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Abstract

Kinetic-transport equations are, by now, standard models to describe the dynamics of popula-
tions of bacteria moving by run-and-tumble. Experimental observations show that bacteria increase
their run duration when encountering an increasing gradient of chemotactic molecules. This led to
a first class of models which heuristically include tumbling frequencies depending on the path-wise
gradient of chemotactic signal.

More recently, the biochemical pathways regulating the flagellar motors were uncovered. This
knowledge gave rise to a second class of kinetic-transport equations, that takes into account an
intra-cellular molecular content and which relates the tumbling frequency to this information. It
turns out that the tumbling frequency depends on the chemotactic signal, and not on its gradient.

For these two classes of models, macroscopic equations of Keller-Segel type, have been derived
using diffusion or hyperbolic rescaling. We complete this program by showing how the first class of
equations can be derived from the second class with molecular content after appropriate rescaling.
The main difficulty is to explain why the path-wise gradient of chemotactic signal can arise in this
asymptotic process.

Randomness of receptor methylation events can be included, and our approach can be used to
compute the tumbling frequency in presence of such a noise.

Key words: kinetic-transport equations; chemotaxis; asymptotic analysis; run and tumble; biochem-
ical pathway;
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1 Introduction

Two classes of kinetic-transport equations have been proposed to describe, at the cell scale, the
movement of bacteria by ‘run and tumble’ in a given external effective signal M (x,t), usually related
to the extra-cellular chemo-attractant concentration S by a relation of the type M = mg + In(.5).
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The simplest class is for the probability p(x,v,t) to find a bacteria at location x € R? and with
velocity v € V (a smooth bounded subset of RY, one can choose the unit ball to fix idea ). The
evolution of this probability is given by a Boltzmann type equation

oWp+v-Vep=T[D:M|(p), xR veV,t>0, (1)
with the path-wise gradient of M defined as
DM (z,v,t) = O, M (z,v,t) +v - VgpM(z,v,t) (2)

and T a tumbling kernel which typically takes the form

T[D:M](p) —/ [T(DtM(ac,v',t),v,v’)ﬁ(x,v’,t) - T(DtM(x,v,t),v',v)ﬁ(:c,v,t)] dv’.  (3)
v

The left hand side of equation models the run phase, whereas the right hand side describes the
velocity jump process during the tumbling. Such equations, with 7 depending on M or D;M, were
used intensively to model bacterial chemotaxis, possibly with M connected to the cell density, as a
result of chemoattractant release by bacteria. They were first introduced in [I8] and the Keller-Segel
drift-diffusion system was subsequently derived [19] in the diffusion limit; surprisingly, with a kernel T
depending on M and not on its gradient, and in opposition to the Keller-Segel system which solutions
blow-up for large mass, it was proved that the solutions exist globally [5, 12]. However, experiments
show that bacteria as F.coli extend their runs when feeling an increasing concentration of chemoat-
tractant and this led to study tumbling kernels 7' that depend on D;M, see [8, [6]. The nonlinear
theory is then more difficult (see [4] and the references therein) and blow-up can occur in finite time
[2]. These models with T depending on D;M are able to explain the experimental observation of
traveling pulses of bacteria, which cannot be done when T only depends on M itself, see [23] 24].
Also, departing from this kinetic-transport equation, it is possible to rescale it and study the diffusion
and hyperbolic limit as in [8, 6, 23], 24, 12| 11]. When T undergoes stiff dependency on D, M, the
hyperbolic limit is singular and the analysis is particularly delicate [13].

Actually, the response of bacteria to signal changes is orchestrated by a sophisticated chemotactic
signal transduction pathway, which involves a rapid response of the cell to the external signal change
called ’excitation’, and a slow "adaptation’ which allows the cell to subtract out the background signal.
In order to incorporate this intracellular chemo-sensory system, more elaborated kinetic models have
been proposed. In [8, O], a cell-based model which incorporates a linear cartoon description of the
excitation and adaptation response of a cell has been introduced. The signal transduction pathway has
been studied in e.g. [10}20]. We refer to [20} B1] where the case of bacteria E. coli has been extensively
detailed, other bacteria using similar strategies to move are ecountered also in [22], 21]. In the simplest
description of the biochemical pathways, a single additional variable m > 0, which represents the
intracellular methylation level, is used. The intracellular adaptation dynamics is generally modeled

by an ODE

= Flm, M (1)),

where f describes the chemical reaction. We recall that M is the given external effective signal; it
usually has a logarithmic dependancy with the chemo-attractant concentration as it has been recently
experimentally evidenced for E. coliin [I5]. Then, the kinetic-transport equation governs the dynamic



of the probability density function p(x, v, m,t) of bacteria at time ¢, position x € R?, moving at velocity
v € V, where V is a bounded domain of R?, and methylation level m > 0. It reads

Op + v - Vap + Oplf (m, M)p] = Q[m, M](p), (4)

p(x,v,m =0,t) =0.

We assume that the reaction rate f(-) verifies f(m = 0, M) > 0, which allows us to pose the boundary
condition at m = 0. Here the a-divergence term describes the change of probability due to the bacteria
‘run’, the m-derivative models the evolution of the methylation level. The tumbling term Q[m, M](p)
describes the velocity jump process, it is given by

Q[m, M|(p) = /V [A(m, M, v,v")p(t, x,v',m) — AN(m, M, v, v)p(t,,v,m)| dv’, (5)

where A(m, M, v,v") denotes the methylation dependent tumbling frequency from v’ to v, in other
words the response of the cell depending on its environment and internal state. We borrow this for-
malism from [14] 25] even though this type of models, involving more general signal transduction, can
be traced back to [8, @, 6, [30]. The authors in [8, @, 6, B0, 25, B1] developed the asymptotic theory
which, departing from the kinetic level of description, allows to recover, in the diffusion and in the
hyperbolic limits, macroscopic equations where the variables are only (x,t) as the Keller-Segel system
which governs the dynamics of the density of cells.

In the program of establishing the relations between these pieces of the model hierarchy for bacterial
population motion, a derivation is missing: how are related these two classes of kinetic models f

and —?

In this paper, we focus on the mathematical link between these classes of kinetic models. To this aim,
we assume a fast adaptation and stiff response of the internal states, the methylation level is then at
equilibrium with the external signal represented by M, and the equation can be derived from .
In particular, we aim at computing the bulk tumbling kernel T'(D;M,v,v’) from the methylation
dependent kernel A(m, M,v,v’), a statement we give in the next section. Two difficulties arise here:
one is to infer the proper rescaling in the kinetic equations, the second is to carry-out the mathematical
analysis for singular limits. We also show the robustness of our approach by including a structural
change in the equation. The proof of the formula for T is given in sections [3] and [4} we show that a
direct use of the variable m is not enough to produce the formula and that a new variable is needed,
which zooms on the intra- and extra-cellular methylation equilibrium. In section [5, we relate our
notations to a more physically based description of the same model where the cell receptors activity is
used in the model parameters. This model has been used as a comprehensive model based on detailes
biochemistry of FE. coli chemotaxis. In this physical framework, numerical comparisons between the
two kinetic models are considered in section [f] We conclude by a discussion on the validity of our
assumption.

To keep simplicity, we assume that the external signal function M (z,t) is given and smooth. There-
fore questions of existence and blow-up are not considered here.



2 Fast adaptation, stiff response

Assumptions. For our mathematical derivation, we introduce a small parameter ¢ which acts both
as a fast time scale for external signal transduction and as a stiffness parameter for the response in
terms of tumbling rate. More precisely, the external signal transduction is assumed to fastly relaxes
towards equilibrium, which is modeled by the intracellular adaptation dynamics

dm 1
— = —f(m — M(x,t)).

o= fm = M(z,1)
Such dependancy of the reaction rate f on the difference m — M is in accordance with the physical
models that we recall in Section [5l We model the stiff response of the internal variable by assuming
that the tumbling frequency is a fast varying function: A(m, M,v,v’) = A(™=Y v v’). Therefore,

€ )
equation f rescale as

Ope +v - Vgpe + %8711 (f(m - M)]%) = Qe[m>M](p€)a

pe(x,v,m =0,t) =0,

(6)

with the tumbling kernel

Qc[m, M|(pe) = /V {A(mejw,v,v’)pe(w,v’,m,t) — A(m — M,v','v)pg(a:,v,m,t)} dv'. (7)

€

We complete this equation with an initial data p™ > 0 which satisfies

/// (1 +m?)p™i(z, v, m) dz dvdm < oo, (8)
RIxV xR

Pl = / pMidm e LR x V). (9)
R

Also, we are going to use several assumptions for the functions M, f and A. We assume they are
as smooth as necessary and that for some constants m4, g+, AL,

0<m_ <Mz, t) <my, M € C{(R? x [0,00)), (10)
fly) =—yGy), withGeCiR), 0<g-<G(y) <gy, (11)
8yA(y,v,v’> <0, 0<A < A(y,v,v’) <A (12)

Various scalings have been proposed for kinetic equation and the closest, but still different seems to
be the high field limit [I]. In [I7], still other scalings or limits are studied.

The main result. With these assumptions, we are going to show that as e vanishes, we recover the

simpler model f as a limit of @

Theorem 2.1 (Derivation of the kinetic equation) Let V be a bounded domain of R%. We make
the assumptions f@ on the initial data, and f on the coefficients. Let p. be the solution
to @ Then, for all T > 0, p. is bounded in LOO([O,T] x RY x V) and

Pe 1= / pedm — pg in Loo([O,T] x R? x V)—weak—*
R e—0

4



and pg satisfies equation f with
T(u,v,v') = A( - ﬁ,’u,v’).

Furthermore, we have py = pro dm with py the weak limit (in measures, see ) of pe which is
given by
po(x, v, m,t) = po(x,v,t)6(m = M(x,1)).

Before we prove this theorem in the next sections, we show robustness of the limiting procedure.

Structural stability. To sustain the robustness of this limiting procedure, we consider a structural
change in the model by adding a diffusion term in m. The model is as follows:

1
Oipe + v - Vape + ;8,” (f(m — M)pe> — €0, pe = Qc[m, M|(p.), (13)
with the no-flux boundary condition that now reads
f(=M)pc(x,v,m,t) — €00,p(x,v,m,t) =0, atm =0. (14)

This additional term might also be interpreted as a simplified representation of internal noise re-
sulting from random methylation and demethylation events on the thousands of receptors in F. coli,
[7]. Again the particular scaling in € is chosen to recover a distinguished limit

Theorem 2.2 (Limit with noise) With the assumptions and notations of Theorem the same
conclusions hold for the solution p. of , with the same expression for pg and

2
T (0,0.0) = {92 [ Ao of)e 5 0a0)

As a consequence, as o vanishes, we recover the tumbling kernel T" of Theorem [2.1] as a limit of 7.

A priori bounds and principle of the proof. Before we explain the derivation of the formula
stated in these theorems, let us make some observations which explain the difficulty. Because we
assume that M (z,t) is given, we handle a linear equation for which existence and uniqueness of weak
solutions is well established. The nonlinear case, when the chemoattractant concentration giving rise
to M is coupled to p€, can also be treated, see [3, [I7]. In particular we will make use of the uniform
estimates (see Section

/// pe(x,v,m,t)dedvdm = /// pi(x, v, m) dz dv dm, vVt >0, (15)
RIxV xR RIxV xR

Pe(@,v,t) < [|p™ (2, v) [, V>0, (16)

where C' is a nonnegative constant. From these bounds, we conclude that we can extract subse-
quences (but to simplify the notations we ignore this subsequence) which converge as mentioned in
the theorems.



Passing to the limit in the equation on p,. (with or without noise) gives us

This tells us that f (m—M ) po = 0 (it is constant and py is integrable). Because, with assumption ,
f (m - M ) vanishes only for m — M = 0, we conclude that pg is a Dirac mass at m = M, hence the
expression of py in Theorems [2.1] and

However this information is not enough to pass to limit in the equation on p. obtained integrating

in m equation @ or , that is

atﬁe +v- VgD = . Qe[my M] (pe) dm.
R

Indeed, in the right hand side, the product A(m_EM,U, v’)p6 (z,v',m,t) is, in the limit, a discontinuity
multiplied by a Dirac mass. For this reason, we have to rescale in m in order to evaluate this limit,

which we do in the next section.

3 The change of variable

To get a more accurate view of the convergence of p. to a Dirac mass in m, and following [§], we
introduce a blow-up variable around m = M. We set

m— M
y=—" ge(x,v,y,t) = epe(x,v,m,t) (17)

so that
G, 0.t) = / 4o, vy, 1) dy = / pele, v,m, 1) dm = po(@, v,1). (18)
R R

Because of these identities, our statements will equivalently be on g, and will go through the analysis
of g. rather than p, itself.
Also notice that the bounds in , also hold true for ¢. and ¢. and allow us to take weak limits.

(i) Without noise. The equation for q.(t,x,v,y) is written, using the definition in ,
1 1
0¢Ge + v - Vgqe _EDtMaqu + ?ay (f(ey)(k)
= / |:A<y7 U? U/>q5(w7 vl? y? t) - A<y7 vl? 'v>q€($7v7y7 t):| dvl.
v
From , we can write f(ey) = —eyG(ey) and the above equation becomes

1 1
atQE + v Vgqe _;DtMayQE - an (yG(ey)QE)
(19)
= Aly,v,v )g(z, v, y,t) — Ay, v, v)q(z,v,y,t)| dv'.
/V[(y >Q( yt) (y )(J( y)]

6



Because ¢, is a bounded measure on R? x V x Rt x (0,7, for all T > 0, as € — 0, ¢, has a weak limit
qo in the sense of measure (again after extraction) and the above equation gives, in the distributional

sense,
9y (yG(0)go + DM (S)qo) = 0. (20)
From this, we infer that
DM (S
(t.2,v.9) = (e, z,0)5 (5 = - 2z ). (21)

This information is useful provided we can establish that
do(x,v,t) = / qo(x,v,y,t) dy = weak- lim g.(x, v, t). (22)
R e—0

This step is postponed to Section [4] and involves a control of the tail for large values of m.
We may also integrate equation with respect to y and find in the limit

{A(—W,v,v’)qédv’—A(—w, ’, )qo], (23)

OiGo +v - Vgido = / G(0) GO) v v

|4

where D;M (S) is the total derivative, as in (2)), but in the direction v’ and where g represents
do(x,v',t). Finally, for any smooth test function ¢, we have from the change of variable m — y =
(m - M)/Ea

[ peacv.m tyotm) am = [ ale,0,. 060 + ) dy = ol 0, )0(0M),
where we use . This gives the limiting expression of py in Theorem

These are the results stated in Theorem if we can establish the relation gy = pg as stated in ,
which we do later.

(ii) With internal noise. Similarly, after introducing the new variables as in , the equation
for q(t, x,v,y) writes

1 1
0¢qe + v - Vgqe _EDtMayQE + ?ay (f(fy)(k)

= 2054 +/V [A(y,v,v')qe(w,v’,y,t) —A(y,v’,v)qe(w,v,y,t)} dv'.
From , this equation becomes

1 1
ath + v - Vg _EDtMayQG - an (yG(ey)QE)
(24)
= 20;,4c +/V [A<y,v,v’>qe(m,v’,y,t) —A(y, v’,’v)qe(w,v,y,t)} dv'.

In the limit € — 0, the above equation converges to, in the sense of distributions,

9y (yG(0)qo + D;Mqo) = —0 0,0,

7



which shows that

G(0) -2 (v+ 5

2ro

QO(%%ZJJ) = QO(wavat) s (25)

a useful information, still assuming we have proved the relation for .
We conclude as before. After integration of with respect to y, passing to the limit e — 0, we
find

OtGo + v - Vaeqo = / [T(DQM, v, v) qdo — T(DtM,v, v’) (jo} udv’,

\%4

_G(0) Dy M\ 2
r(00t.5.0) = T [ N O

The Theorem [2.2]is also proved. O

(26)

4 A priori bounds

We now establish the various estimates which justify that we can pass to the limit as indicated in
Section |3 and thus we prove the

Lemma 4.1 We make the assumptions of Theorem then the condition holds and for some
constant which depends on [[ y*q™ dydz dv and [ M |[yy1,00 R+, we have

// y2qe(t) dydxdv < C(qini,M).

Consequently, q. converges weakly in the sense of measure towards qo and
(i) for qc a solution to , qo 1s given by with o weak solution of ,
(ii) for qc a solution to , then, qg s given by with go weak solution of .

Proof. We only consider the case (i) without noise, the case (ii) is obtained by the same token. We
first prove some estimates which imply weak convergence. Then, we pass to the limit in the equation
satisfied by g..

L' bound. For completness, we recall that equation is positivity preserving and conservative. It
follows the uniform, in €, bound for ¢, in L!, see .

L*° bound on g.. We use the notation for .. Arguing in the spirit of [12} [4] 28]), we first prove
the uniform L*° bound on g.
Integrating with respect to y, from the bound and the nonnegativity of q., we get

8tq_e +v- vmq_e S )‘+ / Qe d’U,.

Then, using the method of characteristics, we have 9gc(t,  + vt) < Ay [ Ge(z + vt, v, t) dv’, which
implies after integration

t
Ge(t,x,v) — ¢%(x — vt) < )\+/ /q6(33 —ws,v',t —s)dv’ ds.
0

8



Taking the supremum in @, v, we find

t
13e®)lloo < [17™[lco + A4 [V] /0 1ge(s) [ oo ds,

and using Gronwall’s inequality, we find the estimate in .

Control on the tail in m. In order to prove the condition , we need to ensure that there is no
mass loss at infinity in m. To do so, we multiply both sides of by y? and integrate by parts with
respect to x, v, and y. This yields

d 2 2
dt//yzqe dydxdv + //yQG(ey)quydxdv—i— //yDth6 dydx dv = 0.
€ €

Using the Cauchy-Schwarz inequality, we deduce

//y ge dydxdv + — //y G(ey)qe dydx dv <— //y G(ey)ge dy dx dv
DyM)?
+e//( ' )G(y)

By assumption (10), D;M is bounded in L>([0,T] x R x V). From assumption and the mass
conservation, the last integral of the right hand side is uniformly bounded by a constant denoted by
C > 0. Then from assumption , we have,

d _ C
//ZJQQedyd:Udv—i-g//yzqedydxdv< .
dt € €

From the Gronwall Lemma, we deduce the bound for all ¢ > 0,

// 12 qe(t) dy dadv < e719-/¢ // y2¢™ dy dz dv + Q,
g_

which implies a uniform bound on [ y2¢.(t) dy dz dv.

Passing to the limit. From the bound above, we deduce that, we can extract a subsequence which
converges weakly in measure ¢¢ — qg and such that gc — ¢y in L°°-weak. Then we can pass to the
limit in the sense of distribution in equation and deduce that the limit gg satisfies equation
in the sense of distribution. In fact, we notice that from the Lipschitz character of G, we have

// ))qed$dy<06//y Gedxdy — 0, as € — 0,

thanks to the estimate on the tail above. Finally, implies that yG(0)qo + D;Mqp is constant a.e.,
and this constant should be 0 since from the estimate on the tail above, we have that yqq € L'. We
conclude that go vanishes except when yG(0) + DM (S) = 0. By conservation of the mass, we deduce
the expression for pg.



5 Comments on physical background

The form of the equation @ corresponds, for F. coli chemotaxis, to the formalism in the physical
literature. We have simplified the notations for mathematical clarity and we explain now how to
relate our notations to known biophysical quantities. In the presentation below, we have used the
same biological parameters as in [14, 26]. Notice that the model below is the most elaborate in terms
of biochemistry among the hierarchy in [31].

e The methylation level M (z,t) at equilibrium is related to the extra-cellular attractant profile S, by
a logarithmic dependency

fo(S)

14+ S/Ka

The constant my is a reference methylation level in the absence of signal, the constants K; and K4
represent the dissociation constants for inactive, respectively active, receptors. Numerical values are
given by a = 1.7, mg = 1, K1 = 182uM, K4 = 3mM. These parameters were calibrated to fit
experimental data [27, 15].

e The receptor activity a(m,S) depends on the intracellular methylation level m and the extracellular
chemoattractant concentration S such that

a=(1+exp(NE))™",  with E = —a(m —mg) + fo(S) = —a(m — M(S)). (27)

We note that the specific form of the function a was derived using Boltzmann’s law in [29] which can
be reduced to the expression . The coefficient N = 6 represents the number of tightly coupled
receptors.

e The intracellular dynamics and tumbling frequency are given by

1,0 \H

f(m — M(S)) = F(a) = kr(1 — a/ay), A(m — M(S)) =Z(a)=z+T l(a—o) ,
where a(m, S) is the receptor activity defined in (27). The parameter kr is the methylation rate,
ap is the receptor preferred activity which is such that f(ag) = 0 and f’(ag) < 0. For the tumbling
frequency, zg, H, T represent the rotational diffusion, the Hill coefficient of flagellar motors response

curve and the average run time respectively. All these parameters can be measured biologically, their
values are given by kr = 0.01s71 ~ 0.00055 %, ag = 0.5, 2o = 0.14s~', 7 = 0.8s, H = 10.

e Two kinds of noise can be observed in the signaling pathway for E. coli, one is from the external
fluctuation of the ligand concentration and the other is the internal noise from the random receptor-
methylation and demethylation event [7]. For small complexes, the effect on the activity from the
external noise is negligible compared to the internal noise.

We refer the readers to [26] [7, [14] 25] and the references therein for the detailed physical meanings
of these parameters.

The validity of the assupmtion ¢ < 1 depends on the ratio between 1/kr and the system time.
We might have in mind, the time scale of chemotactic signal imposed from outside varies as in the
experiments in [26], which motivates the numerical comparisons in section @ We might also have in
mind traveling concentration waves, see [23], 24] and the references in there, where the typical length

10



is of the order of centimeters, while bacterial velocity is of order of 20 micrometers per second. Then
the system time is of the same magnitude as the adaptation time.

Moreover, the Hill coefficient H is large which indicates that A(m — M (S)) varies fast with respect
to m — M (S). Therefore, the scaling introduced in @ is satisfied by E. coli chemotaxis. We can use

flry=1- (110(1 + exp(—Nar))_l.

Therefore, the function G(-) used in is given by

_Na
" dag’

G = -1 —1(1 - alo(l +exp(~Nar)) '), with G(0) = —f(0)

r T

Besides, from Theorem for the case without noise, using y = % yields

L1+ exp(—Naey))_H

T(D:M,v,v") = A(y,v,v)=z0+7" 7

af -
- (1 + exp (NaeDtM(S)/G(O)))
=z20+T !
af!

And from Theorem when the noise in the methylation level is considered, and choosing ¢ = 1,

2
r(oit0) =G [ Ao)e S 078
R

The run durations last longer when bacteria encounter an increasing gradient of chemotactic molecules,
this leads to higher bacteria density at the place where the ligand concentration S is higher. This phe-
nomena is well explained by the classical Keller-Segel model which can be considered as the parabolic
limit of the kinetic-transport models. However, recent experimental observation shows that higher
ligand concentration leading to higher bacteria density is only valid in a spatial-temporal slow-varying
environment. When the ligand concentration varies fast, there exists a phase shift between the mass
center of ligand concentration and of the bacterias [32]. This is due to the memory effect in the slow
methylation adaptation rate. In the limiting kinetic model, D;M (S) takes into account the memory
effect along the trajectory of the moving cell [28]. Then, two interesting questions come: are these
two kinds of memory effect the same? Can we see the phase shift between the mass center of ligand
concentration and of the bacteria in the limiting kinetic model?

6 Numerical illustrations

We performed numerical simulations using the method SPECS [14]. It is a cell based model that takes
into account the evolution of each cell intracellular methylation level, which determines the tumbling
frequency of each bacteria. As explained in [25] 26], SPECS and the kinetic model that incorporates
intracellular chemo-sensory system show a quantitative match.

11
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Figure 1: Numerical comparison between the limiting kinetic model and SPECS. The steady state
profiles of density p (top) and current J (bottom) are presented. Left: uw = 0.4um/s; Right: u =
8um/s. In the subfigures, histograms and solid lines are from SPECS, while the dash star and dash
dotted lines are calculated using the limiting kinetic equation. Parameters used here are Sy = 500uM,
Sa = 100uM, ¢ = 800um. We have used 20,000 cells for simulation with SPECS.

Periodic traveling wave environment:

As in [25 [26], we choose the two velocity kinetic model and a periodic 1D traveling wave concentration

S(2,1) = So + Sa sin[277r(:c b)),
which is spatial-temporal varying and where the wavelength £ is equal to the length of the domain.
We compare the numerical results of SPECS and the limiting kinetic model in Figure Upwind
scheme is used for the transport terms and periodic boundary conditions are considered. The density
is scaled at the order of 1073, it is the ratio between the actual cell number and the total number. In
the Figure|l] the x axis represents the remainder of x — ut mod ¢, i.e. we keep tracking the wave front
of the periodic traveling wave.

Two different wave velocities u = 0.4um/s and u = 8um/s are considered. We compare the density
profiles p = fv pdvdm and the cell flux J = fv vpdv dm. When the concentrated wave moves slowly,
the limiting kinetic model gives good consistency, however in the fast-varying environment, the density
and cell flux profiles are different for SPECS and the limiting kinetic model. We refer the readers to
[14] 26] for more detailed discussions and physical explanations.

This numerical experiment shows that the memory effect using the model based on D;M(S) is
different from the memory effect for the complete model when fast external chemoattractant waves
are considered. This phenomena can be explained by the slow adaptation rate in the methylation
level and the memory along the trajectory compared to the phase shift. In this fast wave regime, our
mathematical results do not apply because the scaling assumptions are not satisfied.

Exponential Environment

Here we set up an exponential gradient environment S = Syexp(Gz) and numerically compare the
average drift velocity of the two different kinetic models. SPECS can be considered as a Monte
Carlo simulation for kinetic-methylation model and we constraint ourselves in the space such that
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Figure 2: Numerical comparison between the limiting kinetic model and SPECS in the exponential
environment. Left: kg = 0.005s~'; right: kr = 0.05s~!. The squares and triangles are respectively
for model and . The units for G, the abscissae, and the bulk drift velocity Vj, the ordinates,
are respectively um~! and um/s. We have used 12,000 cells for simulation with SPECS.

4K < S(x) < Ka/4. According to [26], when G becomes large and kr becomes small, the distribution
in m is no longer concentrated near M (S), which indicates that the scaling assumption in @ is
violated.

In Figure |2 the average drift velocities of the two kinetic model in the exponential environment for
different G and kg are displayed. When G becomes large, the average drift velocity of the limiting
kinetic model is far from what predicted by SPECS. Heuristically, when G increases, the average drift
velocity first increases linearly then super-linearly and finally saturate at certain value, the limiting
kinetic model can only match the linear regime. Besides, we can observe that larger ki increases the
linearly increasing regime with respect to G.

We compare the distribution of the activity a in Figure [3| a determines the tumbling frequency and
it is concentrated as a delta function in the purely kinetic model. We can see that when G is small,
the average a for forward and backward moving bacteria in the kinetic methylation model is the same
as the concentrated a in the purely kinetic model, while when G becomes large, the average a in the
kinetic methylation model is far away from the a in the purely kinetic model. This explains the good
match when G is small and the results of the two kinetic model separate when G increase.

7 Discussion

We have shown that the widely used purely kinetic ‘run and tumble’ model ([1)—(3)) can be derived
from a cell based model including the methylation level as internal variables f. This link com-
pletes the model hierarchy of partial differential equations for bacterial chemotaxis. The derivation
of macroscopic model of Keller-Segel type from cell based models or from purely kinetic-transport
systems has been widely studied by several authors (see e.g. [8 Bl 9] [16] 6, B0, 23] 1T, 13} 25, B1]).
Up to our knowledge, this work is the first attempt to link those two latter systems. The derivation
is obtained, rigorously, assuming a fast adaptation and a stiff response of the internal variable to the
environment changes; it implies the methylation level to be at equilibrium.

For E. coli chemotaxis, the smallness assumptions for the derivation is not satisfied. This implies

13
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Figure 3: Numerical comparison between the limiting kinetic model and SPECS in the exponential
environment. So = 4K; = 4 x 18.2uM. Left: kinetic-methylation model: the mean and variance of
the distribution in a for forward (red) and backward (blue) moving bacteria; Right: purely kinetic
model: the limiting distribution in a for forward (red) and backward (blue) moving bacteria are delta
functions. The top figures are for G = 0.0001 while the bottom figures are for G = 0.002. Here
kr = 0.05.
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in particular that for fast varying signals, the kinetic model does not allow to recover the behavior
observed thanks to stochastic simulations, see Figure [T[right. We notice that such limitation has been
also observed with the Keller-Segel model [31]. Numerical simulations in section [6]show that solutions
of the purely kinetic model and the kinetic-methylation model might coincide more broadly than
expected with the physical range of parameters chosen for the simulations. A possible explanation
might be from the robustness of the limiting procedure as expressed by the Theorem However it
is possible that a different scaling, still to be discovered, would also produce the purely kinetic limiting

equation f.
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