditions:

(1) h is positive and is of class C2.
(2) φhn is absolutely integrable over D, n = 1, 2, · · · .
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(3) h has an absolutely maximum value at an interior point ξ of D and det
(
−∇2h(ξ)

)
> 0.

(4) φ is continuous at ξ and φ(ξ) 6= 0.

Then, we have ∫
D
φ(x)[h(x)]ndx ∼

(
2π

n

) d
2 φ(ξ)[h(ξ)]n√

det (−∇2 log h(ξ))
, n→∞.

Proof. We refer to Lemma 1 in [18] for details. �

Proposition 3.1. Suppose that the law of Xin is absolutely continuous with respect to the Lebesgue
measure on Rd and let f be a probability density function. Suppose that

(1) f is compactly supported.
(2) f is continuous at the global minimizer of L, namely X∗, and f(X∗) > 0.
(3) L is C2 and det

(
∇2L(X∗)

)
> 0.

Then, we have

− 1

β
logEe−βL(Xin) = L(X∗) +

d

2

log β

β
+O

(
1

β

)
, β →∞.

Proof. Let D be any closed ball containing the support of f . We set

φ(x) := f(x) and h(x) := e−L(x).

For the above pair (φ, h), we will check that the assumptions in Lemma 3.3 hold. Note that

det
(
−∇2h(X∗)

)
= det

(
e−L(X∗)

(
∇2L(X∗)− (∇L⊗∇L)(X∗)

))
= e−dL(X∗) det

(
∇2L(X∗)

)
> 0.

The rest of the assumptions can be checked straightforwardly. By Lemma 3.3, we have

(3.7) lim
β→∞

√
det (∇2L(X∗))Ee−βL(Xin)(

2π
β

) d
2
f(X∗)e−βL(X∗)

= 1.

By taking logarithms on both sides of (3.7), we get

logEe−βL(Xin) − d

2
log

(
2π

β

)
− log f(X∗) + βL(X∗) +

1

2
log det

(
∇2L(X∗)

)
= O(1).

We multiply − 1
β on both sides to obtain

− 1

β
logEe−βL(Xin) = L(X∗)+

(
−d

2
log (2π)− log f(X∗) +

1

2
log det

(
∇2L(X∗)

)) 1

β
+
d

2

log β

β
+O

(
1

β

)
.

Hence, one has the desired estimate:

− 1

β
logEe−βL(Xin) = L(X∗) +

d

2

log β

β
+O

(
1

β

)
,

for a sufficiently large β. �

• (Proof of Theorem 3.2)): First, we claim:

(3.8) essinf
ω∈Ω

L(X∞) ≤ − 1

β
logEe−βL(Xin) − 1

β
log ε.
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Note that

1

N

N∑
i=1

e−βL(Xi
n+1) − 1

N

N∑
i=1

e−βL(Xi
n)

=
1

N

N∑
i=1

e−βL(Xi
n)
(
e−β(L(Xi

n+1)−L(Xi
n)) − 1

)
≥ 1

N

N∑
i=1

e−βL(Xi
n)(−β)

(
L(Xi

n+1)− L(Xi
n)
)

= − β
N

N∑
i=1

e−βL(Xi
n)∇L(cXi

n+1 + (1− c)Xi
n) · (Xi

n+1 −Xi
n),

(3.9)

where we used a mean-value theorem with c ∈ (0, 1). We use definition of X̄∗n to see

( N∑
i=1

e−βL(Xi
n)

)
X̄∗n =

N∑
i=1

e−βL(Xi
n)Xi

n,

( N∑
i=1

e−βL(Xi
n)

)
x̄∗,ln =

N∑
i=1

e−βL(Xi
n)xi,ln , l = 1, · · · , d.

This yields

N∑
i=1

e−βL(Xi
n)∇L(X̄∗n) · (Xi

n+1 −Xi
n)

=
N∑
i=1

e−βL(Xi
n)∇L(X̄∗n) ·

(
− γ(Xi

n − X̄∗n)−
d∑
l=1

(xi,ln − x̄∗,ln )ηlnel

)

=
N∑
i=1

e−βL(Xi
n)∇L(X̄∗n) ·

(
−

d∑
l=1

(xi,ln − x̄∗,ln )(γ + ηln)el

)
= 0.

(3.10)
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Combining (3.9) and (3.10) gives

1

N

N∑
i=1

e−βL(Xi
n+1) − 1

N

N∑
i=1

e−βL(Xi
n)

≥ − β
N

N∑
i=1

e−βL(Xi
n)∇L(cXi

n+1 + (1− c)Xi
n) · (Xi

n+1 −Xi
n)

= − β
N

N∑
i=1

e−βL(Xi
n)
(
∇L(cXi

n+1 + (1− c)Xi
n)−∇L(X̄∗n)

)
· (Xi

n+1 −Xi
n)

= − β
N

N∑
i=1

e−βL(Xi
n)

×
[ ∫ 1

0
∇2L

(
s(cXi

n+1 + (1− c)Xi
n) + (1− s)X̄∗n

)
·
(
cXi

n+1 + (1− c)Xi
n − X̄∗n

)
ds · (Xi

n+1 −Xi
n)

]
≥ − β

N

N∑
i=1

e−βL(Xi
n)

[∫ 1

0

∥∥∥∇2L
(
s(cXi

n+1 + (1− c)Xi
n) + (1− s)X̄∗n

)∥∥∥
2
ds

×
∣∣cXi

n+1 + (1− c)Xi
n − X̄∗n

∣∣|Xi
n+1 −Xi

n|

]

≥ −CLβe
−βLm

N

N∑
i=1

∣∣cXi
n+1 + (1− c)Xi

n − X̄∗n
∣∣|Xi

n+1 −Xi
n|

= −CLβe
−βLm

N

N∑
i=1

∣∣∣∣ d∑
l=1

(xi,ln − x̄∗,ln )(1− cγ − cηln)el

∣∣∣∣∣∣∣∣− d∑
l=1

(xi,ln − x̄∗,ln )(γ + ηln)el

∣∣∣∣
= −CLβe

−βLm

N

N∑
i=1

√√√√ d∑
l=1

(xi,ln − x̄∗,ln )2(1− cγ − cηln)2

√√√√ d∑
l=1

(xi,ln − x̄∗,ln )2(γ + ηln)2.

(3.11)

Set

g(r) := (1− rγ − rηln)2, 0 ≤ r ≤ 1.

Then, we use the convexity of g to find

(1− cγ − cηln)2 ≤ sup
0≤r≤1

g(r) = max{g(0), g(1)} ≤ g(0) + g(1) = 1 + (1− γ − ηln)2.

We substitute the above relation into (3.11) to obtain

1

N

N∑
i=1

e−βL(Xi
n+1) − 1

N

N∑
i=1

e−βL(Xi
n)

≥ −CLβe
−βLm

N

N∑
i=1

√√√√ d∑
l=1

(xi,ln − x̄∗,ln )2
(
1 + (1− γ − ηln)2

)√√√√ d∑
l=1

(xi,ln − x̄∗,ln )2(γ + ηln)2.

(3.12)



18 HA, JIN, AND KIM

Taking expectations on the both sides of (3.12) using the Cauchy-Schwarz inequality leads to

1

N

N∑
i=1

Ee−βL(Xi
n+1) − 1

N

N∑
i=1

Ee−βL(Xi
n)

≥ −CLβe
−βLm

N

N∑
i=1

E


√√√√ d∑

l=1

(xi,ln − x̄∗,ln )2
(
1 + (1− γ − ηln)2

)√√√√ d∑
l=1

(xi,ln − x̄∗,ln )2(γ + ηln)2


≥ −CLβe

−βLm

N

N∑
i=1

√√√√E

[
d∑
l=1

(xi,ln − x̄∗,ln )2
(
1 + (1− γ − ηln)2

)]
E

[
d∑
l=1

(xi,ln − x̄∗,ln )2(γ + ηln)2

]

= −CLβe
−βLm

N

N∑
i=1

√√√√( d∑
l=1

E|xi,ln − x̄∗,ln |2E
[
1 + (1− γ − ηln)2

])( d∑
l=1

E|xi,ln − x̄∗,ln |2E|γ + ηln|2
)

= −CLβe
−βLm

N

N∑
i=1

√((
1 + (1− γ)2 + ζ2

)
E|Xi

n − X̄∗n|2
)((

γ2 + ζ2
)
E|Xi

n − X̄∗n|2
)

= −
CL

√(
1 + (1− γ)2 + ζ2

)(
γ2 + ζ2

)
βe−βLm

N

N∑
i=1

E|Xi
n − X̄∗n|2

≥ −2CL

√(
1 + (1− γ)2 + ζ2

)(
γ2 + ζ2

)
e−(2δ−γ2−ζ2)nβe−βLm

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
.

(3.13)

We sum up (3.13) over n to get

1

N

N∑
i=1

Ee−βL(Xi
n) ≥ 1

N

N∑
i=1

Ee−βL(Xi
0)

−
2CL

√(
1 + (1− γ)2 + ζ2

)(
γ2 + ζ2

)
βe−βLm

1− e−(2γ−γ2−ζ2)

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
.

Letting n→∞, we use Lemma 3.2 to find

Ee−βL(X∞) ≥ 1

N

N∑
i=1

Ee−βL(Xi
0)

−
2CL

√(
1 + (1− γ)2 + ζ2

)(
γ2 + ζ2

)
βe−βLm

1− e−(2γ−γ2−ζ2)

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
≥ εEe−βL(Xin).

Hence

e
−β essinf

ω∈Ω
L(X∞)

= Ee
−β essinf

ω∈Ω
L(X∞)

≥ Ee−βL(X∞) ≥ εEe−βL(Xin).

By taking logarithm to the both sides of the above relation yields the desired estimate (3.8).
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Next, we apply Proposition 3.1 to obtain

essinf
ω∈Ω

L(X∞) ≤ L(X∗) +
d

2

log β

β
+ E(β),

for some function E(β) = O
(

1
β

)
. This completes the proof of Theorem 3.2.

4. Conclusion

In this paper, we presented a convergence study with an error estimate for a time-discrete
consensus-based non-convex optimization algorithm, which includes three discrete-in-time algo-
rithms used in [4]. For the continuous algorithm introduced in [4], convergence and error analysis
was studied by the authors recently using the detailed structure of the algorithm and Itô’s stochas-
tic analysis. However, for the discrete algorithm such analysis was not done in the aforementioned
work [14]. The main reason for that was the lack of discrete analog of the Itô’s stochastic anal-
ysis which has been crucially used in the study of the continuous algorithm. Our error analysis
employed in this work is based on the elementary and simple probability arguments together with
the detailed structure of nonlinear interaction terms, and consequently provides the stability con-
dition, convergennce and an error analysis toward the global minumum for all three time-discrete
algorithms implemented in [4]. Our analysis shows that these algorithms, under certain conditions
on the parameters and with sufficiently well-chosen initial data, do converge to a point close to the
global minimum for moderately high dimensional problems.



20 HA, JIN, AND KIM

Appendix A. Error estimate under an alternative framework

In this subsection, we provide an alternative result for an error estimate for time-discrete CBO
scheme (1.1) without using Laplace’s principle under a slightly different framework (B1) − (B2).
Below, we present a framework for the objective function L, global minimum point X∗ and reference
random variable Xin as follows:

• (B1): Let L = L(x) be a C2-objective function satisfying the following relations:

Lm := min
x∈Rd

L(x) > 0 and CL := sup
x∈Rd

‖∇2L(x)‖2 <∞,

where ‖ · ‖2 denotes the spectral norm.

• (B2): Let Xin be a reference random variable associated with a law whose support D̃ is
compact and contains X∗.

Note that the condition (B1) is exactly the same as (A1), whereas the condition (B2) is different from
(A3) in which the probability measures associated with Xin is absolutely continuous with respect
to Lebesgue measure. Moreover, notice that this new framework does not need any condition on
det
(
∇2L(X∗)

)
as in (A2).

Next, we study how the common consensus state X∞ is close to the global minimum X∗ in
suitable sense. Now, we are ready to provide an error estimate for the discrete CBO algorithm,
which is analogous to Theorem 4.1 in [14] for the continuous case.

Theorem A.1. Suppose that the framework (B1) − (B2) holds, and parameters β, γ, ζ, δ and the
initial data {Xi

0} satisfy

β > 0, δ > 0, (γ − 1)2 + ζ2 < 1, Xi
0 : i, i.d, Xi

0 ∼ Xin, sup
x∈D̃

L(x)− Lm < δ,

(1− ε)E
[
e−βL(Xin)

]
≥

2CL

√(
1 + (1− γ)2 + ζ2

)(
γ2 + ζ2

)
βe−βLm

1− e−[1−(γ−1)2−ζ2]

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
,

(A.1)

for some 0 < ε < 1. Then, for a solution {Xi
n}1≤i≤N to (1.1),

(A.2)
∣∣∣ essinf
ω∈Ω

L(X∞)− Lm
∣∣∣ ≤ δ +

∣∣∣ log ε

β

∣∣∣.
Remark A.1. Before we provide a proof, we give several comments on the result of this theorem.
1. In the proof of Theorem A.1, we will first derive the estimate:

(A.3) essinf
ω∈Ω

L(X∞) ≤ sup
x∈D̃

L(x)− 1

β
log ε.

2. For any given δ > 0, ε > 0 and β > 0, the conditions (A.1) can be attained with suitable Xin.

To see this, we choose the law of Xin such that D̃ is a small neighborhood of a global minimum X∗
satisfying the following two relations:

(A.4) sup
x∈D̃

L(x)− Lm < δ,



A DISCRETE CONSENSUS OPTIMIZATION ALGORITHM 21

and

(A.5) 1− ε ≥
2CL

√(
1 + (1− γ)2 + ζ2

)(
γ2 + ζ2

)
βe

β( sup
x∈D

L(x)−Lm)

1− e−[1−(γ−1)2−ζ2]

(
diam(Rin)

)2
,

where Rin = [a1, b1] × · · · × [ad, bd] is the smallest closed d-dimensional rectangle containing D̃ so
that

(A.6) E
[

max
1≤i≤N

(xi,l0 − x̄
l
0)2
]
≤ |b` − a`|2,

for each ` = 1, · · · , d. Then, due to (A.6), the relation (A.5) implies the condition (A.1)2. Hence,
we can apply the estimate (A.3) and (A.4) to get the desired error estimate:

essinf
ω∈Ω

L(X∞) ≤ Lm +

(
sup
x∈D

L(x)− Lm
)
− 1

β
log ε < Lm + δ − log ε

β
.

Now we are ready to provide a proof of Theorem A.1. By the same way as in the proof of
Theorem 3.2, we obtain

Ee−βL(X∞) ≥ 1

N

N∑
i=1

Ee−βL(Xi
0)

−
2CL

√(
1 + (1− γ)2 + ζ2

)(
γ2 + ζ2

)
βe−βLm

1− e−(2γ−γ2−ζ2)

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
≥ εEe−βL(Xin).

Hence one has

e
−β essinf

ω∈Ω
L(X∞)

= Ee
−β essinf

ω∈Ω
L(X∞)

≥ Ee−βL(X∞) ≥ εEe−βL(Xin) ≥ εe
−β sup

x∈D
L(x)

.

Finally, we take logarithm to the both sides of the above relation to get the desired estimate (A.3).
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[13] Fornasier, M., Huang, H., Pareschi, L. and Sünnen, P.: Consensus-based optimization on the sphere II: Conver-
gence to global minimizer and machine learning. Preprint. Available at arXiv:2001.11988v2.

[14] Ha, S.-Y., Jin, S. and Kim, D.: Convergence of a first-order consensus-based global optimization algorithm.
Submitted. arxiv: 1910.08239.

[15] Ha, S.-Y. and Liu, J.-G.: A simple proof of Cucker-Smale flocking dynamics and mean-field limit. Commun.
Math. Sci. 7 (2009), 297-325.

[16] Ha, S.-Y., Lee, K. and Levy, D.: Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system.
Commun. Math. Sci. 7 (2009), 453-469.

[17] Holland, J. H.: Genetic algorithms. Scientific American 267 (1992), 66-73.
[18] Hsu, L. C.: A theorem on the asymptotic behavior of a multiple integral. Duke Math. J. 15 (1948), 623-632.
[19] Kennedy, J.: Swarm intelligence. Handbook of nature-inspired and innovative computing. Springer 2006, 187-219.
[20] Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P.: Optimization by simulated annealing. Science 220 (1983),

671-680.
[21] Kolokolnikov, T., Carrillo, J. A., Bertozzi, A., Fetecau, R. and Lewis, M.: Emergent behavior in a multi-particle

systems with non-local interactions. Physica D 260 (2013), 1-4.
[22] Kuramoto, Y.: Chemical oscillations, waves and turbulence. Springer-Verlag, Berlin, 1984.
[23] Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lecture Notes

Theor. Phys. 30 (1975), 420.
[24] Laarhoven, P. J. M. van and Aarts, E. H. L.: Simulated annealing: theory and applications. D. Reidel Publishing

Co., Dordrecht, 1987.
[25] Motsch, S. and Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM. Rev. 56 (2014), 577-621.
[26] Peskin, C. S.: Mathematical aspects of heart physiology. Courant Institute of Mathematical Sciences, New York,

1975.
[27] Pinnau, R., Totzeck, C., Tse, O. and Martin, S.: A consensus-based model for global optimization and its mean-

field limit. Math. Models Methods Appl. Sci. 27 (2017), 183-204.
[28] Pikovsky, A., Rosenblum, M. and Kurths, J.: Synchronization: A universal concept in nonlinear sciences.

Cambridge University Press, Cambridge, 2001.
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