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Abstract

An asymptotic preserving scheme is efficient in solving multiscale problems where both kinetic
and hydrodynamic regimes co-exist. In this paper we extend the BGK-penalization based asymp-
totic preserving scheme, originally introduced by Filbet and Jin for the single species Boltzmann
equation, to its multispecies counterpart. For the multispecies Boltzmann equation the new diffi-
culties emerge due to: 1) the breaking down of the conservation law for each species; 2) different
time scalings of convergence to the equilibriums for disparate masses. We select a suitable local
Maxwellian–which is based on the mean velocity and mean temperature–as the penalty function,
and justifies various asymptotic properties of this method, for both the multispecies Boltzmann
equation and a disparate masses system. This results an asymptotic-preserving scheme for the
multispecies Boltzmann equation that can capture the fluid dynamic limit with time step and mesh
size much larger than Knudsen number, yet the numerical method does not contain any nonlinear
nonlocal implicit solver. Numerical examples demonstrate the correct asymptotic-behavior of the
scheme.

1 Introduction

In kinetic theory, the Boltzmann equation is a fundamental equation to describe the evolution of
rarefied gases. In this paper, we are interested in numerical solution of the Boltzmann equation for
multispecies gas mixture. The most basic example is high altitude gas, which could be modeled as a
binary mixture of Oxygen and Nitrogen. Other applications of gas mixture may come from nuclear
engineering or evaporation-condensation.

One of the difficulties in numerically solving the Boltzmann equation comes from the varying
Knudsen number, which describes the ratio of the mean free path over a typical length scale such as
the domain size. When the Knudsen number is small, the collision term becomes numerically stiff.
When using an explicit scheme, to guarantee the numerical stability, one has to resolve the small
scales to avoid instability, and this causes tremendous computational cost. On the other hand, it is
very difficult to use implicit schemes because of the nonlinear and the nonlocal nature of the collision
operator.

The Chapman-Enskog expansion for the Boltzmann equation yields the compressible Euler or
Navier-Stokes equations in the limit of vanishing Knudsen number. Generally speaking, numerically
solving the hydrodynamic system is much more efficient, so when the Knudsen number is small, one
can just solve this set of equations in lower dimension. However, in the zones where these macroscopic
models break down, one comes back to solve the Boltzmann equation. This domain decomposition
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approach has attracted a great amount of attention [2, 3, 8, 9, 20, 23, 30, 32, 39, 40]. The main
difficulty there is to determine the matching interface conditions between two different domains in
which different physical models are used.

Another approach, the one we are going to pursue in this paper, is called the asymptotic pre-
serving method. This method dated back to 90s from the last century and has been widely used in
time dependent kinetic and hyperbolic system since then. This method focuses on looking for simple
and cheap solver for the Boltzmann equation that can preserve asymptotic limits from the micro-
scopic to the macroscopic models in the discrete setting, which means that the numerical solution to
the Boltzmann equation should converge to that of the Euler when the Knudsen number vanishes.
Compared with multiphysics domain decomposition method, this framework only solves one set of
equation: the microscopic one. In the hydrodynamic regime, it becomes a robust hydrodynamic
solver automatically without resolving the small Knudsen number or switching to the macroscopic
model. As summarized by Jin [26], an AP scheme for kinetic equations should have the following
features:

• it preserves the discrete analogy of the Chapman-Enskog expansion, namely, it is a suitable
scheme for the kinetic equation, yet, when holding the mesh size and time step fixed and letting
the Knudsen number go to zero, the scheme becomes a suitable scheme for the limiting fluid
dynamic Euler equations;

• implicit collision terms can be implemented efficiently.

There are also several variations of the AP property, including weakly-AP, relaxed-AP, and
strongly-AP, defined as follows (see [15] and also a recent review [27]):

• weakly-AP. If the data are within O(ε) of the local equilibrium initially, they remain so for all
future time steps;

• relaxed-AP. For non-equilibrium initial data, the solution will be projected to the local equilib-
rium beyond an initial layer (after several time steps).

• strongly-AP. For non-equilibrium initial data, the solution will be projected to the local equi-
librium immediately at the next time step.

In general, the strongly-AP property is preferred, and was the designing principle of most of the
classical AP schemes [25, 5]. The relaxed-AP was a recently introduced concept in [15] which was
shown numerically to be sufficient to capture the hydrodynamic limit when the Knudsen number
goes to zero. The weak-AP is often a necessary condition for the AP property, since many non-AP
schemes do not satisfy this property, namely solutions initially close to the local equilibrium can move
away. See discussion in [15].

Several AP schemes have recently been designed for the Boltzmann equation for one species. One
approach was to use the micro-macro decomposition method [33] (see its multispecies extension in
[28]), yet the main difficulty remains to design an efficient implicit collision term, which is necessary for
numerical stability independent of the Knudsen number. An earlier approach introduced by Gabetta,
Pareschi and Toscani uses the truncated Wild Sum [17]. For a simple BGK model it was realized by
Coron and Perthame in [7] that an implicit BGK operator can be integrated explicitly, using the basic
conservation properties of the BGK operator. Utilizing this property, Filbet and Jin introduced the
BGK penalization method for the Boltzmann collision operator [15]. The main idea is to subtracting
the Boltzmann operator by a BGK operator, and then add the BGK operator back. Only the latter
BGK operator is treated implicitly, while the complicated Boltzmann operator is solved explicitly. The
entire scheme is implemented explicitly, yet the numerical stability is independent of the Knudsen

2



number and the relaxed AP property was achieved (which was verified numerically). This BGK
penalization idea, in the space homogeneous case, agrees with the Wild Sum approach [17], but
for space inhomogeneous case, they differ and one can find a different implementation using the
exponential Runge-Kutta method, see Dimarco and Pareschi [12], resulting a strongly AP scheme
with positivity. A rigorous justification of the AP property of this methodology for hyperbolic systems
with stiff relaxation was carried out recently in [16]. The BGK penalization method has also been
extended to Fokker-Planck-Laudau equation [29], the quantum Boltzmann equation [14], and the
quantum Follke-Planck-Landau equation [24].

In this article, we generalize the BGK-penalization idea of Filbet-Jin to the multispecies Boltz-
mann equation. Several new difficulties arise here. First there are several possible choices of the local
Maxwellian and one has to determine the one that suits our needs. Secondly, to justify various AP
properties one needs to prove that the velocities and temperatures of different species equilibrate, a
property one does not encounter for the single species Boltzmann equation. Finally we also demon-
strate that this method can also be used for gas mixtures with disparate masses, which arises in
ion-electron evolution problem in plasma [21, 4, 38].

This paper is organized as follows: we will describe the Boltzmann equation for the multispecies
system and one of its related BGK models in section 2, including their theoretical properties. In
section 3, we will give details of the numerical scheme. This is followed by section 4 where we prove
various AP properties of the scheme. In section 5, we discuss the disparate masses system. In section
6, we show several numerical examples.

2 The Multispecies Models

2.1 The multispecies Boltzmann Equation

The Boltzmann equation describes the evolution of the density distribution of rarefied gases. The
Boltzmann equation for the multispecies system is given by [13]:

∂tfi + v · ∇xfi = Qi(f, f), t ≥ 0, (x, v) ∈ Rd × Rd, (2.1)

with

Qi(f, f) =
N∑
k=1

Qik(f, f) , (2.2a)

Qik(f, f)(v) =

∫
B+

∫
Rd

(f ′if
′
k∗ − fifk∗)Bik(|v − v∗|,Ω)dv∗dΩ, (2.2b)

where for each species i, Qi stands for its collision, which is the summation of Qik, the collision
between the ith and the kth species, Bik is the collision kernel, which in general depends on the
pre-collisional relative velocity g = v − v∗, and a unit vector Ω. For Maxwell molecule, the collision
kernel only depends on the angle ω = arccos g·Ω|g| , i.e. Bik = Bik(ω); f ′i and f ′k∗ are distributions for

species i and k respectively at the post-collisional velocities v′ and v′∗, which satisfy:

v′ = v − 2µik
mi

(g · Ω)Ω, (2.3a)

v′∗ = v∗ +
2µik
mk

(g · Ω)Ω, (2.3b)

with µik = mimk
mi+mk

being the reduced mass and mi, mk being the mass for species i and k respectively.
Deduction of the velocity change (2.3) is based on momentum and energy conservations:

miv +mkv∗ = miv
′ +mkv

′
∗,

mi|v|2 +mk|v∗|2 = mi|v′|2 +mk|v′∗|2.
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2.2 Properties of the multispecies Boltzmann equation

We define the macroscopic quantities for species i: ni is the number density; ρi is the mass density;
ui is the average velocity; Ei is the total energy; ei is the internal energy per particle; Ti is the
temperature; Pi is the stress tensor; and qi is the flux vector, given by:

ni =

∫
fidvi, ρi = mini,

ρiui = mi

∫
vfidv,

Ei =
1

2
ρiu

2
i + niei =

1

2
mi

∫
|v|2fidv,

ei =
d

2
Ti =

mi

2ni

∫
fi|v − ui|2dv, (2.4)

Pi =

∫
(v − ui)⊗ (v − ui)fidv,

qi =
1

2
mi

∫
(v − ui)|v − ui|2fidv.

We also define global quantities for the mixture: the total mass density ρ, the number density n, the
mean velocity ū, the total energy E, the internal energy nē and the mean temperature T̄ = 2ē

d :

ρ =
∑
i

ρi, n =
∑
i

ni,

ρū =
∑
i

ρiui, (2.5)

E =
d

2
nT̄ +

ρ

2
|ū|2 =

∑
i

Ei.

2.2.1 Conservation

In the gas mixture system, for each species, the mass is conserved, but not the momentum and
energy. Namely, taking the moments of the collision term, one multiplies it with φ = mi

[
1, v, 1

2 |v|
2
]

and integrates in velocity and gets:

< miQi > =

∫
miQi(f)dv = 0,

< mivQi > =

∫
mivQi(f)dv =

n∑
k=1

2µikχiknink[uk − ui],

<
1

2
miv

2Qi > =

∫
mi

2
|v|2Qi(f)dv

=

n∑
k=1

2miχiknink

[(
µik
mi

)2(
|uk − ui|2 + 2

ek
mk

+ 2
ei
mi

)
+
µik
mi

(
(uk − ui) · ui − 2

ei
mi

)]
,

where χik =
∫

(cosω)2Bik(ω)dω for Maxwell molecules. The details can be found in [1].
Based on these formulas, when taking moments of the Boltzmann equation, we get evolution of

the macro quantities (taking 1D Maxwell molecule for example):
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∂tρi + ∂x(ρiui) =< miQi >= 0, or ∂tni + ∂x(niui) = 0,

∂t(ρiui) + ∂x(Pi + ρiu
2
i ) =< mivQi >=

1

ε

∑
k

2Bikninkµik[uk − ui], (2.6)

∂tEi + ∂x(Eiui + Piui + qi) =<
1

2
mi|v|2Qi >=

1

ε

∑
k

2Biknink

(
µ2
ik

mimk

)
(a+ b),

where a = (mkuk +miui) · (uk − ui), b = 2(ek − ei). However, the total momentum and total energy
are still conserved:

∂tρ+ ∂x(ρū) = 0,

∂t(ρū) + ∂x(
∑
i

Pi +
∑
i

ρiu
2
i ) =

1

ε

∑
i

< miviQi >= 0, (2.7)

∂tE + ∂x(
∑
i

Eiui +
∑
i

Piui +
∑
i

qi) =
1

ε

∑
i

<
1

2
miv

2
iQi >= 0.

2.2.2 The local Maxwellian

The local equilibrium is reached when the gaining part and losing part of collision for each species i
balance out, namely Qi(f) = 0 for each i. It is given by:

fi = M i = ni

( mi

2πT̄

)d/2
e−

mi|v−ū|
2

2T̄ , (2.8)

where T̄ is the mean temperature and ū is mean velocity defined in (2.5). We call this Maxwellian the
“unified Maxwellian” because the macro quantities are given by those for the entire system instead
of those for the single species.

2.2.3 The Euler limit

Expanding fi around the unified Maxwellian (2.8), the standard Chapman-Enskog expansion shows
that at the local equilibrium, the collision term vanishes, and the system gets to its Euler limit [1]:

∂tρi +∇ · (ρiū) = 0,

∂t(ρū) +∇ · (ρū⊗ ū+ ρT̄ I) = 0, (2.9)

∂tE +∇ · ((E + ρT̄ )ū) = 0.

2.3 A BGK model

The BGK operator is a classical approximation for collision term. There are several BGK models,
but most of them either suffer from the loss of positivity [18], or fail to satisfy the indifferentiability
principle [22, 37, 19]. Positivity guarantees that the distribution function is always positive, and
indifferentiability requires that when different species share the same mass, equations of the system
should be consistent with the single species Boltzmann equation. We choose the BGK model proposed
by Andries, Aoki and Perthame [1], the one that guarantees the indifferentiability principle and
positivity.

The model reads:
∂tfi + v · ∇xfi =

νi
ε

(M̃i − fi), (2.10)
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with νi being collision frequency and M̃i being a Maxwellian:

νi =
∑
k

nkχik,

M̃i = ni

(
mi

2πT̃i

)d/2
e
−mi|ξ−ũi|

2

2T̃i , (2.11)

where the macro quantities for M̃ are given by:

νiũi − νiui = < vQi >=
1

mi

n∑
k=1

2µikχiknink[uk − ui], (2.12a)

νiẼi − νiEi = <
1

2
miv

2Qi > (2.12b)

=
n∑
k=1

2miχiknink

[(
µik
mi

)2(
|uk − ui|2 + 2

ek
mk

+ 2
ei
mi

)
+
µik
mi

(
(uk − ui) · ui − 2

ei
mi

)]
.

T̃i =
(

2Ẽi − ρiũ2
i

)
/(nid) as usual. The way M̃ is defined is to capture the moments of the collision

Q. Note that the right hand side of equation (2.12a) is just a linear operator of u. For later reference,
we define a matrix L by:

(L)ij =

{
2µijχijninj , i 6= j,∑

k−2µikχiknink, i = j.
(2.13)

Apparently, L is a symmetric matrix with each row summing up to 0, and all elements not on
the diagonal are positive. Since L is a symmetric weakly diagonally dominant matrix, thus it is
semi-negative definite, i.e. all its eigenvalues are non-positive. Equation (2.12a) turns out to be
νiũi − νiui = 1

mi
(Lu)i. For later convenience, we also define the following notation: for any non-

singular matrix A, we use Λ(A) to denote its spectral radius:

Λ(A) = sup
i

(|λi(A)|), (2.14)

where λi(A) are eigenvalues of A.
Similar results can be carried out for e: when u is known, the right hand side of (2.12b) is linear

on e.

Remark 1. Equation (2.12a) holds componentwise for vector ui so L should be acted on each
component of ui.

We also mention another type of Maxwellian, which is defined by species’ own macro quantities
ui and Ti. We call it the “species Maxwellian”:

Mi = ni

(
mi

2πTi

)d/2
e
−mi|ξ−ui|

2

2Ti . (2.15)

Remark 2. Mi − fi could not be used as a BGK operator. In the multispecies system, one has
to introduce some mechanism into the collision term that captures the influence between species.
Mi− fi gives no communication between the species, so it cannot be used to express the multispecies
collision.

3 An AP Scheme for the multispecies Boltzmann equation

In this chapter, we derive our AP scheme for the multispecies Boltzmann equation. Our idea is based
on BGK-penalization method proposed by Filbet and Jin [15].
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3.1 The time discretization

Here we adopt the same strategy and write our scheme as:

f l+1
i − f li

∆t
+ v · ∇xf li =

Qli(f)− P li (f)

ε
+
P l+1
i (f)

ε
. (3.1)

The superscript l stands for the time step. And P is chosen to be the leading order expansion of Q:

P = β(M − f). (3.2)

A simple algebraic manipulation on (3.1) gives:

f l+1
i =

εf li + ∆t(Qli − βl(M
l
i − f li ))− ε∆tv · ∇xf li + βl+1∆tM

l+1
i

ε+ βl+1∆t
.

The three macroscopic quantities that define M come from solving the Euler equations for the entire
system described in details below.

3.2 The computation of M
l+1

Numerically integrating system (2.7), one gets:

nl+1
i = nli −∆t

∫
v · ∇xf lidv,

(ρū)l+1 = (ρū)l −∆t
∑
i

mi

∫
v ⊗ v · ∇xf lidv,

El+1 = El −∆t
∑
i

∫
mi

2
|v|2v · ∇xf lidv,

T̄ l+1 =
2El+1 − (ρū2)l+1

nl+1
,

where the flux term is computed in section 3.4. Now M
l+1

is given by (2.8).

3.3 The collision term Q

We use the spectral method introduced in [36] to compute the collision term Qi. Use a ball B(0, S)
to approximate a compactly supported distribution f . Then we periodize f on v ∈ [−L,L]d with
L ≥ (3 +

√
2)S. L is chosen much larger than S to avoid non-physical collision at different periods of

periodized f . Define the Fourier Transform as:

f̂(k;x) =

∫
f(v;x)e−ikvdv,

f(v;x) =
1

(2L)d

∑
k

f̂(k;x)eikv.

Plugging into the collision term (2.2b):

Qik =

∫ ∫
Bik

[
f ′if
′
k∗ − fifk∗

]
dvkdn ≡ Q+

ik −Q
−
ik,
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with

Q+
ik =

∫ ∫
Bik

(
1

2L

)2d
[∑

p

∑
q

f̂i(p;x)eipv
′
f̂k(q;x)eiqv

′
∗

]
dv∗dn,

Q−ik =

∫ ∫
Bik

(
1

2L

)2d
[∑

p

∑
q

f̂i(p;x)eipvf̂k(q;x)eiqv∗

]
dv∗dn.

Taking the 1D Maxwell molecule for example, the post-collisional velocities are

v′ = v − 2mk

mi +mk
(v − v∗) =

mi −mk

mi +mk
v +

2mk

mi +mk
v∗,

v′∗ = v +
mi −mk

mi +mk
(v − v∗) =

2mi

mi +mk
v − mi −mk

mi +mk
v∗.

Plugging in Q+
ik, one gets:

Q+
ik =

Bik
(2L)2d

∑
p,q

f̂pi f̂
q
ke

[i(
mi−mk
mi+mk

p+
2mi

mi+mk
q)v]
∫
e

[i(
2mk

mi+mk
p−mi−mk

mi+mk
q)v∗]dv∗.

One can also write Q+
ik as a summation of its Fourier modes Q+

ik =
(

1
2L

)d∑
l Q̂

l+
ik e

ilv where

Q̂l+ik =

∫
Q+
ike
−ilvdv

=
Bik

(2L)2d

∑
p,q

f̂pi f̂
q
k

∫
e
i(
mi−mk
mi+mk

p+
2mi

mi+mk
q−l)v

dv

∫
e
i(

2mk
mi+mk

p−mi−mk
mi+mk

q)v∗dv∗

= Bik
∑
p,q

f̂pi f̂
q
k sinc(a) sinc(b),

where a = (mi−mkmi+mk
p+ 2mi

mi+mk
q − l)L, and b = ( 2mk

mi+mk
p− mi−mk

mi+mk
q)L. The FFT and the inverse FFT

are used to speed up the computation.
The computation for Q−ik is much simpler in this special case: Q−ik = fi

∫
Bikfkdvk = finkBik.

After getting all Qik, Qi =
∑

kQik.

3.4 The flux term v · ∇xfi

Here we show computation in 1D. Use v∂xfi,j to denote the flux term for species i for grid point xj .
A shock-capturing finite volume method we use is [34]:

v∂xfi,j = ν(f li,j1 − f
l
i,j1−1)− 1

2
ν(sgn(ν)− ν)(hσi,j1 − hσi,j1−1), (3.3)

where ν = v
h , h is mesh size. j1 is chosen to be j for v > 0 and j+1 for v < 0. σi,j =

fi,j+1−fi,j
h φi,j where

φi,j is the slope limiter. For the van Leer limiter, it takes value as φ(θ) = θ+|θ|
θ+1 and θi,j =

fi,j−fi,j−1

fi,j+1−fi,j
reflects smoothness around grid point xj .

The computation for the flux term in higher dimension can also be found in [34].

4 The AP Property of the Time Discretization

The time discrete scheme (3.1) is written as:

f l+1
i − f li

∆t
+ v · ∇xf li =

Qli − β(M
l
i − f li )

ε
+
β(M

l+1
i − f l+1

i )

ε
. (4.1)
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We will show below that this method is weakly-AP for general Boltzmann collision operator, and
relaxed-AP for the BGK model given in section 2.3. Below we always assume that ∆t � ε, and we
use the linear operator L defined in (2.13), Λ(A) in (2.14), and denote I as the identity matrix. We
also define:

δuli = uli − ūl, δT li = T li − T̄ l, (4.2)

and

% =


ρ1, 0, . . . , 0

0, ρ2,
. . . ,

...
...,

. . .
. . . ,

...
0, . . . , . . . , ρN

 (4.3)

4.1 Weakly-AP

Lemma 1. If δuli = O(ε) and δT li = O(ε) for ∀i, then δul+1
i = O(ε) and δT l+1

i = O(ε).

Proof. Rewrite scheme (4.1) as:

f l+1
i −M l+1

i =
ε(−M l+1

i +M
l
i)− ε∆tv · ∇xf li

ε+ β∆t
+

∆tQli
ε+ β∆t

−
(
M

l
i − f li

)
. (4.4)

Take the first moment on both sides. On the left hand side, one gets (ρiui)
l+1 − (ρiū)l+1, while on

the right hand side, the first term is O(ε). The second term gives:

∆t

ε+ β∆t
< mivQ

l
i > =

∆t

ε+ β∆t

∑
k

2χikµiknink[u
l
k − uli]

=
∆t

ε+ β∆t

∑
k

2χikµiknink(δu
l
k − δuli) = O(ε).

The third term gives:

< miv(M
l
i − f li ) >= ρi

(
ūl − uli

)
= O(ε).

So the entire right hand side is of O(ε), thus the term on the left hand side, (ρiui)
l+1−(ρiū)l+1 = O(ε),

i.e. δul+1
i = O(ε). Similar analysis can be carried out for T .

Theorem 1. The method is weakly-AP; namely, if M
l
i − f li = O(ε), then M

l+1
i − f l+1

i = O(ε).

Proof. Since M
l
i − f li = O(ε), both Pi(f

l) and Qi(f
l) are of O(ε). Plugging back into the scheme

(4.1), one gets f l+1
i −M l+1

i = O(ε).

4.2 Relaxed-AP

Lemma 2. When ∆t� 1, in the limit of ε→ 0, if β > 1
2Λ(%−1L), then there ∃Nt, such that ∀l > Nt,

δul = O(ε).

Proof. We prove the scheme for 1D case. The proof for higher dimension can be carried out easily.
One can take moments of the numerical scheme (4.1):

(ρu)l+1 − (ρu)l

∆t
+ ∂x

∫
v2mf ldv =

1

ε
(Lul + β%lδul − β%l+1δul+1),

⇒ (ε+ β∆t)%l+1δul+1 =
(

(ε+ β∆t)%l + ∆tL
)
δul + ε

(
(ρū)l − (ρū)l+1

)
− ε∆t∂x

∫
v2mf ldv,

⇒ (ε+ β∆t)%l+1δul+1 =
[
(ε+ β∆t)

(
%l+1 +O(∆t)

)
+ ∆tL

]
δul +O(ε),
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where Lū = 0 and %l+1 = %l +O(∆t) is used.
After some simple algebra, one can rewrite the previous equation as:

δul+1 =
[
I + β−1(%l+1)−1L +O(∆t)

]
δul +O(ε)

Define αu as:

αu =
[
I + β−1(%l+1)−1L +O(∆t)

]
. (4.5)

Since the eigenvalues for L are non-positive, if one chooses β > 1
2Λ(%−1L), given small enough ∆t,

|Λ(αu)| < 1, thus in the limit of ε → 1, δu would decrease till O(ε), and we get our conclusion.
Similar idea can also be found in [15].

The same analysis can be carried out for T .

Theorem 2. For ε� 1, ∃Nt such that ∀l > Nt, M
l
i −M

l
i = O(ε), and M̃ l

i −M
l
i = O(ε).

Proof. It is a straightforward conclusion from the lemma above, and from the definition for M̃ in
(2.11).

Remark 3. Up to now, we have shown that Mi approaches to M i for general Boltzmann collision
operator. Rearranging scheme (4.1), one gets:

f l+1 −M l+1
=

(ε+ β∆t)(f l −M l
) + ∆tQl

ε+ β∆t
+
ε(M

l −M l+1
)− ε∆t v · ∇xf l

ε+ β∆t
. (4.6)

The second term is of O(ε). So, one can get relaxed-AP only if Q being negative whenever f −M is
positive can be showed. We can prove this for limited form of Q, say the BGK operator introduced
in section 2.3. Later in section 6 we will show that numerically the scheme is relaxed-AP for the
collision defined in (2.2).

Theorem 3. The scheme is relaxed-AP for BGK operator Q = ν(M̃ − f).

Proof. Plug in the definition for Q, (4.6) writes:

f l+1 −M l+1
=
ε+ β∆t− ν∆t

ε+ β∆t
(f l −M l

) +
ν∆t(M̃ l −M l

)

ε+ β∆t
+O(ε)

=
ε+ β∆t− ν∆t

ε+ β∆t
(f l −M l

) +O(ε)

The second equality comes from Theorem 2. Define:

αM =
ε+ β∆t− ν∆t

ε+ β∆t
(4.7)

and we call it the convergent rate to the unified Maxwellian M . In the limit of ε→ 0, if one has β > ν
2 ,

then |αM | < 1, thus |f −M | keeps diminishing till reaching to O(ε), and we get relaxed-AP.

5 Disparate Masses

This section is for the system of gas mixture with disparate masses in homogeneous space. The
mathematical problem was first pointed out by Grad [21], and has attracted great interests since
then. The fundamental example is plasma, for which, the basic derivation can be found in [4, 38].
For these systems, it is the different time scalings for different species to reach to the equilibrium
that make the problem difficult. Generally speaking, the light species should be able to get to the
equilibrium faster. Analyses of the scaling of the collision operators have been done both based on
postulate physical consideration [31, 6] and using formal derivation [10, 11].
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5.1 Theoretical rescaling analysis

We will make use of the rescaling used in [10, 11] where they get the scaling ratio of collision for
heavy particle over that of the light one is O(ε), ε =

√
mL/mH and the sub index H and L are for

the heavy and the light species respectively. The system is written as:{
∂tfH = QH = QHH +QHL =

∫
(f ′Hf

′
H∗ − fHfH∗) dvH∗ +

∫
(f ′Hf

′
L − fHfL) dvL,

∂tfL = QL = QLL +QLH =
∫

(f ′Lf
′
L∗ − fLfL∗) dvL∗ +

∫
(f ′Hf

′
L − fHfL) dvH .

(5.1)

Considering that fH is much narrower than fL given that the two species have similar temperature
at initial time (Figure 1 gives an idea on how the two distribution functions look like at the beginning),
one needs to define ṽ = v

ε and f̃H(v) = fH(vε ) to stretch fH to a function that has similar variance
as fL. We will skip the details and only adopt the results from [10, 11] where the authors get
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Figure 1: Distribution for heavy species is much narrower than that of the light species

QHH/QHL/QLH/QLL = O(ε)/O(ε)/1/1, which means that QH/QL = O(ε). For convenience, we
write both QH and QL as O(1) term, then the system turns out to be:{

∂tfH = ε
τQH ,

∂tfL = 1
τQL,

(5.2)

where τ is the time scaling parameter.

Remark 4. The inhomogeneous problem gets even harder to deal with if different species have
different spatial rescaling coefficients. Numerically it makes little difference: one just needs to add
the flux term v · ∇xf term to the homogeneous scheme.

5.2 The Numerical Scheme

In order to capture the long time behavior, the scheme we design to solve (5.2) is:

f l+1
H − f lH

∆t
=

1

τ
(ε(QlH − β(M l

H − f lH))) +
βε

τ
(M l+1

H − f l+1
H ), (5.3a)

f l+1
L − f lL

∆t
=

1

τ
(QlL − β(M l

L − f lL)) +
β

τ
(M l+1

L − f l+1
L ), (5.3b)

where β = O(1).

Theorem 4. This scheme gives a correct discretization to the problem in both time scales: O(1
ε )

and O( 1
ε2

).
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• at τ = O(1
ε ) time scale, the scheme is first order consistent to ∂tfH = QH , and f lL is an O(ε)

approximation of ML;

• at τ = O( 1
ε2

) time scale, both f lH and f lL are within O(ε) of the unified Maxwellians MH and

ML respectively.

Proof. To prove the second statement:
At this time scale, τ = O(ε2), the system turns out to be:{

∂tfH = 1
εQH ,

∂tfL = 1
ε2
QL.

By the same arguments as in the previous sections, one gets:{
fH −MH = O(ε),

fL −ML = O(ε2).

To prove the first statement:
At this time scale, τ = O(ε), system (5.3) can be written as:{

∂tfH = QH ,

∂tfL = 1
εQL.

The scheme still gives f lL → M
l
L. One just needs to show that the scheme gives a correct

discretization of the equation for fH too. Write (5.3a) as (set τ = ε):

f l+1
H − f lH

∆t
= QlH − β(M l

H − f lH) + β(M l+1
H − f l+1

H ).

Rearrange it, one gets:

f l+1
H − f lH

∆t
= QlH −

β∆t

1 + β∆t
QlH +

β

1 + β∆t

(
M l+1
H −M l

H

)
.

The second and the third terms on the right are both of order ∆t, i.e. the scheme gives a first
order discretization to ∂tfH = QH .

6 Numerical Examples

For comparison, the examples chosen are similar to those in [28]. We also perturb the data on the
macro quantities. For all the examples below: when ε is not very small so that solving the Boltzmann
equation is still possible by using the basic explicit scheme with resolved mesh, we compare numerical
results of the new AP scheme with the forward Euler scheme, and when ε is unbearably small for the
forward Euler, we compare results given by the new scheme with its Euler limit. To solve the Euler
equations, we used the CLAWPACK Euler solver [35].

6.1 A Stationary Shock

In this example, we show numerical solution to a Riemann problem of two species. The analytical
solution to the Euler equation is a shock with zero speed. Here the subscript stands for data to
different species.{

m1 = 1,m2 = 1.5, n1 = n2 = 1, u1 = 1.8, u2 = 1.3, T1 = T2 = 0.325, if x < 0;

m1 = 1,m2 = 1.5, n1 = n2 = 1.401869, u1 = u2 = 1.07, T1 = T2 = 0.8605, if x > 0.
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The initial distribution for f is given by summation of two Gaussian functions, so it is far away from
the unified Maxwellian M ,

f(t = 0) =
2∑
i=1

Aie
−Bi(v−Ci)2

, (6.1)

where

B1 = B2 =
ρ

4E − 2ρu2(1 + κ2)
, A1 = A2 =

n

2

√
B

π
and C1 − u = u− C2 = κu. (6.2)

In the numerical experiment, we choose κ = 0.2. ∆x = 10−2 and ∆t is chosen to satisfy the CFL
condition: 10−3 in our simulation. Numerically we check the followings: 1. Does the new AP scheme
give the Euler limit when ε goes to zero; 2. Does the AP scheme match well with the forward Euler
method with relatively fine mesh when ε is big. We first show in Figure 2 that as ε goes to zero,
the numerical solution converges to the Euler limit, to be specific, the stationary shock in this case.
In Figure 3, we show that the AP scheme matches very well with the numerical results given by the
forward Euler method for ε = 10−1. Then we show in Figure 4, that given an initial data far away
from the unified Maxwellian, f converges to M quickly with ε = 10−5. This verifies that the scheme
is relaxed-AP numerically. Figure 5 shows that smaller ε gives faster convergence to the equilibrium
state for velocities.

6.2 The Sod Problem

In this example, we compute the Sod problem. Initial data is given by:{
m1 = m2 = 1, n1 = 1, n2 = 1.2, u1 = 0.6, u2 = −0.5, T1 = T2 = 0.709, if x < 0;

m1 = m2 = 1, n1 = 0.125, n2 = 0.2, u1 = −0.2, u2 = 0.125, T1 = T2 = 0.075, if x > 0.

The initial distribution is given by the same formulas in (6.1) and (6.2) with κ = 0.2. For all ε,
choose ∆x = 10−2 and ∆t = 10−3. In this problem, m1 = m2, so we first show the numerical
indifferentiability in Figure 6, that is: computing the problem as a multispecies system gives the
same result as computing the single-species Boltzmann equation. In Figure 7, we show that as ε
goes to zero, the numerical solution converges to the Euler limit. For ε as big as 10−1 and 10−2, we
compare the results with those of the forward Euler with a fine mesh. They match well as shown in
Figure 8. In Figure 9, we show for ε = 10−4, as time evolves, the distribution function f converges
to the unified Maxwellian M . This numerically verifies the relaxed-AP property. In Figure 10, we
show evolution of u with different ε. Apparently different species gradually share the same velocity,
and the smaller ε is, the faster the convergence is.

6.3 A Disparate Masses Problem

In this example, we deal with the ion-electron evolution problem. Define ε =
√

mL
mH

, we want to verify

that the light species gets close to the unified Maxwellian ML faster than the heavy one. We show
an inhomogeneous problem with the following initial data:

mH = 8,mL = 0.08, uH = 0.7, uL = 0, TH = TL = 2.5, nH = 1, nL = 1.2.

The initial distribution f is given the same as in the previous two examples, but with C1 and C2

defined by: C1− u = u−C2 = κ. We choose κ = 0.5. In Figure 11, we show several snapshots of the
distributions of two species at different time steps. In Figure 12, we show how velocities of the two
species converge toward each other.

Acknowledgements. The second author would like to thank Dr. Cory Hauck and Dr. Bokai Yan
for stimulating discussions.
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