Suppression of blow-up in Chemotaxis through fluid flow

Siming He
Joint work with: Jacob Bedrossian, Eitan Tadmor

1Department of Mathematics
Center of Scientific Computing and Mathematical Modelling,
University of Maryland, College Park
2Department of Mathematics, Duke University

October 24, 2018

YRW 2018, University of Maryland, College Park
1. Introduction

2. Suppression of blow-up through mixing

3. Suppression of blow-up through fast splitting scenario

4. Summary
Introduction

- **Chemotaxis** is the movement of cells in response to chemical stimulus.

Figure: Chemotaxis

We focus on the specific case when bacteria emit chemical signals to attract others of the same kind. (E.coli)
Introduction

- **Chemotaxis** is the movement of cells in response to chemical stimulus.

Figure: Chemotaxis

We focus on the specific case when bacteria emit chemical signals to attract others of the same kind. (E.coli)

- **The Patlak-Keller-Segel (PKS) equation** is designed to analyse this phenomena.

1 //www.youtube.com/watch?v=lgUXnbUkgOQ
Consider the two-dimensional PKS equation with additional advection, which models the chemotaxis in moving fluid:

\[
\begin{cases}
\partial_t n + \nabla \cdot (n \nabla c) + Au \cdot \nabla n = \Delta n, \\
c = (-\Delta)^{-1} n,
\end{cases}
\]

Here \(n \) and \(c \) denote the bacteria density and the chemo-attractant density, respectively. The divergence free vector field \(u \) represents the underlying fluid velocity. \(A \in \mathbb{R}_+ \) denotes its magnitude. If \(Au \equiv 0 \), the equation is the classical PKS equation.
Consider the two-dimensional PKS equation with additional advection, which models the chemotaxis in moving fluid:

\[
\begin{aligned}
\partial_t n + \nabla \cdot (n \nabla c) + Au \cdot \nabla n &= \Delta n, \\
c &= (-\Delta)^{-1} n, \\
n(x, y, t = 0) &= n_{in}(x, y).
\end{aligned}
\]

Here \(n \) and \(c \) denote the bacteria density and the chemo-attractant density, respectively. The divergence free vector field \(u \) represents the underlying fluid velocity. \(A \in \mathbb{R}_+ \) denotes its magnitude. If \(Au \equiv 0 \), the equation is the classical PKS equation.

The equation \((mPKS)\) is a nonlocal equation.
It is well known that the classical PKS equation \((Au \equiv 0)\) is \(L^1\) critical and exhibits blow-up phenomena on \(\mathbb{R}^2\):

- If \(||n_{in}||_1 < 8\pi\), the diffusion dominates the aggregation, and we have global well-posedness of solutions. ([5], [6])
- If \(||n_{in}||_1 > 8\pi\), the aggregation dominates the diffusion, which yields finite time blow-up. Dirac mass appears.
- If \(||n_{in}||_1 = 8\pi\), the solution will form Dirac mass when time approaches infinity. ([3])
It is well known that the classical PKS equation \((Au \equiv 0)\) is \(L^1\) critical and exhibits blow-up phenomena on \(\mathbb{R}^2\):

- If \(\|n_{in}\|_1 < 8\pi\), the diffusion dominates the aggregation, and we have global well-posedness of solutions. ([5],[6])

If \(\|n_{in}\|_1 > 8\pi\), the aggregation dominates the diffusion, which yields finite time blow-up. Dirac mass appears.

If \(\|n_{in}\|_1 = 8\pi\), the solution will form Dirac mass when time approaches infinity. ([3])
Theorem

Consider the PKS equation (mPKS) subject to C^∞ initial data. If $Au = 0$, $M := \|n_{in}\|_1 > 8\pi$ and $\int n_{in}|x|^2 dx < \infty$, the solution n blows up in finite time.

Proof.
Theorem

Consider the PKS equation (mPKS) subject to C^∞ initial data. If $Au = 0$, $M := \|n_{in}\|_1 > 8\pi$ and $\int n_{in}|x|^2 dx < \infty$, the solution n blows up in finite time.

Proof.

- It is straightforward to get the evolution equation for second moment:

$$ \frac{d}{dt} \int_{\mathbb{R}^2} |x|^2 n(x, t) dx = 4M \left(1 - \frac{M}{8\pi} \right) $$
Theorem

Consider the PKS equation (mPKS) subject to C^∞ initial data. If $Au = 0$, $M := \|n_{in}\|_1 > 8\pi$ and $\int n_{in}|x|^2 dx < \infty$, the solution n blows up in finite time.

Proof.

- It is straightforward to get the evolution equation for second moment:

$$\frac{d}{dt} \int_{\mathbb{R}^2} |x|^2 n(x, t) dx = 4M \left(1 - \frac{M}{8\pi}\right)$$

- If the $M > 8\pi$, the second moment decreases at a constant rate. Suppose the solution remains smooth for all time, the second moment will reach zero at a finite time T^*, which is a contradiction.
Introduction: Goal

- By adding an extra fluid transport term in the classical PKS equation, we hope to answer the following question:

Is it possible to find simple vector fields Au such that for any smooth enough initial data, the solutions n do not blow up for any finite time?
By adding an extra fluid transport term in the classical PKS equation, we hope to answer the following question:

Is it possible to find **simple** vector fields Au such that for any smooth enough initial data, the solutions n do not blow up for any finite time?

In [10], Alexander Kiselev and Xiaoqian Xu showed that there exist vector fields capable of suppressing the chemotactic blow-up of the equation. However, the vector fields they used are **complicated**.
Introduction: Goal

- By adding an extra fluid transport term in the classical PKS equation, we hope to answer the following question:

 Is it possible to find simple vector fields $A u$ such that for any smooth enough initial data, the solutions n do not blow up for any finite time?

- In [10], Alexander Kiselev and Xiaoqian Xu showed that there exist vector fields capable of suppressing the chemotactic blow-up of the equation. However, the vector fields they used are complicated.

Idea of the proof: Apply L^2 energy estimate to obtain:

$$\frac{d}{dt} ||n||^2_2 \leq -||\nabla n||^2_2 + C||n||^4_{L^2}.$$

Improved by mixing flow u.
Introduction: Goal

By adding an extra fluid transport term in the classical PKS equation, we hope to answer the following question:

Is it possible to find simple vector fields A_u such that for any smooth enough initial data, the solutions n do not blow up for any finite time?

In [10], Alexander Kiselev and Xiaoqian Xu showed that there exist vector fields capable of suppressing the chemotactic blow-up of the equation. However, the vector fields they used are complicated.

Idea of the proof: Apply L^2 energy estimate to obtain:

$$\frac{d}{dt} \|n\|_2^2 \leq -\|\nabla n\|_2^2 + C\|n\|_{L^2}^4.$$

Improved by mixing flow u.

Since mixing flows enhance the negative term, the L^2 norm of n is bounded for all time and suppression of blow-up follows.
By adding an extra fluid transport term in the classical PKS equation, we hope to answer the following question:

Is it possible to find simple vector fields Au such that for any smooth enough initial data, the solutions n do not blow up for any finite time?

In [10], Alexander Kiselev and Xiaoqian Xu showed that there exist vector fields capable of suppressing the chemotactic blow-up of the equation. However, the vector fields they used are complicated.

Recall the equation

\[
\begin{align*}
\partial_t n + \nabla \cdot (n \nabla c) + Au \cdot \nabla n &= \Delta n, \\
-\Delta c &= n, \\
n(x, y, t = 0) &= n_{in}(x, y).
\end{align*}
\]

(mPKS)
Theorem ([2] 2D case, Jacob Bedrossian and H.)

Consider the equation (mPKS) on a torus \mathbb{T}^2. Let $u(x, y) = (u(y), 0)$ be smooth non-degenerate shear flow and let $n_{in} \in C^\infty(\mathbb{T}^2)$ be arbitrary. There exists an A_0 such that if $A > A_0$, then the solution to (mPKS) is global in time.

Figure: Nondegenerate shear flow
Theorem (3D case, Jacob Bedrossian and H.)

(a) Let $\mathbf{u} = (u(y_1), 0, 0)$ be smooth non-degenerate shear flow and let $n_{in} \in C^\infty(\mathbb{T}^3)$ be arbitrary such that $\|n_{in}\|_{L^1} < 8\pi$ and $\min_{x \in \mathbb{T}^3} n_{in}(x) > 0$. Then there exists an A_0 such that if $A > A_0$ then the solution to (mPKS) is global in time.

(b) Suppose $\mathbf{u} = (u(y_1), 0, 0)$ is smooth non-degenerate shear flow. Let $n_{in} \in C^\infty(\mathbb{T} \times \mathbb{R}^2)$ be arbitrary such that $\|n_{in}\|_{L^1} < 8\pi$ and $\int n_{in}(x, y) |y|^2 \, dxdy < \infty$. Then, there exists an A_0, such that if $A > A_0$ then the solution to (mPKS) is global in time.
Theorem (3D case, Jacob Bedrossian and H.)

(a) Let \(u = (u(y_1), 0, 0) \) be smooth non-degenerate shear flow and let \(n_{in} \in C^\infty(T^3) \) be arbitrary such that \(\|n_{in}\|_{L^1} < 8\pi \) and \(\min_{x \in T^3} n_{in}(x) > 0 \). Then there exists an \(A_0 \) such that if \(A > A_0 \) then the solution to (mPKS) is global in time.

(b) Suppose \(u = (u(y_1), 0, 0) \) is smooth non-degenerate shear flow. Let \(n_{in} \in C^\infty(T \times \mathbb{R}^2) \) be arbitrary such that \(\|n_{in}\|_{L^1} < 8\pi \) and \(\int n_{in}(x, y) |y|^2 \, dx \, dy < \infty \). Then, there exists an \(A_0 \), such that if \(A > A_0 \) then the solution to (mPKS) is global in time.

It is clear that \(\|n_{in}\|_1 < 8\pi \) is essential in 3D. Indeed, consider any solution to the 3D problem which is constant in the \(x \) direction: \(n(t, x, y_1, y_2) = n(t, y_1, y_2) \). This solution will solve (mPKS) on \(T^2 \) with \(A = 0 \) and hence the \(8\pi \) critical mass will still apply.
Idea of the proof: 1. A Different Time Scale

- We can divide both side of (mPKS) by A and rescale in time to get the following equation:

$$
\partial_t n + u(y) \partial_x n = A^{-1} \Delta n - A^{-1} \nabla \cdot (n \nabla (-\Delta)^{-1} n).
$$

(1)

When A is large, equation (1) can be regarded as a perturbation to the passive scalar equation with small viscosity A^{-1}:

$$
\partial_t \rho + u(y) \partial_x \rho = A^{-1} \Delta \rho.
$$

(PS)
Idea of the proof: 1. A Different Time Scale

We can divide both side of (mPKS) by A and rescale in time to get the following equation:

$$\partial_t n + u(y)\partial_x n = A^{-1}\Delta n - A^{-1}\nabla \cdot (n \nabla (-\Delta)^{-1} n).$$ \hspace{3.5cm} (1)

When A is large, equation (1) can be regarded as a perturbation to the passive scalar equation with small viscosity A^{-1}:

$$\partial_t \rho + u(y)\partial_x \rho = A^{-1}\Delta \rho.$$ \hspace{3.5cm} (PS)

Direct energy method yields that the solution decay like $e^{-A^{-1}t}$. This is not enough for our analysis. To prove suppression of blow-up, we need to study the enhanced diffusion effect of the passive scalar equation (PS).
When stirring a cup of coffee, we see that the information in the angular direction diffuses faster than the one in the radial direction does. This is the enhanced diffusion effect of shear flow.
Idea of the proof: 2. Passive Scalar Equation Revisited

- When stirring a cup of coffee, we see that the information in the angular direction diffuses faster than the one in the radial direction does. This is the enhanced diffusion effect of shear flow.

Figure: Stirring a cup of coffee

\[n_0(y) = \frac{1}{2\pi} \int_T n(x,y) \, dx \]
\[n_\neq = n - n_0 \]
In the paper [1], Jacob Bedrossian and Michele Coti Zelati proved that if $u(y)$ is nondegenerate shear flow, the x dependent part of the solution $\rho \neq 0$ to the passive scalar equation satisfies the estimate

$$\|\rho(t)\|_{L^2}^2 \lesssim \|\rho(0)\|_{H^1}^2 \exp\left\{-\frac{ct}{A^{1/2} \log A}\right\}. \tag{2}$$
Idea of the proof: 2. Passive Scalar Equation Revisited

- In the paper [1], Jacob Bedrossian and Michele Coti Zelati proved that if $u(y)$ is nondegenerate shear flow, the x dependent part of the solution $\rho \neq$ to the passive scalar equation satisfies the estimate

$$\|\rho \neq (t)\|_{L^2}^2 \lesssim \|\rho \neq (0)\|_{H^1}^2 \exp\left\{ -\frac{ct}{A^{1/2} \log A} \right\}.$$ \hspace{1cm} (2)

- Note that if A is large, the decay rate ($\approx A^{-1/2}$) is larger than the heat decay rate (A^{-1}). This is the enhanced diffusion effect of shear flow.
Idea of the proof: 2. Passive Scalar Equation Revisited

- In the paper [1], Jacob Bedrossian and Michele Coti Zelati proved that if \(u(y) \) is nondegenerate shear flow, the \(x \) dependent part of the solution \(\rho\neq \) to the passive scalar equation satisfies the estimate

\[
||\rho\neq(t)||_{L^2}^2 \lesssim ||\rho\neq(0)||_{H^1}^2 \exp\left\{ -\frac{ct}{A^{1/2} \log A} \right\}.
\]

(2)

- Note that if \(A \) is large, the decay rate (\(\approx A^{-1/2} \)) is larger than the heat decay rate (\(A^{-1} \)). This is the enhanced diffusion effect of shear flow.

- The proof is based on analyzing the hypocoercivity functional introduced in C. Villani’s work [11],

\[
\Phi[\rho\neq] = ||\rho\neq||_{L^2}^2 + ||\sqrt{\alpha}(\partial_x)\partial_y \rho\neq||_{L^2}^2
+ 2\langle \beta u' \partial_x \rho\neq, \partial_y \rho\neq \rangle + ||\sqrt{\gamma}(\partial_x)u' \partial_x \rho\neq||_{L^2}^2,
\]

(3)

and showing that \(\Phi[\rho\neq(t)] \leq \Phi[\rho\neq(0)] \exp\left\{ -c \frac{t}{A^{1/2}} \right\} \).
Idea Of The Proof: 3. Energy Estimates

- In order to apply the enhanced diffusion estimate of the passive scalar equation, it is natural to separate the solution to the PKS equation (1) into x independent part and x dependent part:

$$
\partial_t n_0 = \frac{1}{A} \Delta n_0 + \frac{1}{A} \nabla_y \cdot (\nabla_y c_0 n_0) + \text{Interaction},
$$

$$
\partial_t n_\neq + u(y) \partial_x n_\neq = \frac{1}{A} \Delta n_\neq + \text{Interaction}.
$$

$$
n_0(y) = \frac{1}{2\pi} \int_{\mathbb{T}} n(x, y) dx, \quad n_\neq = n - n_0.
$$
In order to apply the enhanced diffusion estimate of the passive scalar equation, it is natural to separate the solution to the PKS equation (1) into \(x \) independent part and \(x \) dependent part:

\[
\begin{align*}
\partial_t n_0 &= \frac{1}{A} \Delta n_0 + \frac{1}{A} \nabla_y \cdot (\nabla_y c_0 n_0) + \text{Interaction}, \\
\partial_t n_\neq + u(y) \partial_x n_\neq &= \frac{1}{A} \Delta n_\neq + \text{Interaction}.
\end{align*}
\]

Since the dimension of the \(n_0 \) equation is one dimension lower than the full problem, we can use the classical PKS technique to show that the \(H^1 \) norm of the solution is bounded uniformly in time. For the second equation, we use the functional \(\Phi \) to prove an enhanced diffusion estimate \(\Phi[n_\neq] \leq \Phi[n_\neq(0)]e^{-\frac{ct}{A^{1/2}}} \).
Idea Of The Proof: 2D case

- Nonzero modes: By taking the time derivative of $\Phi[n\neq]$,
we obtain:

$$
\frac{d}{dt} \Phi[n\neq] = - \frac{c}{A^{1/2}} \|n\neq\|_2^2 - \frac{1}{A} \|\nabla n\neq\|_2^2 - \ldots + \frac{1}{A} \langle \nabla n\neq, \nabla c_0 n\neq \rangle + \ldots
$$

$$
\leq - \frac{c}{A^{1/2}} \|n\neq\|_2^2 - \frac{1}{2A} \|\nabla n\neq\|_2^2 + \ldots + \frac{1}{2A^{1/2}} \frac{\|\nabla c_0\|_\infty^2}{A^{1/2}} \|n\neq\|_2^2
$$

By choosing A large, we can absorb the last term in the first term.
Do the same for the other terms, we can estimate $\frac{d}{dt} \Phi$.

Nonzero modes: By taking the time derivative of $\Phi[n\neq]$, we obtain:

$$
\frac{d}{dt}\Phi[n\neq] = - \frac{c}{A^{1/2}} ||n\neq||_2^2 - \frac{1}{A} ||\nabla n\neq||_2^2 - \ldots + \frac{1}{A} \langle \nabla n\neq, \nabla c_0 n\neq \rangle + \ldots
$$

$$
\leq - \frac{c}{A^{1/2}} ||n\neq||_2^2 - \frac{1}{2A} ||\nabla n\neq||_2^2 + \ldots + \frac{1}{2A^{1/2}} \frac{||\nabla c_0||_\infty^2}{A^{1/2}} ||n\neq||_2^2
$$

By choosing A large, we can absorb the last term in the first term. Do the same for the other terms, we can estimate $\frac{d}{dt}\Phi$.

Zero mode: standard energy estimate.
Idea Of The Proof: 2D case

- Nonzero modes: By taking the time derivative of $\Phi[n_\neq]$, we obtain:

$$
\frac{d}{dt} \Phi[n_\neq] = - \frac{c}{A^{1/2}} \|n_\neq\|^2 - \frac{1}{A} \|\nabla n_\neq\|^2 - \cdots + \frac{1}{A} \langle \nabla n_\neq, \nabla c_0 n_\neq \rangle + \cdots
$$

$$
\leq - \frac{c}{A^{1/2}} \|n_\neq\|^2 - \frac{1}{2A} \|\nabla n_\neq\|^2 + \cdots + \frac{1}{2A^{1/2}} \frac{\|\nabla c_0\|_\infty^2}{A^{1/2}} \|n_\neq\|^2
$$

By choosing A large, we can absorb the last term in the first term. Do the same for the other terms, we can estimate $\frac{d}{dt} \Phi$.

- Zero mode: standard energy estimate.
- For the three-dimensional case, the n_0 equation becomes critical. By a modified free energy approach, we can still propagate the regularity of the solutions.
Now we consider the equation (mPKS) on the plane \mathbb{R}^2. There are two main differences from the (mPKS) on the Torus. We summarize them as follows:
Now we consider the equation (mPKS) on the plane \mathbb{R}^2. There are two main differences from the (mPKS) on the Torus. We summarize them as follows:

- First, the shear flow induced enhanced diffusion effect on \mathbb{R}^2 can be extremely slow. This poses difficulties when we adapt the previous approach to the (mPKS) on the plane.
Now we consider the equation (mPKS) on the plane \mathbb{R}^2. There are two main differences from the (mPKS) on the Torus. We summarize them as follows:

First, the shear flow induced enhanced diffusion effect on \mathbb{R}^2 can be extremely slow. This poses difficulties when we adapt the previous approach to the (mPKS) on the plane.

Second, the plane \mathbb{R}^2 is unbounded, whereas the Torus is compact. Therefore, we have the freedom to send masses to infinity on the plane \mathbb{R}^2.

Siming He (Duke University)
Suppression of blow-up in Chemotaxis through fast splitting scenario
October 24, 2018 15 / 30
Now we exploit yet another mechanism to suppress the blow-up on \mathbb{R}^2, which we called the *fast splitting scenario*.

2Picture from 'One-dimensional model equations for hyperbolic fluid flow', Tam Do, V. Hoang, Maria Radosz, Xiaoqian Xu
Now we exploit yet another mechanism to suppress the blow-up on \mathbb{R}^2, which we called the *fast splitting scenario*. The flow we considered is the Hyperbolic flow $u(x_1, x_2) = A(-x_1, x_2)$. This flow splits cell density into upper and lower part.
Now we exploit yet another mechanism to suppress the blow-up on \mathbb{R}^2, which we called the *fast splitting scenario*.

The flow we considered is the Hyperbolic flow $u(x_1, x_2) = A(-x_1, x_2)$. This flow splits cell density into upper and lower part.

Figure: Hyperbolic flow.

2Picture from 'One-dimensional model equations for hyperbolic fluid flow', Tam Do, V. Hoang, Maria Radosz, Xiaoqian Xu
We assume the cell density is symmetric about the x_1 axis, so we can only consider the solution in the upper half plane (\mathbb{R}^2_+). We introduce the following probabilistic quantities:

- **Averaged distance to the x_1 axis (upper half plane):**
 $$y^+ := \frac{1}{M^+} \int_{x_2 \geq 0} n(x, t) x_2 \, dx,$$

- **Variation (upper half plane):**
 $$V^+ := \frac{1}{M^+} \int_{x_2 \geq 0} |n(x, t) - y^+|^2 \, dx,$$

We introduce the dimensionless quantity

$$\eta := \sqrt{\frac{V^+}{M^+}} \approx \text{Average distance to the boundary} / \text{Standard deviation}.$$
Basic Setup

We assume the cell density is symmetric about the x_1 axis, so we can only consider the solution in the upper half plane (\mathbb{R}^2_+). We introduce the following probabilistic quantities:

- Averaged distance to the x_1 axis (upper half plane):

$$y_+(t) := \frac{1}{M_+} \int_{x_2 \geq 0} n(x, t)x_2 \, dx, \quad M_+ := \int_{x_2 \geq 0} n(x, t) \, dx \equiv \frac{M}{2}.$$
Basic Setup

We assume the cell density is symmetric about the x_1 axis, so we can only consider the solution in the upper half plane (\mathbb{R}^2_+). We introduce the following probabilistic quantities:

- Averaged distance to the x_1 axis (upper half plane):

$$y_+(t) := \frac{1}{M_+} \int_{x_2 \geq 0} n(x, t)x_2 \, dx, \quad M_+ := \int_{x_2 \geq 0} n(x, t) \, dx \equiv \frac{M}{2}. $$

- Variation (upper half plane):

$$\frac{V_+(t)}{M_+} := \frac{1}{M_+} \int_{x_2 \geq 0} n(x, t)|x_2 - y_+|^2 \, dx.$$
Basic Setup

We assume the cell density is symmetric about the x_1 axis, so we can only consider the solution in the upper half plane (\mathbb{R}^2_+). We introduce the following probabilistic quantities:

- Averaged distance to the x_1 axis (upper half plane):

 $$y_+(t) := \frac{1}{M_+} \int_{x_2 \geq 0} n(x, t)x_2 \, dx, \quad M_+ := \int_{x_2 \geq 0} n(x, t) \, dx \equiv \frac{M}{2}.$$

- Variation (upper half plane):

 $$\frac{V_+(t)}{M_+} := \frac{1}{M_+} \int_{x_2 \geq 0} n(x, t)|x_2 - y_+|^2 \, dx.$$

- We introduce the dimensionless quantity

 $$\eta := \frac{y_+}{\sqrt{V_+/M_+}} \approx \frac{\text{Average distance to the boundary}}{\text{Standard deviation}}.$$
Suppression of blow-up through fast splitting scenario

Figure: Definition of the dimensionless number η

$\eta = \frac{y}{\sqrt{v_i/M_+}}$
Suppression of blow-up through fast splitting scenario

Figure: Definition of the dimensionless number η

- Recall the equation (mPKS)

\[
\begin{align*}
\partial_t n + \nabla \cdot (\nabla cn) + A(-x_1, x_2) \cdot \nabla n &= \Delta n; \\
-\Delta c &= n, \quad n(x, t = 0) = n_{in}(x), \quad (x_1, x_2) \in \mathbb{R}^2.
\end{align*}
\]
Suppression of blow-up through fast splitting scenario

Theorem (E. Tadmor and H., [8], 17)

Consider the PKS equation \((\text{mPKS})\) subject to regular initial data \(n_in\) with total mass \(M = \|n_in\|_1 < 2 \times 8\pi\). Assume \(n_in\) is symmetric about the \(x_1\)-axis, and the dimensionless number

\[
\eta(0) = \frac{y_+(0)}{\sqrt{V_+(0)/M_+}} > \sqrt{2}. \tag{7}
\]

Then there exists a large enough amplitude \(A\) such that the free energy solution exists for all time.

Remark

Since the hyperbolic flow \(A(-x_1, x_2)\) is the gradient of a harmonic potential \(H = \frac{A}{2}(-x_1^2 + x_2^2)\), the \((\text{mPKS})\) has a decreasing free energy

\[
E_H[n] = \int n \log n dx + \frac{1}{4\pi} \iint n(x) \log |x - y| n(y) dxdy - \int H ndx.
\]
Due to symmetry, the only possible blow-up position is on the x_1 axis. Therefore, we use the quantity η to control the mass inside the critical strip $S_{\delta} := \{ x \mid |x_2| \leq \delta \}$. Once the mass inside the strip is shown to be smaller than 8π, we can prove global in time well-posedness.

Figure: Suppression of blow-up through a fast splitting scenario
Due to symmetry, the only possible blow-up position is on the x_1 axis. Therefore, we use the quantity η to control the mass inside the critical strip $S_\delta := \{x| |x_2| \leq \delta \}$. Once the mass inside the strip is shown to be smaller than 8π, we can prove global in time well-posedness.
Ingredients of the proof: Review of the classical PKS

- It is standard to derive global existence once we control the entropy

\[S[n] = \int n \log n \, dx. \]
Ingredients of the proof: Review of the classical PKS

- It is standard to derive global existence once we control the entropy
 \[S[n] = \int n \log n dx. \]

- The \((\text{mPKS})_{A \equiv 0}\) equation is a gradient flow of the free energy:
 \[E[n_{in}] \geq E[n] := \int_{\mathbb{R}^2} n \log n dx + \frac{1}{4\pi} \int \int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) dx dy. \]
It is standard to derive global existence once we control the entropy

\[S[n] = \int n \log n \, dx. \]

The \((\text{mPKS})_{A_0 = 0}\) equation is a gradient flow of the free energy:

\[
E[n_{in}] \geq E[n] := \int_{\mathbb{R}^2} n \log n \, dx + \frac{1}{4\pi} \int\int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) \, dx \, dy.
\]

Combining it with the log-Hardy-Littlewood-Sobolev inequality

\[
||n||_1 \int_{\mathbb{R}^2} n \log n \, dx + 2 \int\int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) \, dx \, dy \geq -C_{\text{IHLS}}(M),
\]

yields that

\[
S[n] \leq \frac{E[n_{in}] + C(M)}{1 - \frac{||n||_1}{8\pi}} < \infty.
\]
Ingredients of the proof: Review of the classical PKS

- It is standard to derive global existence once we control the entropy
 \[S[n] = \int n \log n dx. \]

- The \((mPKS)_{Au\equiv0}\) equation is a gradient flow of the free energy:
 \[E[n_{in}] \geq E[n] := \int_{\mathbb{R}^2} n \log n dx + \frac{1}{4\pi} \int\int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) dx dy. \]

- Combining it with the log-Hardy-Littlewood-Sobolev inequality
 \[\|n\|_1 \int_{\mathbb{R}^2} n \log n dx + 2 \int\int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) dx dy \geq -C_{IHLS}(M), \]
 yields that
 \[S[n] \leq \frac{E[n_{in}] + C(M)}{1 - \frac{\|n\|_1}{8\pi}} < \infty. \]

- This concludes the proof. The \(M = \|n\|_1 < 8\pi \) condition is essential.
Message: Consider the log-HLS inequality

\[K \int_{\mathbb{R}^2} n \log^+ n \, dx + 2 \int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) \, dx \, dy \geq C(M). \]

If one can improve the constant \(K \) for \(M > 8\pi \), then the critical mass \(M \) can be improved. It is because in general, \[S[n] \leq \frac{E[n_{in}] + C}{1 - \frac{K}{8\pi}}. \]
Gluing reconstruction of the log-HLS inequality

To prove suppression of blow-up, the following log-HLS inequality is essential:

\[K \int_{\mathbb{R}^2} n \log^+ n \, dx + 2 \int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) \, dx \, dy \geq C(M), \]

where \(K < 8\pi \) even when \(8\pi < M < 16\pi \).
To prove suppression of blow-up, the following log-HLS inequality is essential:

\[K \int_{\mathbb{R}^2} n \log^+ n \, dx + 2 \iint_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) \, dx \, dy \geq C(M), \]

where \(K < 8\pi \) even when \(8\pi < M < 16\pi \).

To obtain the inequality, we heuristically glue the following two log-HLS inequality together (following [4]):

\[M_{\pm} \int_{\mathbb{R}^2_{\pm}} n \log^+ n \, dx + 2 \iint_{\mathbb{R}^2_{\pm} \times \mathbb{R}^2_{\pm}} n(x) \log |x - y| n(y) \, dx \, dy \geq C, \quad M_{\pm} = \frac{M}{2}, \]
To prove suppression of blow-up, the following log-HLS inequality is essential:

$$K \int_{\mathbb{R}^2} n \log^+ n dx + 2 \int\int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) dxdy \geq C(M),$$

where $K < 8\pi$ even when $8\pi < M < 16\pi$.

To obtain the inequality, we heuristically glue the following two log-HLS inequality together (following [4]):

$$M_\pm \int_{\mathbb{R}_\pm^2} n \log^+ n dx + 2 \int\int_{\mathbb{R}_\pm^2 \times \mathbb{R}_\pm^2} n(x) \log |x - y| n(y) dxdy \geq C, \quad M_\pm = \frac{M}{2},$$

to get

$$\left(\frac{M}{2} + \|n\|_{L^1(|x| \leq \delta)} \right) \int_{\mathbb{R}^2} n \log^+ n dx + 2 \int\int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) dxdy \geq C.$$
To prove suppression of blow-up, the following log-HLS inequality is essential:

\[
K \int_{\mathbb{R}^2} n \log^+ ndx + 2 \int\int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) dxdy \geq C(M),
\]

where \(K < 8\pi \) even when \(8\pi < M < 16\pi \).

To obtain the inequality, we heuristically glue the following two log-HLS inequality together (following [4]):

\[
M_{\pm} \int_{\mathbb{R}^2_{\pm}} n \log^+ ndx + 2 \int\int_{\mathbb{R}^2_{\pm} \times \mathbb{R}^2_{\pm}} n(x) \log |x - y| n(y) dxdy \geq C, \quad M_{\pm} = \frac{M}{2},
\]

to get

\[
\left(\frac{M}{2} + \|n\|_{L^1(|x| \leq \delta)} \right) \int_{\mathbb{R}^2} n \log^+ ndx + 2 \int\int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) dxdy \geq C.
\]

Next we need to show that \(K < 8\pi \).
To show $K < 8\pi$, it is enough to prove $\|n\|_{L^1(|x_2|\leq \delta)} < 8\pi - M/2$.

Next we use moment estimates to show that $\eta(t)$ is approximately constant along $(mPKS)$. Therefore, if $\|n\|_{L^1}$ is large enough, $\|n\|_{L^1(|x_2|\leq \delta)} \ll 8\pi - M/2$, and the suppression of blow-up follows.
Ingredient of the proof: Control mass near x_1 axis

- To show $K < 8\pi$, it is enough to prove $\|n\|_{L^1(|x_2|\leq\delta)} < 8\pi - M/2$.
- By the Chebychev’s inequality, the lower bound of the dimensionless quantity $\eta(t)$ controls the mass near the x_1 axis.

$$\|n\|_{L^1(|x_2|\leq\delta)} = 2 \int_{S_\delta=\{0\leq x_2 \leq \delta\}} ndx \leq 2 \int_{|x_2-y_+|\geq \eta \sqrt{V_+/M_+}} ndx \leq \frac{2M_+}{\eta^2}.$$
Ingredient of the proof: Control mass near x_1 axis

To show $K < 8\pi$, it is enough to prove $\|n\|_{L^1(|x_2| \leq \delta)} < 8\pi - M/2$.

By the Chebychev’s inequality, the lower bound of the dimensionless quantity $\eta(t)$ controls the mass near the x_1 axis.

$$\|n\|_{L^1(|x_2| \leq \delta)} = 2 \int_{S_\delta = \{0 \leq x_2 \leq \delta\}} n dx \leq 2 \int_{|x_2 - y_+| \geq \eta \sqrt{V_+/M_+}} n dx \leq \frac{2M_+}{\eta^2}.$$
To show $K < 8\pi$, it is enough to prove $\| n \|_{L^1(|x_2| \leq \delta)} < 8\pi - M/2$.

By the Chebychev’s inequality, the lower bound of the dimensionless quantity $\eta(t)$ controls the mass near the x_1 axis.

$$
\| n \|_{L^1(|x_2| \leq \delta)} = 2 \int_{S_\delta=\{0 \leq x_2 \leq \delta\}} ndx \leq 2 \int_{|x_2 - y_+| \geq \eta \sqrt{V_+/M_+}} ndx \leq \frac{2M_+}{\eta^2}.
$$

Next we use moment estimates to show that $\eta(t)$ is approximately constant along (mPKS).
Ingredient of the proof: Control mass near x_1 axis

- To show $K < 8\pi$, it is enough to prove $\|n\|_{L^1(|x_2|\leq\delta)} < 8\pi - M/2$.
- By the Chebychev’s inequality, the lower bound of the dimensionless quantity $\eta(t)$ controls the mass near the x_1 axis.

$$\|n\|_{L^1(|x_2|\leq\delta)} = 2 \int_{S_\delta = \{0 \leq x_2 \leq \delta\}} ndx \leq 2 \int_{|x_2 - y_+| \geq \eta \sqrt{V_+/M_+}} ndx \leq \frac{2M_+}{\eta^2}.$$

Next we use moment estimates to show that $\eta(t)$ is approximately constant along (mPKS).
- Therefore, if $\eta(0)$ is large enough, $\|n(t)\|_{L^1(|x_2|\leq\delta)} \ll 8\pi - M/2$, and the suppression of blow-up follows.
In the $\eta(0) > \sqrt{2}$ case, the key is to get the log-HLS

$$K \int_{\mathbb{R}^2} n \log^+ ndx + 2 \iint_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) dxdy \geq C, \quad K < 8\pi.$$
Ingredient of the proof: Proof of the theorem

- In the $\eta(0) > \sqrt{2}$ case, the key is to get the log-HLS
 \[K \int_{\mathbb{R}^2} n \log^+ ndx + 2 \int\int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x - y| n(y) dx dy \geq C, \quad K < 8\pi. \]

- The idea is to glue the following three log-HLS inequalities together:
 \[M_\pm \int_{\mathbb{R}^2_\pm \setminus S_\delta} n \log^+ ndx + 2 \int\int_{(\mathbb{R}^2_\pm \setminus S_\delta)^2} n(x) \log |x - y| n(y) dx dy \geq C, \]
 \[\frac{M}{2} \int_{S_\delta} n \log^+ ndx + 2 \int\int_{S_\delta \times S_\delta} n(x) \log |x - y| n(y) dx dy \geq C, \]
 where $S_\delta := \{x | x_2 \leq \delta\}$. Here we use the fact that $\eta(0) > \sqrt{2}$ when we derive the last log-HLS.
Ingredient of the proof: Proof of the theorem

- In the $\eta(0) > \sqrt{2}$ case, the key is to get the log-HLS

 $$K \int_{\mathbb{R}^2} n \log^+ ndx + 2 \int\int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \log |x-y|n(y)dxdy \geq C, \quad K < 8\pi.$$

- The idea is to glue the following three log-HLS inequalities together:

 $$M \pm \int_{\mathbb{R}^2 \setminus S_\delta} n \log^+ ndx + 2 \int\int_{(\mathbb{R}^2 \setminus S_\delta)^2} n(x) \log |x-y|n(y)dxdy \geq C,$$

 $$\frac{M}{2} \int_{S_\delta} n \log^+ ndx + 2 \int\int_{S_\delta \times S_\delta} n(x) \log |x-y|n(y)dxdy \geq C,$$

 where $S_\delta := \{x||x_2| \leq \delta\}$. Here we use the fact that $\eta(0) > \sqrt{2}$ when we derive the last log-HLS.

- We dynamically determine the boundaries of these three domains so that the error created during the gluing process is small. Once the gluing process is completed, existence follows.
Classical PKS equation exhibits blow-up phenomena when the total mass is large $\|n_{in}\|_{L^1} > 8\pi$;
Classical PKS equation exhibits blow-up phenomena when the total mass is large $||n_{in}||_{L^1} > 8\pi$;

We use simple mixing shear flow to suppress the blow-up of (mPKS) on \mathbb{T}^2 and \mathbb{T}^3;
Classical PKS equation exhibits blow-up phenomena when the total mass is large $\|n_{in}\|_{L^1} > 8\pi$;

We use simple mixing shear flow to suppress the blow-up of (mPKS) on \mathbb{T}^2 and \mathbb{T}^3;

We use a fast splitting hyperbolic flow to suppress the blow-up of (mPKS) on the plane \mathbb{R}^2.
Thank you!
For Further Reading I

J. Bedrossian and M. Coti Zelati.
Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows.

J. Bedrossian and S. He.
Suppression of blow-up in patlak-keller-segel via shear flows.

A. Blanchet, J. Carrillo, and N. Masmoudi.
Infinite time aggregation for the critical Patlak-Keller-Segel model in \mathbb{R}^2.

A. Blanchet, J. Carrillo, and N. Masmoudi.
Infinite time aggregation for the critical Patlak-Keller-Segel model in \mathbb{R}^2.
A. Blanchet, J. Dolbeault, and B. Perthame.
Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions.

J. Carrillo and J. Rosado.
Uniqueness of bounded solutions to aggregation equations by optimal transport methods.

P. Constantin, A. Kiselev, L. Ryzhik, and A. Zlatoš.
Diffusion and mixing in fluid flow.

S. He and E. Tadmor.
Suppressing chemotactic blow-up through a fast splitting scenario on the plane.
K. Hopf and J. L. Rodrigo.
Aggregation equations with fractional diffusion: preventing concentration by mixing.

A. Kiselev and X. Xu.
Suppression of chemotactic explosion by mixing.

C. Villani.
Hypocoercivity.