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Abstract

We propose a stochastic Galerkin method using sparse grids for the Boltzmann equa-

tion with high dimensional random inputs. The method uses locally supported piecewise

polynomials as an orthonormal basis of the random space. By a sparse grid technique,

only a moderate number of basis functions are required to achieve good accuracy in high

dimensional random spaces. We discover a sparse structure of a set of basis-related coeffi-

cients, which allows us to accelerate the computation of the collision operator. Regularity

of the solution of the Boltzmann equation in the random space and an accuracy result

of the stochastic Galerkin method are proved in multidimensional case. The efficiency of

the method is illustrated by numerical examples with uncertainties from the initial data,

boundary data and collision kernel.

Key words. Uncertainty quantification, Boltzmann equation, stochastic Galerkin methods,

sparse grids

1 Introduction

The Boltzmann equation plays an essential role in kinetic theory [8]. It describes the time

evolution of the density distribution of dilute gases, where fluid dynamics equations, such as the

Euler equations and the Navier-Stokes equations, fail to provide reliable information. It is an

indispensable tool in fields concerning non-equilibrium statistical mechanics, such as rarefied gas

dynamics and astronautical engineering.
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For most applications of the Boltzmann equation, the initial and boundary data are given

by physical measurements, which inevitably bring measurement errors. Furthermore, due to

the difficulty of deriving the collision kernels from first principles, empirical collision kernels are

often used. Such kernels contain adjustable parameters, which are determined by matching with

experimental data [5]. This procedure involves uncertainty on the parameters in the collision

kernel. To understand the impact of these random inputs on the solution of the Boltzmann

equation, it is imperative to incorporate the uncertainties into the equation, and design nu-

merical methods to solve the resulting system [24]. A proper quantification of uncertainty will

provide reliable predictions and a guidance for improving the models. Since the uncertainties

of the Boltzmann equations come from many independent sources, it is necessary to use a high

dimensional random space to incorporate all the uncertainties. Moreover, a Karhunen-Loeve

expansion of a random field will result in a high dimensional random space.

Various numerical methods have been developed to solve the problem of uncertainty quan-

tification (UQ) [24, 11, 19, 25]. Monte-Carlo methods [20] use statistical sampling in the ran-

dom space, which give halfth order convergence in any dimension. Stochastic collocation meth-

ods [2, 4] take sampling points on a well-designed grid, usually according to a quadrature rule,

and the statistical moments are computed by numerical quadrature. Stochastic Galerkin meth-

ods [4, 3] use an orthonormal basis expansion in the random space. By a truncation of the

expansion and Galerkin projection, one is led to a deterministic system of expansion coefficients.

Both methods can achieve spectral accuracy in one-dimensional random space if the quadrature

rule (orthonormal basis) is well chosen.

Hu and Jin [16] gave a first numerical method to solve the Boltzmann equation with uncer-

tainty by a general polynomial chaos based stochastic Galerkin method. By a singular value

decomposition on a set of coefficients related to the basis functions, the computational cost of

the collision kernel is decreased dramatically. However, their work focuses on low dimensional

random spaces, and a direct extension of their method to high dimensional random spaces will

suffer from the curse of dimensionality, which means K, the number of basis functions, will grow

like K =
(
K1+d
K1

)
, where K1 is the number of basis in one dimension, and d is the dimension of the

random space. This cost is not affordable if both K1 and d are large. Monte-Carlo methods are

feasible, but a halfth order convergence rate can be unsatisfactory in many applications. There-

fore it is desirable to have an efficient and accurate method to solve the Boltzmann equation

with high dimensional random inputs.

In this work, we adopt a sparse grid approach [15, 10] for the stochastic Galerkin method to

circumvent the curse of dimensionality. The idea of sparse grids traces back to Smolyak [22]. In

recent years, sparse grids have become a major approach to break the curse of dimensionality

in various contexts, for example in Galerkin finite element methods [15, 27], finite difference

methods [12, 13] and high-dimensional stochastic differential equations [26, 21]. We adopt the

sparse grid method proposed by Guo and Cheng [14], who use the method for a discrete Galerkin

method for transport equations. Simply speaking, we start from a hierarchical basis in one

dimension. To construct the sparse grid basis in multi-dimension, we take the tensor grid and

discard those basis functions that are in deep levels in most dimensions. In this way only a small

number of basis functions are kept, yet it can be proved that the accuracy is still as good as the

corresponding tensor grid, if the function to approximate is smooth enough. With a hierarchical

basis with N levels and piecewise polynomials of degree at most m, our method can achieve an
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accuracy of O(Nd2−N(m+1)) with number of basis K = O((m+ 1)d2NNd−1) for d-dimensional

random spaces. This accuracy is O(K−(m+1)(logK)(m+2)(d−1)) in terms of K. It is algebraically

accurate, but as d increases, the accuracy deteriorates very slowly. Furthermore, we discover a

sparse structure of a set of basis related coefficients, Sijk, which greatly reduces the cost of the

expensive collision operator evaluation.

The paper is organized as follows: in Section 2 we introduce the Boltzmann equation with

uncertainty and the framework of stochastic Galerkin (sG) method; in Section 3 we introduce our

sparse grid method with multi-wavelet functions; in Section 4 we give an estimate of the sparsity

of the coefficients Sijk; in Section 5 we prove the random space regularity of the solution of the

Boltzmann equation with uncertainty, as well as the accuracy of the sG method with sparse grid;

in Section 6 we give some numerical results.

2 The Boltzmann Equation with Uncertainty

The classical (deterministic) Boltzmann equation in its dimensionless form reads

∂tf + v · ∇xf =
1

Kn
Q(f, f), (2.1)

where f = f(t,x,v) is the density distribution function of a dilute gas at time t ∈ R+, position

x ∈ Ω ⊂ Rdx , and with particle velocity v ∈ Rdv . Kn is the Knudsen number, a dimensionless

number defined as the ratio of the mean free path and a typical length scale, such as the size of

the spatial domain. The collision operator Q(f, f) is given by

Q(f, f) =

∫
Rdv

∫
Sdv−1

B(v,v∗, σ) [f(v′)f(v′∗)− f(v)f(v∗)] dσ dv∗, (2.2)

which is a quadratic integral operator modeling the binary elastic collision between particles.

(v,v∗) and (v′,v′∗) are the particle velocities before and after a collision, which are given by
v′ =

v + v∗
2

+
|v − v∗|

2
σ,

v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

(2.3)

with a vector σ varying on the unit sphere. The collision kernel B is a non-negative function of

the form B(v,v∗, σ) = B(|v − v∗|, cos θ), where θ = arccos σ·(v−v∗)|v−v∗| is the deviation angle. A

commonly used model for the collision kernel is the variable hard sphere (VHS) model [5], which

takes the form

B = b|v − v∗|λ, (2.4)

where b and λ are some constants, whose values are usually determined by matching with the

experimental data to reproduce the correct transport coefficients such as the viscosity.

The Boltzmann collision operator satisfies the conservation laws

∫
Q(f, f)


1

v

|v|2

 dv = 0, (2.5)
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as well as the H -theorem

−
∫
Q(f, f) ln f dv ≥ 0. (2.6)

The equality is achieved if and only if f takes the form

M(v)(ρ,u,T ) =
ρ

(2πT )dv/2
e−

(v−u)2

2T , (2.7)

which is called the Maxwellian. ρ, u and T are the density, bulk velocity and temperature, given

by

ρ =

∫
f dv, u =

1

ρ

∫
fv dv, T =

1

dvρ

∫
f |v − u|2 dv. (2.8)

The initial condition of the Boltzmann equation is given by

f(0,x,v) = f0(x,v), (2.9)

and a boundary condition is needed if the spatial domain Ω is a proper subset of Rdx . We adopt

the Maxwell boundary condition, which takes the form

f(t,x,v) = g(t,x,v), x ∈ ∂Ω, v · n > 0, (2.10)

with

g(t,x,v) =(1− α)f(t,x,v − 2(v · n)n)

+
α

(2π)(dv−1)/2T
(dv+1)/2
w

e−
|v|2
2Tw

∫
v·n<0

f(t,x,v)|v · n|dv,
(2.11)

where Tw is the temperature of the wall, and n is the inner normal unit vector of the wall. The

first term is the specular reflective part, and the second term is the diffusive part. α is the

accommodation coefficient. α = 1 implies purely diffusive boundary, while α = 0 implies purely

reflective boundary. For simplicity we only consider the case where the wall is static.

As mentioned before, there are many sources of uncertainties in the Boltzmann equation,

such as the initial data, boundary data, and collision kernel. To quantify these uncertainties we

introduce the Boltzmann equation with uncertainty
∂tf(t,x,v, z) + v · ∇xf(t,x,v, z) =

1

Kn
Qz(f, f), t ∈ R+, x ∈ Ω, v ∈ Rdv , z ∈ Iz ⊂ Rd,

f(0,x,v, z) = f0(x,v, z),

f(t,x,v, z) = g(t,x,v, z), x ∈ ∂Ω.

(2.12)

Here z ∈ Iz is a d-dimensional random vector with probability distribution π(z) characterizing

the uncertainty in the system. We assume that the collision kernel has the form

B(v,v∗, σ, z) = b(z)B0(v,v∗, σ),

which means that Qz can be written as

Qz(f, f) = b(z)Q(f, f).

The Maxwell boundary data g(t,x,v, z) is given by

g(t,x,v, z) =(1− α(z))f(t,x,v − 2(v · n)n, z)

+
α(z)

(2π)(dv−1)/2Tw(z)(dv+1)/2
e−

|v|2
2Tw(z)

∫
v·n<0

f(t,x,v, z)|v · n|dv.
(2.13)
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To solve the stochastic system (2.12), Hu and Jin [16] proposed a stochastic Galerkin method

(sG). The idea is to approximate f by a truncated Galerkin expansion:

f(t,x,v, z) ≈ fK(t,x,v, z) =

K∑
k=0

f̂k(t,x,v)Φk(z), (2.14)

where {Φk(z)} are an orthonormal polynomial basis, with Φk(z) being the polynomial of degree

k in the random domain, which satisfies∫
Iz

Φi(z)Φj(z)π(z) dz = δij .

Substituting (2.14) into (2.12) and conducting a standard Galerkin projection, one gets

∂tf̂k(t,x,v) + v · ∇xf̂k(t,x,v) = Qk(fK , fK), (2.15)

f̂k(0,x,v) = f̂0k (x,v), (2.16)

Qk(fK , fK) =

K∑
i,j=0

SijkQ(f̂i, f̂j), (2.17)

where

Sijk =

∫
Iz

b(z)Φi(z)Φj(z)Φk(z)π(z) dz. (2.18)

The boundary condition is given by

ĝk =

K∑
i,j=0

S0,ijk(1− α̂i)f̂j(t,x,v − 2(v · n)n)

+

K∑
j=0

Dkj(x,v)

∫
(v)·n<0

f̂(t,x,v, z)|v · n|dv,

(2.19)

where

Dkj(x,v) =

∫
Iz

α(z)

(2π)(dv−1)/2Tw(z)(dv+1)/2
e−

|v|2
2Tw(z) Φk(z)Φj(z)π(z) dz, (2.20)

is a matrix that is time independent hence can be pre-computed.

This gPC-sG method works well for low dimensional random inputs, but for high dimensional

ones, it might require a very large number of basis functions (K large) to approximate f to a

given accuracy. If one takes K1 basis functions in one dimensional random space, then a direct

extension of the gPC-sG method will require
(
K1+d
K1

)
basis functions, which is prohibitively

expensive if both K1 and d are large. Furthermore, since the computation of the {Qk}Kk=0

requires O(K2) times evaluation of the deterministic collision operator in general, one has to

choose a relatively small K in order to afford the computation of {Qk}Kk=0. Also, [16] uses a

singular value decomposition of size K as a pre-computation for the collision operator, which

reduces the computational cost by one order of magnitude, but it is still too expensive for high-

dimensional random inputs. In the following sections we propose a stochastic Galerkin method

with sparse grid basis functions, which requires much fewer basis functions for high dimensional

random space.
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3 A Sparse Grid Method with Multi-wavelet Functions

3.1 The Sparse Grid Construction

For simplicity we restrict to the case Iz = [−1, 1]d, and π(z) = 1
2d

is the uniform distribu-

tion. We follow the notation by Guo and Cheng [14]. We start by constructing a hierarchical

decomposition of the space consisting of piecewise polynomials of order at most m. Let Pm(a, b)

be the space of polynomials of order at most m on the interval (a, b), and for every N ≥ 0,

V mN = {φ : φ ∈ Pm(−1 + 2−N+1j,−1 + 2−N+1(j + 1)), j = 0, 1, . . . , 2N − 1}. (3.1)

Then define the wavelet space Wm
N , N = 1, 2, . . . as the orthogonal complement of V mN−1 inside

V mN . For convenience we define Wm
0 = V m0 . Then one gets the hierarchical decomposition

V mN = ⊕0≤j≤NW
m
j .

Then a standard sparse grid trick can be applied. For simplicity we introduce the following

vector notations:

If i = (i1, . . . , id), j = (j1, . . . , jd) then

i ≤ j means i1 ≤ j1, . . . , id ≤ jd,(
j

i

)
:=

(
j1
i1

)
× · · · ×

(
jd
id

)
,

1m is the vector with 1 at m-th component and 0 at others,

|i|∞ = max
m
{|i1|, . . . , |id|}, |i|1 = |i1|+ · · ·+ |id|.

Define the d-fold tensor product of V mN by

Vm
N,z = V mN,z1 × · · · × V

m
N,zd

. (3.2)

Similarly define the d-fold tensor product of Wm
j by

Wm
j,z = Wm

j1,z1 × · · · ×W
m
jd,zd

. (3.3)

Then

Vm
N,z = ⊕0≤|j|∞≤NWm

j,z.

The sparse grid trick is to replace the l∞ norm on j by the l1 norm. In this way we define the

sparse grid space

V̂m
N,z = ⊕0≤|j|1≤NWm

j,z. (3.4)

From now on we will omit the subscript z for these spaces.

3.2 Construction of the Basis Functions

We adopt the basis functions of Wm
j constructed by Alpert [1]. The basis functions of Wm

j

are denoted by ψm
′

j,l , m′ = 0, 1, . . . ,m, l = 0, 1, . . . , 2j−1 − 1 for j ≥ 1 and l = 0 for j = 0.

ψm
′

0,0 are the orthonormal Legendre polynomials of degree m′ on [−1, 1], and ψm
′

1,0 are piecewise

polynomials on [−1, 0] and [0, 1] that are orthogonal to those Legendre polynomials, which can
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be constructed by a procedure similar to the Gram-Schmidt orthogonalization. Other ψm
′

j,l are

defined by dilation and translation of the ψm
′

1,0:

ψm
′

j,l (y) = 2(j−1)/2ψm
′

1,0(2j−1y + 2j−1 − 1− 2l), j = 2, 3, . . . , l = 0, 1, . . . , 2j−1 − 1,

which has support on the interval [−1 + 22−j l,−1 + 22−j(l + 1)].

The basis functions of Wm
j are tensor products of the one dimensional basis functions:

ψm′

j,l (z) = ψ
m′1
j1,l1

(z1)×· · ·×ψm
′
d

jd,ld
(zd), 0 ≤ |m′|∞ ≤ m, 0 ≤ l1 ≤ 2j1−1−1, . . . , 0 ≤ ld ≤ 2jd−1−1,

and the basis functions of V̂m
N consist of all the above functions for 0 ≤ |j|1 ≤ N . By reordering

the basis functions for V̂m
N we make them Φ0(z), . . . ,ΦK(z), where K = K(m,N, d) is the total

number of basis functions minus 1. It is proved in Lemma 2.3 of [23] that

K = O((m+ 1)d2NNd−1). (3.5)

4 Estimate of the Sparsity of Sijk

Recall the triple product tensor Sijk defined in (2.18). Due to the local support of the

sparse grid basis functions Φk, this tensor is sparse, especially when N and d are large. Due to

this sparsity, when one computes Qk =
∑K
i,j=0 SijkQ(f̂i, f̂j), one only needs to compute those

Q(f̂i, f̂j) where there is at least one k with Sijk 6= 0. Now we prove some results on its sparsity.

We focus on the dependence on N , so every O(·) notation means multiplication by a constant

that may depend on d.

Recall that when one takes the sparse grid space V̂m
N , the basis functions are

ψm′

j,l (z) = ψ
m′1
j1,l1

(z1)× · · · × ψm
′
d

jd,ld
(zd), 0 ≤ |m′|∞ ≤ m,

0 ≤ l1 ≤ 2j1−1 − 1, . . . , 0 ≤ ld ≤ 2jd−1 − 1, |j|1 ≤ N.
(4.1)

The function ψm
′

j,l (z) is supported on the interval [−1 + 22−j l,−1 + 22−j(l + 1)] for j ≥ 1.

Since this support is independent of m′, we omit the m′ index in the following consideration. If

ψj1,l1 and ψj2,l2 have non-intersecting supports, then∫
Iz

b(z)ψj1,l1(z)ψj2,l2(z)ψj3,l3(z)π(z) dz = 0, ∀j3, l3.

Recall that the number of basis functions, in V̂m
N , which includes those ψj,l with |j|1 ≤ N and

0 ≤ l1 ≤ 2j1−1−1, . . . , 0 ≤ ld ≤ 2jd−1−1, is O((m+ 1)d2NNd−1). Thus the number of the pairs

of such functions is O((m+ 1)2d22NN2d−2). Now we state our result:

Theorem 4.1. The pairs of basis functions of V̂m
N with intersecting supports have a total number

at most O((m+ 1)2d22NNd+1).

Proof. The number of φj,l for a fixed j is (m+ 1)2j−1 for j ≥ 1, and m+ 1 if j = 0. Thus it is

less than or equal to (m+ 1)2j for all j. For fixed j1, j2, suppose j1 ≥ j2, then φj1,l1 and φj2,l2

have intersecting supports if and only if the support of φj1,l1 is a subinterval of the support of

φj2,l2 . For every l1, there is one and only one such l2. Thus the number of pairs l1, l2 such that

φj1,l1 and φj2,l2 have intersecting supports is 2j
1

, which is 2max{j1,j2} in general.
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Thus the desired number is

S = (m+ 1)2d
∑

0≤|j1|1≤N,0≤|j2|1≤N

2max{j11 ,j
2
1}+···+max{j1d,j

2
d}. (4.2)

Let k1 = max{j1, j2}, where the maximum acts on each component of vectors. Similarly let

k2 = min{j1, j2}. Then |k1+k2|1 = |j1+j2|1 = |j1|1+ |j2|1 ≤ 2N , and for each fixed k1,k2, there

are at most 2d pairs of j1, j2 satisfying the conditions k1 = max{j1, j2} and k2 = min{j1, j2}.
Thus

S ≤ C(d)(m+ 1)2d
∑

0≤|k1|1+|k2|1≤2N

2|k
1|1 (4.3)

= C(d)(m+ 1)2d
2N∑
k=0

2k
(
k + d− 1

d− 1

) 2N−k∑
l=0

(
l + d− 1

d− 1

)
(4.4)

= C(d)(m+ 1)2dN

2N∑
k=0

2k(k + 1)d−1(2N − k + 1)d−1. (4.5)

The first equality is because there are
(
k+d
d−1
)

choices of k1 with |k1|1 = k, and similarly for k2.

The second equality is because
(
k+d−1
d−1

)
= k+1

1
k+2
2 · · ·

k+d−1
d−1 ≤ (k+1)d−1, and taking the largest

term in the l summation.

Then by taking derivative with respect of k, it is easy to see that the previous summation is

optimized at kmax = 2N −O(d). Thus

S ≤ C(d)(m+ 1)2dN22kmax(kmax + 1)d−1(2N − kmax + 1)d−1 (4.6)

≤ C(d)(m+ 1)2d22NNd+1, (4.7)

which finishes the proof.

Remark 4.2. When d ≥ 4, one has 22NN2d−2 ≥ 22NNd+1, thus in this case the number of

Q(f̂i, f̂j) needed to be computed is much less than the total number of pairs of f̂i, f̂j. And the

bigger d is, the more saving one will gain.

Notice that if one is more careful when choosing the maximum to replace a summation (first

on l and then on k), by using some kind of exponential decay of the summation with respect to

the summation index, one should be able to get an estimate of order O(22NNd−1).

For the case m = 0, all basis functions are piecewise constant. It is easy to see that if the

collision kernel is deterministic, i.e. b(z) = 1, then
∫
Iz
ψj1,l1(z)ψj2,l2(z)ψj3,l3(z)π(z) dz = 0 if

and only if two of the functions are the same, and the third one has support properly including

that of the previous two functions. In principle this should lead to a better sparsity result.

The sparsity of the tensor Sijk can be estimated by the same method.

5 Regularity and Accuracy

We prove the regularity of the solution of the Boltzmann equation in the random space, and

the accuracy of the stochastic Galerkin method with sparse grids. These are straightforward

multi-dimensional extension of the corresponding results in [16]. We consider a d-dimensional

random domain Iz, z = (z1, . . . , zd). We also assume that the random collision kernel depends
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linearly on z. This is a reasonable assumption because when one uses the Karhunen-Loeve

expansion to approximate a random field, the resulting dependence on z is linear.

5.1 Regularity in the random space for the classical Boltzmann equa-

tion

In this subsection, we consider the spatially homogeneous classical Boltzmann equation

∂f

∂t
= Q(f, f), (5.1)

subject to random initial data and random collision kernel

f(0,v, z) = f0(v, z), B = B(v,v∗, σ, z), z ∈ Iz.

We define the norms and operators:

‖f(t, ·, z)‖Lp
v

=

(∫
Rd

|f(t,v, z)|p dv

)1/p

, ‖f(t,v, ·)‖L2
z

=

(∫
Iz

f(t,v, z)2π(z) dz

)1/2

,

‖|f(t, ·, ·)‖|k = sup
z∈Iz

 k∑
|l|=0

‖∂lzf(t,v, z)‖2L2
v

1/2

,

Q(g, h)(v) =

∫
Rd

∫
Sd−1

B(v,v∗, ω, z) [g(v′)h(v′∗)− g(v)h(v∗)] dω dv∗,

Q1,j(g, h)(v) =

∫
Rd

∫
Sd−1

∂zjB(v,v∗, ω, z) [g(v′)h(v′∗)− g(v)h(v∗)] dω dv∗.

We first state the following estimates of Q(g, h) and Q1,j(g, h), which are standard results proved

in [18, 7] and its extension to the uncertain case is straightforward:

Lemma 5.1. Assume the collision kernel B depends on z linearly, B and ∂zB are locally

integrable and bounded in z. If g, h ∈ L1
v ∩ L2

v, then

‖Q(g, h)‖L2
v
, ‖Q1,j(g, h)‖L2

v
≤ CB‖g‖L1

v
‖h‖L2

v
, (5.2)

‖Q(g, h)‖L2
v
, ‖Q1,j(g, h)‖L2

v
≤ CB‖g‖L2

v
‖h‖L2

v
, (5.3)

where the constant CB > 0 depends only on B and ∂zjB, j = 1, . . . , d.

Now we state our estimate on ‖|f‖|k.

Theorem 5.2. Assume that B satisfies the assumption in Lemma 5.1, and supz∈Iz ‖f
0‖L1

v
≤M ,

‖|f0‖|k < ∞ for some integer k ≥ 0. Then there exists a constant Ck > 0, depending only on

CB, M , T , and ‖|f0‖|k such that

‖|f‖|k ≤ Ck, for any t ∈ [0, T ] . (5.4)

The proof of the theorem is provided in the Appendix.
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5.2 Accuracy analysis

In this subsection, we will prove the convergence rate of the stochastic Galerkin method

using the previous established regularity. As in section 5.1, we will still restrict to the spatially

homogeneous equation (5.1).

We use the sparse grid space V̂m
N with parameters m,N . For this space, the number of basis

functions K = O((m+ 1)d2NNd−1).

Define the space Hm(Iz) by

‖f‖Hm(Iz) = max ‖∂mzi1 · · · ∂
m
zir
‖L2(Iz),

where the maximum is taken over all subsets {i1, . . . , ir} ⊂ {1, . . . , d}. Using the orthonormal

basis {Φk(z)}, the solution f to (5.1) can be represented as

f(t,v, z) =

∞∑
k=0

f̂k(t,v)Φk(z), where f̂k(t,v) =

∫
Iz

f(t,v, z)Φk(z)π(z) dz . (5.5)

Let PK be the projection operator defined as

PKf(t,v, z) =

K∑
k=0

f̂k(t,v)Φk(z).

Then one has the following projection error estimate (Lemma 3.2 in Guo and Cheng [14] by

taking s = 0, p = q = k = m):

Lemma 5.3. For any f ∈ Hm+1(Iz), N ≥ 1, we have

‖PKf − f‖L2(Iz) ≤ (C(m)N)d 2−N(m+1)‖f‖Hm+1(Iz). (5.6)

This lemma implies that the projection error

‖PKf − f‖L2(Iz) ≤ C(m, d)K−(m+1)(logK)(m+2)(d−1)‖f‖Hm+1(Iz). (5.7)

Define the norms

‖f(t,v, ·)‖Hk
z

=

 k∑
|l|=0

‖∂lzf(t,v, z)‖2L2
z

1/2

, ‖f(t, ·, ·)‖L2
v,z

=

(∫
Iz

∫
Rd

f(t,v, z)2 dvπ(z) dz

)1/2

,

(5.8)

then we have the following:

Lemma 5.4. Assume z obeys the uniform distribution, i.e., z ∈ Iz = [−1, 1]d and π(z) = 1/2d.

If ‖|f0‖|d(m+1) is bounded, then

‖PKf − f‖L2
v,z
≤ C(m, d)K−(m+1)(logK)(m+2)(d−1)‖f‖Hm+1(Iz), (5.9)

where C(m, d) is a constant depending on m and d.

Give the gPC approximation of f :

fK(t,v, z) =

K∑
k=0

fk(t,x,v)Φk(z), (5.10)
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(a) m = 0

N = 3 N = 4 N = 5

d = 1 8,8 16,16 32,32

d = 2 20,64 48,256 112,1024

d = 3 38,512 104,4096 272,32768

d = 4 63,4096 192,65536 552,1048576

(b) m = 1

N = 3 N = 4 N = 5

d = 1 16,16 32,32 64,64

d = 2 80,256 192,1024 448,4096

d = 3 304,4096 832,32768 2176,262144

Table 1: Comparison of number of basis functions: m is the maximal degree of polynomials. d

is the dimension; in each cell, the left number is the number of basis of functions of V̂m
N ; the

right number is the number of basis of functions of Vm
N .

we now define the error function

eK(t,v, z) = PKf(t,v, z)− fK(t,v, z) :=

K∑
k=0

ek(t,v)Φk(z),

where ek = f̂k − fk. Then we have

Theorem 5.5. Assume the random variable z and initial data f0 satisfy the assumption in

Lemma 5.4, and the gPC approximation fK is uniformly bounded in K, then

‖f − fK‖L2
v,z
≤ C(t)

{
C(m, d)K−(m+1)(logK)(m+2)(d−1) + ‖eK(0)‖L2

v,z

}
.

The proof of Lemma 5.4 and Theorem 5.5 can be proved in the same way as Section 4.2 in

Hu and Jin [16], in view of Lemma 5.3. We omit the details.

6 Numerical results

In this section we give some numerical results of the stochastic Galerkin method with sparse

grid technique. We first demonstrate the efficiency of the sparse grid basis, and then show its

application to the Boltzmann equation with uncertainty.

6.1 The sparse grid basis

6.1.1 Number of basis functions

We first give a comparison of number of basis functions between our sparse grid function

space V̂m
N and the tensor grid basis Vm

N . The result is shown in Table 1. It is clear that the

sparse grid technique saves a great number of basis functions, especially in high dimensional

random spaces.

6.1.2 Efficiency of the sparse grid function space

We give a comparison of the L2 approximation error of V̂m
N and Vm

N . For each random

dimension d = 2, 3, 4 we pick a smooth test function as follows:

f(z) =
1

2πK(z)2
exp

(
− 1

2K(z)

)(
2K(z)− 1 +

1−K(z)

2K(z)

)
, (6.1)

11
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Figure 1: Comparison of approximation error of both sparse grid and full grid for d = 2, 3, 4.

For d = 4 we do not give the result by tensor grid because the number of basis functions is too

large.

where

Kd=2(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2)),

Kd=3(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2) + 0.1 cos(z3)),

Kd=4(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2) + 0.1 cos(z3) + 0.1 cos(2z4)).

(6.2)

We use the function spaces V̂m
N and Vm

N with different m, N values to approximate these

functions, and compute their relative L2 error
‖f−PKf‖L2

‖f‖L2
, where PK is the projection operator

onto the corresponding function space. The result is shown in Figure 1. It can be seen that the

sparse grid method performs much better than the tensor grid method.
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Figure 2: Sparsity of Sijk and the number of Q(f̂i, f̂j) needed to compute, d = 2, 3, 4, m = 0.

6.1.3 Sparsity of Sijk

We give a test of the sparsity of the tensor Sijk, as well as the number of Q(f̂i, f̂j) needed

to compute. We take a random collision kernel b(z) = 1 + 0.2z1. For simplicity we only show

the results with m = 0, since the sparsity of Sijk with larger m is similar. The result is shown

in Figure 2. One can clearly see an exponential decay of the percentage of nonzeros in Sijk, as

well as the percentage of Q(f̂i, f̂j) needed to compute, as N or d increase. This is even better

than what we have proved.

To further demonstrate the sparsity of Sijk we give a graph of nonzero elements of Sijk for

m = 0, N = 4, d = 3, shown in Figure 3. The points in the first graph represent nonzero elements

in Sijk. The second graph is the projection of the first graph onto i, j coordinates, and the points

in it represent those Q(f̂i, f̂j) needed to compute.

6.2 Application to the Boltzmann equation with uncertainty

In this subsection, the velocity space is assumed to be two-dimensional and its discretization

is always given by Nv = 32. The time discretization is given by 0.8 times the CFL condition for

spatial inhomogeneous problems.

6.2.1 Accuracy of the approximation of the collision operator

We first check the accuracy of the collision operator Q(f, f) computed by the sparse grid

stochastic Galerkin method. The function f is given by the Bobylev-Krook-Wu [6, 17] solution

with uncertainty:

f(v, z) =
1

2πK(z)2
exp

(
− |v|

2

2K(z)

)(
2K(z)− 1 +

1−K(z)

2K(z)
v2

)
, (6.3)
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Figure 3: Demonstration of sparsity of Sijk: m = 0, N = 4, d = 3.

where

Kd=2(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2)),

Kd=3(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2) + 0.1 cos(z3)),

Kd=4(z) = 1− 0.5(0.5 + 0.1 sin(z1) + 0.1 sin(2z2) + 0.1 cos(z3) + 0.1 cos(2z4)).

(6.4)

For this f , Q(f, f) with collision kernel B = 1
2π is given explicitly by

Q(f, f)(v, z) =

((
− 2

K(z)
+
|v|2

2K(z)2

)
f

+
1

2πK(z)2
exp

(
− |v|

2

2K(z)

)(
2− 1

2K(z)2
|v|2

))
1−K(z)

8
.

(6.5)

The numerical solution is given by

Q̃(f, f)(v, z) =

K∑
k=0

Qk(v)Φk(z), where Qk(v) =

K∑
i,j=0

SijkQ(f̂i, f̂j)(v).

We compare the relative L2 error for d = 2, 3, 4 and sparse grid V̂m
N with different m,N . The

result is shown in Figure 4. One can clearly see the error is a little worse than O(K−(m+1)), and

it becomes a little worse as d increases. This is caused by the logK factor in the error estimate.

6.2.2 The homogeneous Boltzmann equation with uncertainty on the collision ker-

nel

We solve the homogeneous Boltzmann equation with deterministic initial data and a random

collision kernel. We take the dimension of the random space d = 2, 3, and the collision kernels

are

b(z) = 1 + 0.2z1 + 0.1z2, d = 2,

b(z) = 1 + 0.2z1 + 0.1z2 + 0.07z3, d = 3.
(6.6)

14



10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

number of basis

re
la

tiv
e

 L
2
 e

rr
o

r

 

 
d=2,m=0
d=2,m=1
d=3,m=0
d=3,m=1
d=4,m=0

Figure 4: Accuracy of the approximation of the collision operator for d = 2, 3, 4.

The initial data is the BKW solution

f0(v, z) =
1

π
exp(−|v|2)

|v|2

2
, (6.7)

and the exact solution is given by

f(t,v, z) =
1

2πK2
exp

(
−|v|

2

2K

)(
2K − 1 +

1−K
2K

|v|2
)
, (6.8)

with

K(t, z) = 1− exp(−b(z)t/8)/2. (6.9)

We solve this equation by the sparse grid sG method with m = 0, time step ∆t = 0.01 and final

time t = 1, and check the relative L2 error with the exact solution. The result is shown in Figure

5. The phenomenon is similar to the previous accuracy test.

6.2.3 The Boltzmann equation with random initial data

We test our method on the (inhomogeneous) Boltzmann equation with uncertainty. The

random space is 4-dimensional. We take the x-domain to be [0, 1] with the periodic boundary

condition. We use the following random initial data to mimic the Karhunen-Loeve expansion

ρ0 =
1

3
(2 + sin(2πx) + sin(4πx)z1/2 + sin(6πx)z2/4 + sin(8πx)z3/6 + sin(10πx)z4/7) ,

u0 = (0.2, 0),

T0 =
1

4
(3 + cos(2πx) + cos(4πx)z1/2 + cos(6πx)z2/4 + cos(8πx)z3/6 + cos(10πx)z4/7) ,

f =
ρ0

4πT0

(
exp(−|v − u0|2

2T0
) + exp(−|v + u0|2

2T0
)

)
.

(6.10)

The x-domain is discretized into Nx = 50 mesh points, and we compare the solution by the

sparse grid stochastic Galerkin method with m = 0, N = 3 and a stochastic collocation method
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Figure 5: The homogeneous Boltzmann equation with a random collision kernel: accuracy result.

m = 0, ∆t = 0.01, t = 1.

with full grid in random space at time t = 0.1. The collocation method is implemented by

solving the deterministic problem at points of the form z = (z1, . . . , zd) where each zi is one

of the Mz = 8 Gauss-Legendre quadrature points (thus one needs to solve Md
z deterministic

problems). And then the mean and standard deviation are computed by numerical quadrature.

The comparison result is shown in Figure 6. We see the results by the two methods agree well.

6.2.4 The Boltzmann equation with randomness on initial data, boundary data,

and collision kernel

We finally solve the inhomogeneous Boltzmann equation with uncertainty on initial data,

boundary data, and collision kernel. The random domain is taken to be 6-dimensional. We take

the initial data to be the equilibrium with

ρ(x, z) = 1, u(x, z) = 0, T = 1+0.5(1+0.2z2) exp(−100(1+0.1z3)(x−0.4−0.01z1)2), (6.11)

and the boundary data is given by the Maxwellian boundary condition with random parameters

Tw = 1 + 0.2z4, α = 0.5 + 0.3z5. (6.12)

The collision kernel is given by

b(z) = 1 + 0.2z6. (6.13)

The spatial discretization is given by Nx = 100 to better capture the details near the boundary.

We compare the result by the stochastic Galerkin method with sparse grid technique with the

stochastic collocation method with full grid at time t = 0.04. The Galerkin method has param-

eters m = 0, N = 3, and the collocation method is as described in the previous numerical result

with Mz = 4 collocation points in each dimension. The result is shown in Figure 7. One can see

that the two results agree well.
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Figure 6: The Boltzmann equation with random initial data. Nx = 50, t = 0.1. Curve:

collocation with Mz = 8; asterisks: Galerkin with m = 0, N = 3. Left column: mean of density,

first component of bulk velocity, and temperature. Right column: standard deviation of density,

first component of bulk velocity, and temperature.
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Figure 7: The Boltzmann equation with randomness on initial data, boundary data, and collision

kernel (d = 6). Nx = 100, t = 0.04. Curve: collocation with Mz = 4; asterisks: Galerkin with

m = 0, N = 3. Left column: mean of density, first component of bulk velocity, and temperature.

Right column: standard deviation of density, first component of bulk velocity, and temperature.
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7 Conclusion

In this paper we developed a sparse grid based stochastic Galerkin method for the Boltzmann

equation with uncertainty. The uncertainty could come from initial data, boundary data, and

collision kernel. This method enables us to quantify the uncertainty from truly high dimen-

sional random inputs, which is previously infeasible using the global gPC basis. We proved and

numerically demonstrated the sparsity of the basis related coefficient, Sijk, which allows us to

dramatically accelerate the computation of the collision operator under the Galerkin projection.

Regularity of the solution of the Boltzmann equation in the random space and an accuracy result

of the stochastic Galerkin method are proved.

Many related problems are still open, for example, asymptotic-preserving schemes [9] for the

Boltzmann equation with uncertainty, adaptive mesh techniques to capture discontinuities in

the random space, quantification of nonlinear uncertainties on the collision kernel, etc.

Appendix: Proof of Theorem 5.2

Proof. First, from the conservation property of Q, one has

‖f(t, ·, z)‖L1
v

= ‖f0(·, z)‖L1
v
≤M .

Then we use mathematical induction on k. For k = 0, multiplying (5.1) by f and integrating on

v, by the Cauchy-Schwarz inequality and (5.2), one obtains

1

2
∂t

∫
Rd

f2 dv =

∫
Rd

fQ(f, f) dv ≤ ‖f‖L2
v
‖Q(f, f)‖L2

v
≤ CB‖f‖L1

v
‖f‖2L2

v
≤ CBM‖f‖2L2

v
.

Now Gronwall’s inequality implies that there is a positive constant C0 such that (5.4) is true for

k = 0.

Now for some k ≥ 0 assume (5.4) holds. Take any multi-index j with |j| = k+ 1. Taking j-th

derivative of z on (5.1) gives

∂t∂
j
zf =

j∑
l=0

(
j

l

)
Q(∂lzf, ∂

j−l
z f) +

d∑
m=1

jm

j−1m∑
l=0

(
j− 1m

l

)
Q1,m(∂lzf, ∂

j−1m−l
z f), (A.1)

where we used the bilinearity of the collision operator and the assumption that B is linear in z.

Multiplying (A.1) by ∂jzf and integrating over v yields

1

2
∂t

∫
Rd

(∂jzf)2 dv

≤
j∑

l=0

(
j

l

)
‖∂jzf‖L2

v
‖Q(∂lzf, ∂

j−l
z f)‖L2

v
+

d∑
m=1

jm

j−1m∑
l=0

(
j− 1m

l

)
‖∂jzf‖L2

v
‖Q1,m(∂lzf, ∂

j−1m−l
z f)‖L2

v

≤
j∑

l=0

(
j

l

)
CB‖∂jzf‖L2

v
‖∂lzf‖L2

v
‖∂j−lz f‖L2

v
+

d∑
m=1

jm

j−1m∑
l=0

(
j− 1m

l

)
CB‖∂jzf‖L2

v
‖∂lzf‖L2

v
‖∂j−1m−l

z f‖L2
v

≤ CBC
2
k‖∂jzf‖L2

v

∑
0≤l≤j,l6=0,j

(
j

l

)
+ 2CBC0‖∂jzf‖2L2

v
+ CBC

2
k‖∂jzf‖L2

v

d∑
m=1

jm

j−1m∑
l=0

(
j− 1m

l

)
= (2k+1 − 2)CBC

2
k‖∂jzf‖L2

v
+ 2CBC0‖∂jzf‖2L2

v
+ 2k(k + 1)CBC

2
k‖∂jzf‖L2

v
. (A.2)
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In the first inequality we used the Cauchy-Schwarz inequality, and in the second inequality we

used (5.3). In the third inequality the induction assumption is used for the second sum, since the

indexes l and j−1m− l appeared there have order less than or equal to k. Every term in the first

sum can be treated similarly except terms corresponding to the cases of l = 0 and l = j, which

are treated separately. In the final equality, we used the identity
∑L
l=0

(
L
l

)
= (1 + 1)L = 2L.

Then we apply Gronwall’s inequality to (A.2) and get the control

sup
z∈Iz

(
‖∂jzf(t,v, z)‖2L2

v

)1/2
≤ Ck+1,

with a positive constant Ck+1. Sum over all j with |j| = k + 1 we get (5.4) for k + 1. This

completes the mathematical induction and the proof.
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