KI-Net:
Kinetic description of emerging challenges
in multiscale problems of natural sciences
An NSF Research Network in Mathematical Sciences

Conference Announcement

Collective dynamics in Biological and Social Systems
November 19-22, 2015
Department of Mathematics
Duke University

Organizers
Alina Chertock
Jian-Guo Liu
Jianfeng Lu

Confirmed Participants
Thomas Banks
Jacob Bedrossian
José A. Carrillo
Pierre Degond
Francis Filbet
Gregory Forest
Jingwei Hu
Pierre-Emmanuel Jabin
Alexander Kurganov
C. Dave Levermore
Doron Levy
Maria Lukacova
Mauro Maggioni
Peter A. Markowich
Nader Masmoudi
Sébastien Motsch
Benoît Perthame
Nancy Rodriguez
Martin Short
Dejan Slepcev
Yi Sun
Qi Wang
Li Wang
Jinhuan Wang
Xu Yang

North Carolina State University
University of Maryland
Imperial College London
Université Claude Bernard de Lyon
University of North Carolina
Purdue University
University of Maryland
Tulane University
University of Maryland
University of Maryland
University of Mainz
Duke University
University of Cambridge
New York University
Arizona State University
Université Pierre et Marie Curie
University of North Carolina
Georgia Tech
Carnegie Mellon University
University of South Carolina
University of South Carolina
UCLA
Liaoning University
UCSB

Scientific Background
The emergence of collective dynamics is a fascinating phenomenon which arises in different contexts of biological and social systems. Many such systems are modeled by transport equations such as Keller-Segel-based models for chemotactic phenomenon and Cucker-Smale model for flocking. Due to the complexity of these phenomena, transport equations might contain new mathematical difficulties (e.g. non-conservative system, non-hyperbolic PDE) with many open questions for both numerical and analytical studies. Moreover, many of these systems are multiscale phenomenon (e.g. from individual cells to functional organs) leading to both microscopic and macroscopic descriptions. Kinetic equations play a key role in linking these scales.

Goals
This workshop is a followup of the meeting held at NCSU in 2013. It aims at bringing together researchers with diverse expertise on collective dynamics in biological and social systems, from experimentalists to applied mathematicians. Our goal is to stimulate interdisciplinary discussions on new developments, with a particular focus on comparing models, experimental data and numerical studies. A second line of discussions focuses on the new mathematical challenges raised by these models, e.g. link between micro and macro descriptions, complex traffic and network optimization and pattern formation.

A limited number of openings are available.
To apply, complete the online application before September 15, 2015.
For more information and to apply: www.ki-net.umd.edu

Partial funding is also provided by: