Majority Vote Processes on Trees

Maury Bramson, Larry Gray
University of Minnesota

Majority Vote Process (MVP) - one of the classical interacting particle systems

Others include voter model, contact process, exclusion process

The MVP is the continuous time Markov process such that:

- $d \geq 1$
- $\epsilon \in [0, 1]$

1. On \mathbb{Z}^d, each site has "opinion" either 0 or 1.
2. Independently, at rate $1-\epsilon$ at each site, sites align w/ the majority opinion of their immediate neighbors.
3. Independently, at rate ϵ at each site, the opinion "flips".

Are primarily interested in case where ϵ is small, but positive.
How many equilibria does MVP have?
- Is open except in $d = 1$.
 Only 1 equilibrium (Gray (1992))

Compare with:

Voter Model with Noise (VMN) -
- Same as MVP, except sites randomly choose one of neighbors with which to align.

Not difficult to check:
- VMN converges expd quickly to its unique equilibrium.

Here, will investigate behavior of MVP on d-regular trees T_d.

\[T_3 \]
Results will discuss:

\[(B\text{-}Gray \ (2018)) \]

Theorem 1. For \(d \geq 5 \) and \(\epsilon > 0 \) small, there exist uncountably many mutually singular equilibria. \(\checkmark \) will spend more time on \(\checkmark \) less time on

Theorem 2. For any initial state close enough to such an equilibrium, process converges exp'ly quickly to this equilibrium.

Comments:

- Method does not depend on precise model. Includes, for example, stochastic Ising model on \(T_d \).

- Argument simplifies somewhat for oriented MVP, where above results are true for \(d \geq 4 \). \(\checkmark \) parents depend only on offspring

Ideas behind proof of Theorem 1

related ideas for Theorem 2, but more involved

Notation

\((E_t^j)_{t \geq 0} \) is MVP w/ \(E_t^j(x) = 0 \) or \(1 \) for \(x \in \mathbb{T}^d \)

Will consider special \(J \) defined using a tiling:

- Partition \(\mathbb{T}^d \) into even/odd sites.

- From each odd site, delete an edge to one of its offspring. For \(d \geq 7 \), can instead delete an edge from all sites.

- Each connected subset is a tile; corresponding collection is a tiling.

- \(J \) is compatible (wrt \(\alpha \) given tiling) if \(x, y \in T \) implies \(J(x) = J(y) \).

Note: For a given tiling,

1. there are uncountably many compatible \(J \).
Reasoning for Theorem 1

For \(d \geq 5 \) and small noise \(\varepsilon \), we will show that, for each tile \(T \),

\[
\lim_{n \to \infty} \frac{1}{\# T_n(x)} \sum_{y \in T_n(x)} | \mathbb{E}_{t_n^{-1}}(y) - T(y) | \leq 10\varepsilon \quad \text{a.s.}
\]

for each \(x \in T \) and \(t \).

Assume (2)

Let \(\mu_t^J = \text{Cesaro avg. over } [0, t] \text{ of measures of } \Xi_t^J \). One has

\[
\mu_{t_i}^J \xrightarrow{i \to \infty} \mu_t^J \text{ on some subsequence } t_i \to \infty,
\]

where \(\mu_t^J \) satisfies analog of (2).

Consequently, for \(J \neq J' \) (w/ both compatible wrt tiling),

(3) \(\mu_t^J \) and \(\mu_t^{J'} \) are mutually singular.

Theorem 1 follows from (1) and (3).
Demonstrate (2)

To demonstrate (2), construct a process δ_t on $\{0,1\}^\mathbb{N}$ s.t.

(4) $|\sum_{y}^{0} \delta_t(y) - \sum_{y}^{1} \delta_t(y)| \leq \delta_t(y)$ for all y

with

(2') $\lim_{n \to \infty} \frac{1}{#T_n(x)} \sum_{y \in T_n(x)} \delta_t(y) \leq 10\varepsilon$.

Construction of δ_t:

- $\delta_0 \equiv 0$.
- $\delta_t(x) = 1$ at noise points (x,t).
- δ_t behaves like δ_t^x at MV points (x,t), except that neighborhood is now $T_t(x)$, and, for $\delta_t(x) = 1$ to occur, 1 (2) fewer 1's required if x is even (odd).

These properties imply (4).

They also imply siblings evolve independently of one another.
To demonstrate (a'), set
\[P_t = P(\delta_t(x) = 1) \quad \text{for } x \in T_d. \]

\(P_t \) depends on whether \(x \) is even or odd.
To simplify computations, instead delete an edge from all sites (not just odd).
This suffices for \(d \geq 7 \).

It follows that, for \(d \geq 7 \),
\[P_t' \leq \epsilon (1 - P_t) + C_d P_t^2. \]

Even if \(\delta_t(z) = \delta_t(w) = 1 \),
still require \(\geq 2 \) sites
\(x \in T_d(x) \) \(w/ \delta_t(y) = 1 \)

Consequently,
\[(5) \quad P_t' \leq \epsilon - P_t (1 - 2 C_d P_t). \]

Since \(P_0 = 0 \), for small \(\epsilon \)
\[(6) \quad P_t \leq 2 \epsilon \quad \text{for all } t. \]
Since all sites in $T_n(x)$ evolve independently, (2') follows from (6) and SLLN.

Basics behind proof of Theorem 2

Proof of Theorem 2 is more complicated than that of Theorem 1.

Some ideas:

The limit

$$E_t^r \to E_\infty^r \quad \text{as } t \to \infty$$

is equivalent to

$$E_{s-t}^r \to E_\infty^r \quad \text{as } s \to \infty.$$ \hspace{1cm} \text{will show a.s. convergence in this setting}

process starts at time $-s$ instead of 0

Employ s_{t-s} \hspace{1cm} analog of s_t, but starting at time $-s$

Since s_{t-s} is increasing in s,

$$\lim_{s \to \infty} s_{t-s}$$ exists. \hspace{1cm} \text{want to also show for } s_0
Trace paths of possible influence backwards in time. Refer to as search histories.

Is complicated. No duality.

But can control these using S_t^{-s}.

Corresponding to these paths are supercritical branching processes, at least one of which must eventually die out, but not die out quickly if $E_0 S_0^x = E_0 S_0^x(x)$ for large $S_1 \leq S_2$.

Deaths are associated w/ noise pts; births w/ MV pts.

Unlikely event.

On path.

Paths of possible influence.

$s = 0$

$t = -s = -S_2$