Stability of mean field model
for opinion dynamics and collective motion

Josselin Garnier (Ecole Polytechnique)

With G. Papanicolaou (Stanford Univ.) and T.-W. Yang (Univ. of Minnesota)
Opinion dynamics

• Propose an opinion model for an interacting population of agents to study consensus convergence, with simple local rules of interaction.

• Opinion model for \(N \) agents [1]:

\[
dx_i = -\frac{1}{N} \sum_{j=1}^{N} \phi(|x_i - x_j|)(x_i - x_j)dt + \sigma dW^i(t), \quad i = 1, \ldots, N,
\]

where \(x_i(t) \) is the agent \(i \)'s opinion.

• The influence function \(\phi \) is nonnegative, bounded, and compactly supported in \([0, 1]\).

\[\leftrightarrow \text{The interactions are attractive and the agent } i \text{ is only affected by agents that have similar opinions.} \]

• The initial opinions \(x_i(0) \) may be deterministic or random, for instance \(x_i(0) \) are i.i.d. with distribution with density \(\rho_0 \).

• The independent Brownian motions \(W^i(t), \ i = 1, \ldots, N \) model external noise, and \(\sigma \geq 0 \) is its strength.

Opinion dynamics: Simulations

\begin{align*}
\phi(s) &= 1_{[0,1/\sqrt{2}]}(s) + 0.1 \times 1_{(1/\sqrt{2},1]}(s) \\
\text{Initial uniform distribution over } [0,L], \quad L = 10, \quad N = 500.
\end{align*}

Can we predict the number of clusters?
Opinion dynamics: The mean field limit

• Consider the model in $[0, L]$ with periodic boundary conditions.

• Introduce the empirical probability measure $\rho^N(t, dx)$ of the opinions of the agents:

$$\rho^N(t, dx) = \frac{1}{N} \sum_{j=1}^{N} \delta_{x_j(t)}(dx).$$

$\rho^N(t, dx)$ is a measure-valued stochastic process.

• Assume that as $N \to \infty$, $\rho^N(0, dx)$ converges weakly, in probability, to a deterministic measure with density $\rho_0(x)$.

This happens (with $\rho_0(x) = 1/L$) if the initial opinions are i.i.d. with uniform density over $[0, L]$.

• As $N \to \infty$, $\rho^N(t, dx)$ converges weakly, in probability, to a deterministic probability measure whose density $\rho(t, x)$ satisfies (in a weak sense) the nonlinear Fokker-Planck equation [1]:

$$\frac{\partial \rho}{\partial t}(t, x) = \frac{\partial}{\partial x} \left\{ \left[\int \rho(t, x-y)y\phi(|y|)dy \right] \rho(t, x) \right\} + \frac{\sigma^2}{2} \frac{\partial^2 \rho}{\partial x^2}(t, x),$$

with initial density $\rho_0(x)$.

Opinion dynamics: The mean field limit

Formally:

\[dx_i = -\left[\frac{1}{N} \sum_{j=1}^{N} \phi(|x_i - x_j|)(x_i - x_j) \right] dt + \sigma dW^i(t), \quad i = 1, \ldots, N \]

\[\Downarrow \]

\[dx_i = -\left[\int \phi(|x_i - y|)(x_i - y)\rho^{N}(t, dy) \right] dt + \sigma dW^i(t), \quad i = 1, \ldots, N \]

\[\Downarrow N \to \infty \]

\[dX_t = -\left[\int \phi(|X_t - y|)(X_t - y)\rho(t, y)dy \right] dt + \sigma dW(t), \quad \rho(t, \cdot) = \text{pdf of } X_t \]

\[\Downarrow \]

\[\frac{\partial \rho}{\partial t}(t, x) = \frac{\partial}{\partial x} \left\{ \left[\int \phi(|x - y|)(x - y)\rho(t, y)dy \right] \rho(t, x) \right\} + \frac{\sigma^2}{2} \frac{\partial^2 \rho}{\partial x^2}(t, x) \]

Opinion dynamics for $\sigma = 0$

- Modulational instability (in the mean field limit $N = \infty$).

- Linearize the Fokker-Planck equation by assuming $\rho(t, x) = \rho_0 + \rho_1(t, x)$, $\rho_0 = 1/L$:

 \[\frac{\partial \rho_1}{\partial t}(t, x) = \rho_0 \int \frac{\partial \rho_1}{\partial x}(t, x - y) y \phi(|y|) dy. \]

- Take the Fourier transform in x, $\hat{\rho}_1(t, k) = \int_0^L e^{-ikx} \rho_1(t, x) dx$, with the discrete frequency k in $\mathcal{K} = \{2\pi n/L, n \in \mathbb{N}\}$:

 \[\frac{\partial \hat{\rho}_1}{\partial t}(t, k) = \left[i \rho_0 k \int e^{-iky} y \phi(|y|) dy \right] \hat{\rho}_1(t, k). \]

- For each k, $|\hat{\rho}_1(t, k)| = |\hat{\rho}_1(0, k)| \exp(\gamma_k t)$, where the growth rate of the k-th mode is:

 \[\gamma_k = \text{Re} \left[i \rho_0 k \int e^{-iky} y \phi(|y|) dy \right] = \rho_0 k \int \sin(ky) y \phi(|y|) dy. \]

- The growth rate γ_k is maximal for $k = \pm k_{\text{max}}$ with

 \[k_{\text{max}} = \arg \max_{k \in \mathcal{K}} [\psi(k)], \quad \psi(k) = 2k \int_0^1 \sin(k s) \phi(s) s ds \]
Opinion dynamics for $\sigma = 0$

- Fluctuation theory (in the regime $N \gg 1$).
- Denote $\rho_0(dx) = dx/L$. Fix T. Consider
 $$\rho_1^N(t, dx) := \sqrt{N} \left(\rho^N(t, dx) - \rho_0(dx) \right), \quad t \in [0, T]$$

- If the initial opinions $(x_j(0))_{j=1}^N$ are i.i.d. with uniform density over $[0, L]$, then, as $N \gg 1$,
 $$\hat{\rho}_1^N(t = 0, k) = \int e^{-ikx} \rho_1^N(t = 0, dx) = \frac{1}{\sqrt{N}} \sum_{j=1}^N e^{-ikx_j(0)}, \quad k \in \{2\pi n/L, n \in \mathbb{N}^*\}$$
 converge to $\hat{\rho}_1(t = 0, k)$ i.i.d. complex circular Gaussian random variables, mean zero, and variance 1:
 $$\mathbb{E}[\hat{\rho}_1(t = 0, k)] = 0, \quad \mathbb{E}\left[\hat{\rho}_1(t = 0, k)\hat{\rho}_1(t = 0, k')\right] = \delta_{kk'}, \quad k, k' \in \{2\pi n/L, n \in \mathbb{N}^*\}.$$

Note $\hat{\rho}_1^N(t, k = 0) = 0$.

- As $N \gg 1$, $\hat{\rho}_1^N(t, k), k \in K\{0\}$, converge to $\hat{\rho}_1(t, k), k \in K\{0\}$, independent complex circular Gaussian random variables, with mean zero and variance $\exp(2\gamma_k t)$:
 $$\mathbb{E}\left[\hat{\rho}_1(t, k)\hat{\rho}_1(t, k')\right] = \delta_{kk'} \exp(2\gamma_k t), \quad k, k' \in \{2\pi n/L, n \in \mathbb{N}^*\}.$$

→ The mode with the largest growth rate $\gamma_{\max} = 2\rho_0 \psi(k_{\max})$ quickly dominates.
Opinion dynamics for $\sigma = 0$

- The time up to the onset of clustering is when $\rho_1 \sim \sqrt{N} \rho_0$:

$$t_{clu} \simeq \frac{1}{2\gamma_{\text{max}}} \ln N \simeq \frac{1}{2\rho_0 \psi(k_{\text{max}})} \ln N$$

Clustering happens with a mean distance between clusters equal to $2\pi/k_{\text{max}}$.

- Once clustering has occurred, two types of dynamical evolutions are possible:
 1. If $2\pi/k_{\text{max}} > 1$, then the clusters do not interact with each other because they are beyond the range of the influence function.
 \leftrightarrow The situation is frozen and there is no consensus convergence.
Opinion dynamics for $\sigma = 0$

Here $\phi(s) = 1_{[0,1/\sqrt{2}]}(s) + 0.1 \times 1_{(1/\sqrt{2},1]}(s)$, $L = 10$, $N = 500$.

$k_{\text{max}} = 3.77$. Inter-cluster distance = 1.67.

\leftrightarrow No consensus convergence.
Opinion dynamics for $\sigma = 0$

- The time up to the onset of clustering is when $\rho_1 \sim \sqrt{N}\rho_0$:
 \[
 t_{clu} \simeq \frac{1}{2\gamma_{\text{max}}} \ln N \simeq \frac{1}{2\rho_0\psi(k_{\text{max}})} \ln N
 \]

Clustering happens with a mean distance between clusters equal to $2\pi/k_{\text{max}}$.

- Once clustering has occurred, two types of dynamical evolutions are possible:
 1. If $2\pi/k_{\text{max}} > 1$, then the clusters do not interact with each other because they are beyond the range of the influence function.
 \leftarrow The situation is frozen and there is no consensus convergence.
 2. If $2\pi/k_{\text{max}} < 1$, then the clusters interact with each other.
 \leftrightarrow There may be consensus convergence.
 However, consensus convergence is not guaranteed as clusters may merge by packets, and the centers of the new clusters may be separated by a distance larger than $2\pi/k_{\text{max}}$, and then global consensus convergence does not happen.
 \leftarrow The number of mega-clusters formed by this dynamic is not easy to predict.

Zürich May 2017
Opinion dynamics for $\sigma = 0$

Here $\phi(s) = 0.2 \times 1_{[0, 1/\sqrt{2}]}(s) + 1_{(1/\sqrt{2}, 1]}(s)$, $L = 10$, $N = 500$.

$k_{\text{max}} = 9.42$. Inter-cluster distance $= 0.67$.

\twoheadrightarrow There may be global consensus convergence (very sensitive!).

Zürich May 2017
Opinion dynamics for $\sigma > 0$

- Modulational instability (in the mean field limit $N = \infty$).

- Linearize the Fokker-Planck equation by assuming $\rho(t, x) = \rho_0 + \rho_1(t, x)$, $\rho_0 = 1/L$:
 \[
 \frac{\partial \rho_1}{\partial t}(t, x) = \rho_0 \int \frac{\partial \rho_1}{\partial x}(t, x - y)y\phi(|y|)dy + \frac{\sigma^2}{2} \frac{\partial^2 \rho_1}{\partial x^2}(t, x).
 \]

- In the Fourier domain:
 \[
 \frac{\partial \hat{\rho}_1}{\partial t}(t, k) = \left[i\rho_0 k \int e^{-iky}y\phi(|y|)dy - \frac{\sigma^2 k^2}{2} \right] \hat{\rho}_1(t, k).
 \]

- Growth rates of the modes:
 \[
 \gamma_{\sigma, k} = \text{Re} \left[i\rho_0 k \int e^{-iky}y\phi(|y|)dy - \frac{\sigma^2 k^2}{2} \right],
 \]
 or $\gamma_{\sigma, k} = \rho_0 \psi_{\sigma}(k)$, where
 \[
 \psi_{\sigma}(k) = 2k \int_0^1 \sin(ky)y\phi(|y|)dy - \frac{\sigma^2 k^2}{2\rho_0}.
 \]

We look for the most unstable mode whose frequency $k_{\text{max}} \in \{2\pi n/L, n \in \mathbb{N}\}$ maximizes $\psi_{\sigma}(k)$.
Opinion dynamics for $\sigma > 0$

Let

$$\sigma_c^2 = \max_{k \in K} \left[\frac{4 \rho_0}{k} \int_0^1 \phi(s) s \sin(k s) ds \right] \simeq 4 \rho_0 \int_0^1 s^2 \phi(s) ds.$$

1. If $\sigma < \sigma_c$, then $\max_{k>0} \psi_{\sigma}(k) > 0$, so $k_{\text{max}} = \argmax_{k>0} \psi_{\sigma}(k) > 0$ exists and $\hat{\rho}_1(t, k_{\text{max}})$ has positive growth rate $\gamma_{\text{max}} = \rho_0 \psi_{\sigma}(k_{\text{max}})$.

\rightarrow The system is linearly unstable (qualitatively analogous to the deterministic case, although k_{max} is reduced).

2. If $\sigma > \sigma_c$, then $\max_{k>0} \psi_{\sigma}(k) < 0$, so all of $\hat{\rho}_1(t, k)$ have negative growth rates.

\leftarrow The system with uniform density is stable.
Opinion dynamics for $\sigma > 0$

• Fluctuation theory (in the regime $N \gg 1$).

• The measure-valued process

$$\rho_1^N(t, dx) := \sqrt{N} \left(\rho^N(t, dx) - \rho_0(dx) \right)$$

converges in distribution as $N \to \infty$ to a measure-valued process $\rho_1(t, dx)$ whose density $\rho_1(t, x)$ satisfies a stochastic PDE:

$$d\rho_1(t, x) = \left[\rho_0 \int \frac{\partial \rho_1}{\partial x}(t, x - y)y\phi(|y|)dy + \frac{\sigma^2}{2} \frac{\partial^2 \rho_1}{\partial x^2}(t, x) \right] dt + \sigma dW(t, x)$$

where $W(t, x)$ is a space-time Gaussian random noise with mean zero and covariance

$$\text{Cov} \left(\int_0^L W(s, x)f_1(x)dx, \int_0^L W(t, x)f_2(x)dx \right) = \frac{\min\{s, t\}}{L} \int_0^L f'_1(x)f'_2(x)dx$$

for any test functions $f_1(x)$ and $f_2(x)$, which is independent of the Gaussian (white noise) initial condition.

• $\hat{\rho}_1(t, k)$ is a Gaussian process with mean zero and covariance

$$\mathbb{E} \left[\hat{\rho}_1(t, k)\hat{\rho}_1(t, k') \right] = \delta_{kk'} \left\{ \exp(2\gamma_{\sigma, k}t) \left[1 + \frac{\sigma^2k^2}{2\gamma_{\sigma, k}} \right] - \frac{\sigma^2k^2}{2\gamma_{\sigma, k}} \right\}, \quad k, k' \in \{2\pi n/L, n \in \mathbb{N}\}.$$

→ The mode with the largest growth rate $\gamma_{\sigma, k_{\max}} = \rho_0\psi_\sigma(k_{\max})$ quickly dominates.
Opinion dynamics for $\sigma > 0$

$\phi(s) = 1_{[0,1]}(s), \sigma = 0.1$

$N = 500$

Inter-Cluster Distance = 2.5$

Opinions, $x_i(t)$

Simulation
Opinion dynamics for $\sigma > 0$

\[\phi(s) = 1_{[0,1]}(s), \sigma = 0.2 \]

\[N = 500 \]

Inter-Cluster Distance = 3.33

\[\text{Simulation} \]
Opinion dynamics for \(\sigma > 0 \)

\[
\phi(s) = 1_{[0,1]}(s), \sigma = 0.365
\]

\[
\psi_\sigma(k)
\]

Simulation

\[
\phi(s) = 1_{[0,1]}(s), \sigma_c = 0.36515, \sigma = 0.36515
\]

\[
N = 500
\]

Opinions, \(x_i(t) \)
Opinion dynamics for $\sigma > 0$

$\psi_\sigma(k)$

$\phi(s) = 1_{[0,1]}(s), \sigma = 0.5$

$N = 500$

Simulation
Opinion dynamics for $\sigma > 0$

After clustering:

- Markovian dynamics of clusters (move like Brownian motions and merge when two of them come close to each other).

- Global consensus convergence (in 1D, Brownian motions always collide).

- Megacluster moves like a Brownian motion.
Collective motion
Collective motion: Czirók model

• N agents move along the torus $[0, L]$.

• For $i = 1, \ldots, N$, the position x_i and velocity u_i of particle i satisfy:

$$dx_i = u_i dt,$$
$$du_i = \left[G\left(\langle u \rangle_i\right) - u_i\right] dt + \sigma dW_i(t).$$

• $\{W_i(t)\}_{i=1}^N$ are independent Brownian motions.

• $\langle u \rangle_i$ is a weighted average of the velocities $\{u_j\}_{j=1}^N$:

$$\langle u \rangle_i = \frac{1}{N} \sum_{j=1}^N u_j \phi(|x_j - x_i|),$$

with the weights depending on the distance (on the torus) between the position x_i and the positions of the other agents.

$\phi(x)$ is a nonnegative influence function normalized so that $\frac{1}{L} \int_0^L \phi(|x|)dx = 1$.

• $G(u)$ is an odd and smooth function.

If $G(u) = u$: Cucker-Smale model.

If $G(u)$ derives from a double well potential: Czirók model.
Collective motion bistability: Experiments

Locusts in a torus Alignment as function of time

Collective motion: Simulations

\[\phi(s) = 5 \times 1_{[0,1]}(s). \]

\[G(u) = 2u - 0.072u^3. \]

\[\sigma = 5. \]

Initial distribution: \((x_i(0), u_i(0))_{i=1}^N\) i.i.d., \((x_i(0))_{i=1}^N\) uniform over \([0, L]\), \((u_i(0))_{i=1}^N\) Gaussian distributed with mean zero and variance \(\sigma^2/2\), \(L = 10\), \(N = 100\).

Can we explain the bistability, the transition rate?
Collective motion: The mean field limit

• Introduce the empirical probability measure:

\[\rho_N(t, dx, du) = \frac{1}{N} \sum_{i=1}^{N} \delta(x_i(t), u_i(t)) \, (dx, du). \]

• If \(\rho_N(0, dx, du) \) converges to a deterministic measure \(\bar{\rho}(x, u) \, dx \, du \) as \(N \to \infty \), then as \(N \to \infty \), \(\rho_N(t, dx, du) \) converges to the deterministic measure \(\rho(t, x, u) \, dx \, du \) whose density is the solution of the nonlinear Fokker-Planck equation

\[
\frac{\partial \rho}{\partial t} = -u \frac{\partial \rho}{\partial x} - \frac{\partial}{\partial u} \left\{ G \left(\int \int u' \phi(|x'|) \rho(t, x - x', u') \, du' \, dx' \right) - u \right\} \rho + \frac{1}{2} \sigma^2 \frac{\partial^2 \rho}{\partial u^2},
\]

starting from \(\rho(t = 0, x, u) = \bar{\rho}(x, u) \).
Collective motion: The stationary states in the mean field limit

- The stationary solutions $\rho(x, u)$ have the following form:

 $$\rho_\xi(x, u) = \frac{1}{L} F_\xi(u), \quad F_\xi(u) = \frac{1}{\sqrt{\pi \sigma^2}} \exp \left(- \frac{(u - \xi)^2}{\sigma^2} \right).$$

- They are uniform in space, Gaussian in velocity, and their mean velocity ξ satisfies the compatibility condition:

 $$\xi = G(\xi).$$

- There are, therefore, as many stationary equilibria as there are solutions to the compatibility equation.

- When G is such that $u - G(u)$ derives from a double-well potential, such as $G(u) = 2 \tanh(u)$ or $G(u) = 2u - u^3$, there are three ξ satisfying the compatibility condition: 0 and $\pm \xi_e$, with $\xi_e > 0$.
Collective motion: Linear stability analysis for the stationary states

- Let ξ be such that $G(\xi) = \xi$ and consider
 \[\rho(t, x, u) = \rho_{\xi}(x, u) + \rho^{(1)}(t, x, u) = \frac{1}{L} F_{\xi}(u) + \rho^{(1)}(t, x, u), \]
 for small perturbation $\rho^{(1)}$. By linearizing the nonlinear Fokker-Planck equation:
 \[
 \frac{\partial \rho^{(1)}}{\partial t} = -u \frac{\partial \rho^{(1)}}{\partial x} - \frac{\partial}{\partial u} \left[(\xi - u)\rho^{(1)} \right] \\
 - \frac{1}{L} G'(\xi) \left[\int \int u' \phi(|x'|) \rho^{(1)}(t, x - x', u') du' dx' \right] F'_{\xi}(u) + \frac{1}{2} \sigma^2 \frac{\partial^2 \rho^{(1)}}{\partial u^2}.
 \]

- The mode $\rho^{(1)}_k(t, u) = \frac{1}{L} \int_0^L \rho^{(1)}(t, x, u)e^{i2\pi k x/L} dx$ satisfies
 \[
 \frac{\partial \rho^{(1)}_k}{\partial t} = \frac{i2\pi k}{L} u \rho^{(1)}_k - \frac{\partial}{\partial u} \left[(\xi - u)\rho^{(1)}_k \right] \\
 - G'(\xi) \phi_k \left[\int u' \rho^{(1)}_k(t, u') du' \right] F'_{\xi}(u) + \frac{1}{2} \sigma^2 \frac{\partial^2 \rho^{(1)}_k}{\partial u^2},
 \]
 with $\phi_k = \frac{1}{L} \int_0^L \phi(|x|)e^{i2\pi k x/L} dx$.
- The equations are uncoupled in k and the system is linearly stable if all modes are stable.
Collective motion: Linear stability analysis for the stationary states

- The 0-th order mode is stable if and only if $G'(\xi) < 1$.
- The k-th order modes are stable if σ is large enough (critical σ depends on ϕ, G).

When G is such that $u - G(u)$ derives from a double-well potential:

1. the order states

 $$\rho_{\pm\xi_e}(x, u) = \frac{1}{L} \frac{1}{\sqrt{\pi\sigma^2}} \exp \left(-\frac{(u \mp \xi_e)^2}{\sigma^2} \right), \quad \xi_e = G(\xi_e) > 0,$$

 are stable equilibria,

2. the disorder state

 $$\rho_0(x, u) = \frac{1}{L} \frac{1}{\sqrt{\pi\sigma^2}} \exp \left(-\frac{u^2}{\sigma^2} \right)$$

 is an unstable equilibrium.

\leftrightarrow The noise strength σ improves the stability of the order states $\rho_{\pm\xi_e}(x, u)$.
Collective motion: Fluctuation analysis

• Fluctuation analysis \((N \gg 1)\).

• Let \(\rho_N(t, dx, du) = \frac{1}{N} \sum_{i=1}^{N} \delta(x_i(t), u_i(t))(dx, du)\) and \(\xi\) be a solution to \(\xi = G(\xi)\).

• If as \(N \to \infty\), \(\rho_N(0, dx, du)\) converges to the stationary state \(\rho_\xi(x, u)dxdu\), then as \(N \to \infty\), \(\rho_N^{(1)}(t, dx, du) = \sqrt{N}[\rho_N(t, dx, du) - \rho_\xi(x, u)dxdu]\) converges to the measure-valued process \(\rho^{(1)}(t, dx, du)\) satisfying

\[
\frac{d\rho^{(1)}}{dt} = -u \frac{\partial \rho^{(1)}}{\partial x} dt - \frac{\partial}{\partial u} [(G(\xi) - u)\rho^{(1)}] dt
\]

\[
- G'(\xi) \frac{\partial \rho_\xi}{\partial u} \left[\int_0^L \int_{-\infty}^\infty u' \phi(|x' - x|) \rho^{(1)}(t, dx', du') \right] dt + \frac{1}{2} \sigma^2 \frac{\partial^2 \rho^{(1)}}{\partial u^2} dt + \sigma dW_\xi,
\]

where \(W_\xi(t, x, u)\) is a space-time Gaussian random noise with covariance

\[
\text{Cov} \left(\int_0^L \int_{-\infty}^\infty W_\xi(t, x, u) f_1(x, u) dx du, \int_0^L \int_{-\infty}^\infty W_\xi(t', x, u) f_2(x, u) dx du \right)
\]

\[
= \min(t, t') \int_0^L \int_{-\infty}^\infty \frac{\partial f_1}{\partial u}(x, u) \frac{\partial f_2}{\partial u}(x, u) \rho_\xi(x, u) dx du,
\]

for any test functions \(f_1\) and \(f_2\).

• Stability is ensured iff \(\rho_\xi\) is stable for the linearized Fokker-Planck equation.
Collective motion: Simulations

$G(u) = \frac{h+1}{5}u - \frac{h}{125}u^3$, $h = 6$, $\sigma = 0.5$, $N = 1000$.

- Here $G'(\xi) < 1$, so that the mode 0 is stable \rightarrow the average velocity is stable.
- The first mode $k_{\text{max}} = 1$, with growth rate $\gamma(k_{\text{max}}) = \gamma_r(k_{\text{max}}) + i\gamma_i(k_{\text{max}}) \in \mathbb{C}$, is the most unstable.
 \rightarrow a spatial modulation is growing, which gives one cluster.
- The imaginary part of the growth rate gives the velocity of the cluster $v = \frac{\gamma_i(k_{\text{max}})L}{2\pi k_{\text{max}}}$:

$$\exp[-i2\pi k_{\text{max}}x/L] \exp[(\gamma_r(k_{\text{max}}) + i\gamma_i(k_{\text{max}}))t] = \exp[-i(2\pi k_{\text{max}}/L)(x-vt)] \exp[\gamma_r(k_{\text{max}})t]$$
Collective motion: Simulations

\[G(u) = \frac{h+1}{5} u - \frac{h}{125} u^3, \ h = 6, \ \sigma = 0.5, \ N = 1000. \]

- Here \(G'(\xi) < 1 \), so that the mode 0 is stable \(\rightarrow \) the average velocity is stable.
- The first mode \(k_{\text{max}} = 1 \), with growth rate \(\gamma(k_{\text{max}}) = \gamma_r(k_{\text{max}}) + i\gamma_i(k_{\text{max}}) \in \mathbb{C} \), is the most unstable.
 \(\rightarrow \) a spatial modulation is growing, which gives one cluster.
- The imaginary part of the growth rate gives the velocity of the cluster \(v = \frac{\gamma_i(k_{\text{max}}) L}{2\pi k_{\text{max}}} \):
\[
\exp[-i2\pi k_{\text{max}} x/L] \exp[(\gamma_r(k_{\text{max}}) + i\gamma_i(k_{\text{max}}))t] = \exp[-i(2\pi k_{\text{max}}/L)(x-vt)] \exp[\gamma_r(k_{\text{max}})t]
\]
- The velocity of the cluster is larger than the average velocity of the particles.
 The slow particles of the cluster are left behind!
Collective motion: Large deviations analysis

- Assume that two order states $\rho_{\pm \xi_e}$ exist and are stable.
- Assume initial conditions are such that $\rho(0, x, u) \simeq \rho_{+\xi_e}(x, u)$.
- Consider the rare event:
 \[A = \{ \rho : \| \rho(T, dx, dy) - \rho_{-\xi_e}(x, u)dxdu \| \leq \delta \} . \]
- We have
 \[P(\rho_N \in A) \approx \exp \left(-N \inf_{\rho \in A} I(\rho) \right) . \]

The rate function:

\[I(\rho) = \frac{1}{2\sigma^2} \int_0^T \sup_{f(x,u) : \langle \rho(t,\cdot,\cdot), (\frac{\partial f}{\partial u})^2 \rangle \neq 0} \frac{\langle \frac{\partial \rho}{\partial t} (t,\cdot,\cdot) - \mathcal{L}_\rho^* \rho(t,\cdot,\cdot), f \rangle^2}{\langle \rho(t,\cdot,\cdot), (\frac{\partial f}{\partial u})^2 \rangle} dt , \]

where \mathcal{L}_ν^* is the differential operator associated to the Fokker-Planck equation:

\[\mathcal{L}_\nu^* \rho = -u \frac{\partial \rho}{\partial x} - \frac{\partial}{\partial u} \left[\left(G \left(\int \int u' \phi(|x'|) \nu(x - x', u') du' dx' \right) - u \right) \rho \right] + \frac{1}{2} \sigma^2 \frac{\partial^2 \rho}{\partial u^2} . \]
Empirical average velocity \bar{u}^n. Here $h = 6$ and $\sigma = 5$, with $G(u) = \frac{h+1}{5}u - \frac{h}{125}u^3$.

Stability increases with N.
Empirical average velocity \(\bar{u}_n \). Here \(N = 100 \) and \(h = 6 \), with \(G(u) = \frac{h+1}{5}u - \frac{h}{125}u^3 \).

Stability decreases with \(\sigma \) (but provided \(\sigma \) is large enough!).
Empirical average velocity \bar{u}_n. Here $N = 100$ and $\sigma = 5$, with $G(u) = \frac{h+1}{5}u - \frac{h}{125}u^3$. Stability increases with h.

Zürich May 2017
Conclusions

- Linear stability analysis of the nonlinear Fokker-Planck equation of the mean field model gives a lot of insight into the dynamics of the interacting system.
- Noise globally increases the stability (for opinion dynamics and collective motion).
- Simple systems can give complex behaviors.