#### ABSTRACT
Title: Mixing and enhanced dissipation in the inviscid limit of the Navier-Stokes equations near the 2D Couette flow
Abstract: In this work we study the long time, inviscid limit of the 2D Navier-Stokes equations near the periodic Couette flow, and in particular, we confirm at the nonlinear level the qualitative behavior predicted by Kelvin's 1887 linear analysis. At high Reynolds number Re, we prove that the solution behaves qualitatively like 2D Euler for times t << Re^(1/3), and in particular exhibits "inviscid damping" (e.g. the vorticity mixes and weakly approaches a shear flow). For times t >> Re^(1/3), which is sooner than the natural dissipative time scale O(Re), the viscosity becomes dominant and the streamwise dependence of the vorticity is rapidly eliminated by a mixing-enhanced dissipation effect. Afterwards, the remaining shear flow decays on very long time scales t >> Re back to the Couette flow. The class of initial data we study is the sum of a sufficiently smooth function and a small (with respect to Re^(-1)) L< #### REGISTRATION CLOSED |

#### CONFIRMED PARTICIPANTS
#### FUNDINGA limited amount of travel and local lodging is available for researchers in the early stages of their career who want to attend the full program, especially for graduate students and post-doctoral fellows. #### INFORMATION FOR PARTICIPANTSCMU Visitor Guide Mathematical Sciences 5000 Forbes Avenue Carnegie Mellon University Pittsburgh, PAEmail: slepcev@math.cmu.edu #### ACKNOWLEDGMENT Funding provided by the NSF through the KI-net Grant. |